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Variants of an algorithm of J. Stein

Sándor Szabó1

Abstract

In 1961 J. Stein proposed an algorithm to compute the greatest com-
mon divisor of two integers. In this paper we point out that similar
algorithms exist in the ring of integers of various quadratic number fields
and also in the non-commutative ring of the Hurwitz quaternions. The
implementations of the algorithms are straightforward. However the pro-
cedures vary from case to case.
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1 Introduction

In his book [9] T. W. Körner tells us: “Euclid’s algorithm has been known for
over 2000 and the reason for its excellence has been well understood for over a
100 years. It has come as a surprise to me to learn that it now has a genuine
competitor, invented by J. Stein in 1961.” He then goes on describing Stein’s
algorithm which based on an odd even consideration. For some history and for
an analysis of Stein’s algorithm see [8]. The reader might find useful background
information in [1] and [3]. Both Euclid’s and Stein’s algorithms imply that the
integers have the unique factorization property. It is remarkable that the unique
factorization property can be established by an odd even argument.

Only a small minority of the rings of algebraic integers possesses the unique
factorization property. Namely those whose ideal class number is one. In some
of these rings a Euclidean algorithm is available to compute greatest common
divisors. The Euclidean algorithm is used extensively in cryptographic com-
putations. Further the Euclidean algorithm in Q[i] and Q[

√−3] is used for
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deciding the biquadratic and cubic character of an integer respectively modulo
a prime.

In the binary gcd algorithm (Stein’s original algorithm) the divisions can
be replaced by shifts, an advantage especially for large numbers. D. E. Knuth
[8] reports on numerical experiments comparing the Euclidean and the binary
algorithms. A. Weilert [13] is devoted entirely to the complexity analysis of the
(1 + i)-ary algorithm in Gaussian integers. On the other hand papers [2], [6],
[7], [12], and [10] deal with the complexity or implementation of the Euclidean
algorithm in quadratic fields. Namely, [7] seems to present an analogue of the
Lame bound on the number of the division steps while Theorem 4.1 of [6] looks
like an O(t2) bit complexity bound for Euclid’s algorithm. The algorithms we
present can also be completed using at most O(t2) bit operations, where t is the
total number of input bits.

In this paper we will show that Stein’s algorithm works in a more general
setting. Let R be a commutative ring with identity element 1 and zero element
0. We will use a function H from R to the non-negative integers. We list four
properties related to this H.

(a) H(ab) = H(a)H(b) for each a, b ∈ R,

(b) H(a) = 1 if and only if a is a unit in R,

(c) H(a) = 0 if and only if a = 0,

(d) H(a) ≥ H(b) implies 4H(a) ≤ H(a + b) and equation holds only when
a = b,

(e) H(a + b) + H(a− b) = 2[H(a) + H(b)] for each a, b ∈ R.

We would like to point out that we are not looking for a function H that
satisfies all these properties. It will depend on the particular situation which
properties must be satisfied. The point is that no other property outside of this
list will be considered.

To each a in R we assign a type. The number of the types must be finite
and the type should be computable. The generalized form of Stein’s algorithm
to compute a greatest common divisor of a and b in R is the following.

Step 1. Set a1 = a, b1 = b, d1 = 1 as initial values.

Step 2. If ak, bk, dk have already been computed, then distinguish 4 cases.

(1) If ak = ±bk, then ak and bk are associates in R. A greatest common
divisor of ak and bk is ak. Set ak+1 = 1, bk+1 = 1, dk+1 = dkak and
the algorithm terminates.

(2) If bk is a unit in R, then a greatest common divisor of ak and bk is
1. Set ak+1 = 1, bk+1 = 1, dk+1 = dk and the algorithm terminates.

(3) If bk = 0, then a greatest common divisor of ak and bk is ak. Set
ak+1 = 1, bk+1 = 1, dk+1 = dkak and the algorithm terminates.
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(4) If none of the cases (1), (2), (3) holds, then compute the types of ak

and bk. Let us consider cases depending on the types of ak and bk.
We list in a table how to compute ak+1, bk+1, dk+1 in terms of ak,
bk, and dk. The rows are labeled by the possible types of ak and the
columns are labeled by the possible types of bk. Then go back to the
beginning of Step 2.

We would like to add one remark here. In Step 2 in some version of the
algorithm it is assumed that H(ak) ≥ H(bk). If H(ak) < H(bk), then we
swap ak and bk before we continue. However, evaluating the function H can
be computationally expensive. When this happens we try to avoid computing
H(ak) and H(bk).

Let us turn to the analysis of the algorithm. We assume that ak+1, bk+1,
dk+1 are computed from ak, bk, dk in such a way that

(i) d
∣∣ akdk and d

∣∣ bkdk if and only if d
∣∣ ak+1dk+1 and d

∣∣ bk+1dk+1.
We call the quantity hk = H(ak) + H(bk) the height of the pair (ak, bk).

In a concrete setting it remains a task to show that the algorithm terminates
because the height eventually decreases.

Suppose that the algorithm terminates in n steps. We claim that dn is a
greatest common divisor of a and b. We will show that dn

∣∣ a and dn

∣∣ b. Then
we show that d

∣∣ a and d
∣∣ b imply d

∣∣ dn. In order to verify this claim consider
the following list.

a1d1, b1d1,
a2d2, b2d2,

...
...

andn, bndn.

Going up on the list step by step we can see that dn

∣∣ a1d1 and dn

∣∣ b1d1. Since
d1 = an = bn = 1, a = a1, b = b1 we get that dn

∣∣ a and dn

∣∣ b. Choose a d that
divides both a and b. Going down on the list we get that d

∣∣ andn and d
∣∣ bndn.

This means d
∣∣ dn.

In a concrete setting it remains a task to verify that (i) holds.

2 The integers

Let R be the set of the non-negative integers with the usual addition and mul-
tiplication. In this case R is not a ring but this will cause no problem. Let the
function H be defined by H(a) = a for each a ∈ R. Properties (d), (e) do not
hold. But we are not going to use them. We say that the type of an integer
a is u if a ≡ u (mod 2) and 0 ≤ u ≤ 1. Table 1 summarizes how to com-
pute ak+1, bk+1, dk+1. We marked the cell by letters D and S as “division” or
“subtraction” cells. The indices are for easier reference. This is Stein’s original
algorithm.

In order to see how the algorithm works let us consider an example. Let
a = 28, b = 33. (See Table 2.) A word of warning. By Step 2 of the algorithm we
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Table 1: The integers with 2 types

0 1

0

D1,1

ak+1 = ak

2

bk+1 = bk

2
dk+1 = 2dk

D1,2

ak+1 = ak

2
bk+1 = bk

dk+1 = dk

1

D2,1

ak+1 = ak

bk+1 = bk

2
dk+1 = dk

S2,2

ak+1 = ak−bk

2
bk+1 = bk

dk+1 = dk

Table 2: An example in Z

k ak H(ak) bk H(bk) dk hk

1 33 33 28 28 1 61

2 33 33 14 14 1 47

3 33 33 7 7 1 40

4 13 13 7 7 1 20

5 7 7 3 3 1 10

6 3 3 2 2 1 5

7 1 1 1 1 1 2

Table 3: An algorithm without subtraction

0 1

0 ak+1 = ak

2 ak+1 = ak

2

bk+1 = bk

2 bk+1 = bk

dk+1 = 2dk dk+1 = dk

1 ak+1 = ak ak+1 = ak+bk

2

bk+1 = bk

2 bk+1 = bk

dk+1 = dk dk+1 = dk
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Table 4: An algorithm without comparison

0 1

0 ak+1 = ak

2 ak+1 = ak

2

bk+1 = bk

2 bk+1 = bk

dk+1 = 2dk dk+1 = dk

1 ak+1 = ak ak+1 = ak−bk

2

bk+1 = bk

2 bk+1 = ak+bk

2

dk+1 = dk dk+1 = dk

Table 5: The integers with 3 types

0 1 2

0 ak+1 = ak

3 ak+1 = ak

3 ak+1 = ak

3

bk+1 = bk

3 bk+1 = bk bk+1 = bk

dk+1 = 3dk dk+1 = dk dk+1 = dk

1 ak+1 = ak ak+1 = ak−bk

3 ak+1 = ak

bk+1 = bk

3 bk+1 = bk bk+1 = −bk

dk+1 = dk dk+1 = dk dk+1 = dk

2 ak+1 = ak ak+1 = −ak ak+1 = ak−bk

3

bk+1 = bk

3 bk+1 = bk bk+1 = bk

dk+1 = dk dk+1 = dk dk+1 = dk
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have to make sure that the inequality H(ak) ≥ H(bk) holds. So after computing
ak, bk we compare H(ak) and H(bk) and swap ak and bk if necessary.

Proposition 1 The algorithm terminates.

Proof. If one of ak = bk, ak = 1, bk = 1 holds, then the algorithm terminates at
the next step. We may assume that none of these cases holds and so we are in a
cell of Table 1. In cells D1,1 and S2,2 hk+1 = hk/2. In cell D1,2 hk+1 = hk−ak/2
and in cell D2,1 hk+1 = hk−bk/2. As ak > 0, bk > 0 it follows that hk+1 < hk in
each case and the computations cannot go forever. This completes the proof. ¤

Consider the following divisibility relations.

d
∣∣ akdk and d

∣∣ bkdk,(1)

d
∣∣ ak+1dk+1 and d

∣∣ bk+1dk+1.(2)

Proposition 2 (1) is equivalent to (2).

Proof. First assume (1) and try to show (2). In the ak = bk or bk = 0 case
notice that akdk = ak+1dk+1 and bkdk = bk+1dk+1 which plainly means that
(1) is equivalent to (2). In the bk = 1 case from d

∣∣ bkdk it follows that d
∣∣ dk.

Then notice that ak+1dk+1 = dk and bk+1dk+1 = dk and so (2) holds. We may
assume that none of ak = bk, bk = 0, bk = 1 holds and consequently we are in
a cell of Table 1.

In cell D1,1, akdk = ak+1dk+1 and bkdk = bk+1dk+1 and so nothing left to
prove. In cell D1,2, bkdk = bk+1dk+1 holds hence we left with showing that
d

∣∣ ak+1dk+1. d
∣∣ akdk = 2ak+1dk+1 can be written as dc = 2ak+1dk+1. If 2

∣∣ c,
then dividing by 2 we get d

∣∣ ak+1dk+1. We show that 2
∣∣ c. Suppose that 2

does not divide c and consider

dc = 2ak+1dk.(3)

Note that dk is a power of 2. Indeed, at the beginning d1 = 1. Then dk+1 is
dk or 2dk unless one of ak = bk, bk = 0, bk = 1 holds. But in these cases the
algorithm terminates at the next step. Thus at our stage of the computations
dk is a power of 2. From (3) it follows that 2

∣∣ d. Simplifying by 2 and repeating
the argument we get that 2dk

∣∣ d. From d
∣∣ bkdk we get that 2dk

∣∣ bkdk and so
2

∣∣ bk. This is a contradiction. Therefore 2
∣∣ c as we needed. The case of cell

D2,1 is similar.
In cell S2,2, bk+1dk+1 = bkdk holds so we need to show only d

∣∣ ak+1dk+1.
From

d
∣∣ akbk = (2ak+1 + bk)dk = 2ak+1dk = bkdk

it follows that d
∣∣ 2ak+1dk and we can follow the line of arguing we have seen

in connection with cell D1,2.
Next assume (2) and try to show (1). We consider the same cases as in the

first part of the proof. In cells D1,1, D1,2, D2,1 ak+1dk+1

∣∣ akdk and bk+1dk+1

∣∣
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bkdk and there nothing left to prove. In cell S2,2, bk+1dk+1 = bkdk gives that
d

∣∣ bkdk and
bkdk = (ak − 2ak+1)dk = akdk − 2ak+1dk+1

implies d
∣∣ akbk. This completes the proof. ¤

If the algorithm terminates in n steps, then by (i) and by Proposition 2, dn

is the greatest common divisor of a and b among the non-negative integers.
In the remaining part of this section let R be the ring of integers. We describe

variants of Stein’s algorithm. Let the function H be defined by H(a) = a2,
a ∈ R. To an integer a we assign the type u by a ≡ v (mod 2), 0 ≤ u ≤ 1
and let ak+1, bk+1, dk+1 be computed by the instructions of Table 3. We call
the squares in the first row and first column “division” squares and we call the
remaining square the “addition” square. If we are in a “division” square, then
clearly the height decreases, that is, hk+1 < hk. If we are in the “addition”
square, then the height decreases again.

hk+1 = H((ak + bk)/2) + H(bk)

=
1
4
H(ak + bk) + H(bk)

≤
(1

4

)
(4)H(ak) + H(bk)

= hk

Equation holds only when ak = bk. But in this case the algorithm terminates
in the kth step. Interesting to notice that in this variant of the algorithm no
subtraction occurs.

Let us consider the algorithm defined by Table 4. In this table there are
“division” squares and a “subtraction-addition” square. In a “division” square
the height clearly decreases. If we are in a “subtraction-addition” square, then
the height decreases again.

hk+1 = H((ak − bk)/2) + H((ak + bk)/2)

=
(1

4

)
[H(ak − bk) + H(ak + bk)]

=
(1

4

)
(2)[H(ak) + H(bk)]

=
1
2
hk

One should notice that in this variant of the algorithm there is no comparison
involved.

Since in Table 4 a new type of cell a “subtraction-addition” cell has appeared
we check that (i) holds for this type of cells too. Assume (1) and try to prove (2).
From ak − bk = 2ak+1 we get (ak − bk)dk = 2ak+1dk and then d

∣∣ 2ak+1dk. In
the way we have seen in the proof of Proposition 2 it follows that d

∣∣ ak+1dk+1.
Starting with ak + bk = 2bk+1 we get d

∣∣ bk+1dk+1.
Next assume (2) and try to show (1). Now bk+1 + ak+1 = ak and so

bk+1dk+1 + ak+1dk+1 = akdk+1 = akdk show that d
∣∣ akdk. Starting with



8 Sándor Szabó

Table 6: Polynomials

0 1

0 fk+1 = fk

x fk+1 = fk

x

gk+1 = gk

x gk+1 = gk

dk+1 = dkx dk+1 = dk

1 fk+1 = fk fk+1 = fk+λgk

x

gk+1 = gk

x gk+1 = gk

dk+1 = dk dk+1 = dk

bk+1 − ak+1 = bk we get d
∣∣ bkdk. This shows that (i) holds for this type of cell

too.
Next assign the type u to the element a of R by a ≡ u (mod 3), 0 ≤ u ≤ 2.

The remaining details of the algorithm are in Table 5. The squares in the first
row and first column will be called “division” squares. The second and third
entries of the main diagonal are called “subtraction” squares and the remaining
squares are termed as “reflection” squares. The height plainly decreases in a
“division” square. If we are in a “subtraction” square, then again the height
decreases. If we are in a “reflection” square, then the height does not change
and in the next step we cannot end up in a “reflection” square. This means
that in two steps the height decreases. One should notice that in this algorithm
there is no comparison involved.

Finally, there is an obvious variant where we work modulo 4. We divide
when either element is 2 modulo 4, subtract when both are 1 or 3 modulo 4,
and reflect when we have odd disagreeing elements.

Proposition 3 The Stein type algorithms can be performed with O(t2) bit op-
erations, where t is the total number of bits of the two integers whose gcd is
computed.

Proof. Let tk be the total number of bits of ak and bk. When ak is even, then
we set ak+1 = ak/2. In other words we delete the last bit of ak to get ak+1 and
so in a “division” cell tk decreases by 1. In an “addition” cell tk may remain
unchanged. In a “subtraction” cell tk decreases by 1. From an “addition” or
“subtraction” cell we always move to a “division” cell. In short the value of tk
must decrease by at least 1 in every other steps. Therefore the computation
terminates in at most 2t steps.

Next note that each step can be carried out using at most 4tk bit operations.
Indeed, we compare ak and bk and swap them if ak < bk. The comparison can
be done with 2tk bit operations and also the swapping can be accomplished with
2tk bit operations.
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By checking the last bit we can decide if a number is odd or even. Com-
puting ak ± bk and done with at most 3tk bit operations. Further dividing and
multiplying by 2 can be done with at most 2tk bit operation via shifting. ¤

3 Polynomials over a field

Let R be the ring of polynomials over a field F . Let f ∈ R. We define H
by H(f) = 2deg(f). The degree of the zero polynomial is defined to be −∞
and the degree of a nonzero constant polynomial is 0. One can check that
H(fg) = H(f)H(g) holds. Further H(f) = 1 if and only if f is a unit of R and
H(f) = 0 if and only if f is the zero polynomial. Properties (d), (e) do not hold
for H but we do not need them. We say that f is of type 0, 1 depending on the
constant term of f is zero or nonzero. Stein’s algorithm works in R very much
the same way as the Euclidean algorithm. The details are enclosed in Table 6.
The element λ of F is chosen such that the constant term of f +λg is zero. The
algorithm terminates because the height decreases in each step.

4 The Gaussian integers

Elements in the form a1 + a2i, where a1, a2 are integers, form a subring of the
complex numbers. Let ω = 1 + i, let α = a1 + a2i ∈ R. We define H(α) to be
a2
1 + a2

2. Note that ω
∣∣ α if and only if a1 ≡ a2 (mod 2) and the quotient α/ω

can be computed easily. Namely, α/ω = [(a2 + a1)/2] + [(a2 − a1)/2]i. Note
further that if 2

∣∣ a1 and 2
∣∣ a2, then 2

∣∣ α and α/2 can be computed easily as
α/2 = (a1/2) + (a2/2)i. We say that α = a1 + a2i is of type (u1, u2) if

a1 ≡ u1 (mod 2), a2 ≡ u2 (mod 2), 0 ≤ u1, u2 ≤ 1.

The details of an algorithm to compute a greatest common divisor of α = a1+a2i
and β = b1 + b2i are given in Table 7.

As an example we worked out the details when α = 5 + 8i and β = 2 − 5i.
(See Table 8.)

In Table 7 we distinguish 3 types of entries or squares. “Division” squares in
the 1st, 4th rows and columns. “Addition-subtraction” squares in the 2nd, 3rd
position in the main diagonal. “Rotation” squares the remaining two squares.
If we are in a “division” or in an “addition-subtraction” square, then the height
decreases. If we are in a “rotation” square, then the quantity hk does not
change. But in the next step we end up in an “addition-subtraction” square
and we have already seen that this leads to a decrease. We can say that in two
steps there is a decrease in hk. This guarantees that the algorithm terminates.

Let α = a1 + b1i, β = b1 + b2i and let t be the total number of bits of a1, a2,
b1, b2. An argument similar to that we have seen in the proof of Proposition
3 gives that the Stein type algorithm for Gaussian integers can be completed
with O(t2) bit operations. It is important to point out that in the course of
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Table 7: Z[i] with 4 types

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) αk+1 = αk

2 αk+1 = αk

2 αk+1 = αk

2 αk+1 = αk

2

βk+1 = βk

2 βk+1 = βk βk+1 = βk βk+1 = βk

ω

δk+1 = 2δk δk+1 = δk δk+1 = δk δk+1 = ωδk

(0, 1) αk+1 = αk αk+1 = αk+βk

2 αk+1 = αk αk+1 = αk

βk+1 = βk

2 βk+1 = αk−βk

2 βk+1 = βki βk+1 = βk

ω

δk+1 = δk δk+1 = δk δk+1 = δk δk+1 = δk

(1, 0) αk+1 = αk αk+1 = αk αk+1 = αk+βk

2 αk+1 = αk

βk+1 = βk

2 βk+1 = βki βk+1 = αk−βk

2 βk+1 = βk

ω

δk+1 = δk δk+1 = δk δk+1 = δk δk+1 = δk

(1, 1) αk+1 = αk

ω αk+1 = αk

ω αk+1 = αk

ω αk+1 = αk

ω

βk+1 = βk

2 βk+1 = βk βk+1 = βk βk+1 = βk

ω

δk+1 = ωδk δk+1 = δk δk+1 = δk δk+1 = ωδk

Table 8: An example in Z[i]

k αk H(αk) βk H(βk) δk hk

1 5 + 8i 89 2− 5i 29 1 118

2 5 + 8i 89 5 + 2i 29 1 118

3 5 + 5i 50 3i 9 1 59

4 5 25 3i 9 1 34

5 5 25 −3 9 1 34

6 4 16 1 1 1 17

7 1 1 1 1 1 2
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Table 9: Z[
√±2] with 2 types

0 1

0 αk+1 = αk

ω αk+1 = αk

ω

βk+1 = βk

ω βk+1 = βk

δk+1 = δkω δk+1 = δk

1 αk+1 = αk αk+1 = αk+βk

ω

βk+1 = βk

ω βk+1 = αk−βk

ω

δk+1 = δk δk+1 = δk

Table 10: An example in Z[
√−2]

k αk H(αk) βk H(βk) δk hk

1 9 + 8
√−2 209 5 + 6

√−2 97 1 306

2 7 + 7
√−2 147 2 +

√−2 6 1 153

3 7 + 7
√−2 147 1−√−2 3 1 150

4 3 + 4
√−2 41 4 + 3

√−2 34 1 75

5 3 + 4
√−2 41 3− 2

√−2 17 1 58

6 3
√−2 18 3 +

√−2 11 1 29

7 3 +
√−2 11 3 9 1 20

8 3 9
√−2 2 1 11

9 3 9 1 1 1 10
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the computation in this case we do not evaluate the H function. Computing
H(αk), H(βk) using the definition would jeopardize the O(t2) estimate.

5 The ring Z[
√−2]

The elements of the form a + b
√−2, where a, b are integers form a subring R

of the complex numbers. Let ω =
√−2, α = a + b

√−2, β = c + d
√−2. The

function H is defined by H(α) = αα = a2 + 2b2. Note that ω
∣∣ α if and only if

2
∣∣ a and the quotient α/ω can be computed by α/ω = b− (a/2)

√−2.
We say that α = a + b

√−2 is of type u if a ≡ u (mod 2), 0 ≤ u ≤ 1.
The remaining part of the computation is given in Table 9. Clearly the height
decreases in a “division” cell. In order to show that the algorithm terminates
Note that

H(α + β) + H(α− β) = 2[H(α) + H(β)].

This gives that

H[(α + β)/ω] + H[(α− β)/ω] = H(α) + H(β).

The computation

hk+1 = H[(αk + βk)/ω] + H[(αk − βk)/ω]
= H(αk) + H(βk)
= hk

shows that in the “addition-subtraction” cell the height does not change. How-
ever, in the next step we must go to a “division” cell where the height decreases.
The algorithm terminates because the quantity hk = H(αk)+H(βk) eventually
decreases.

As an illustration let us see what happens when α = 9 + 8
√−2 and β =

5 + 6
√−2. (See Table 10.)

6 The ring Z[
√

2]

The elements of the form a + b
√

2, where a, b are integers form a subring R of
the real numbers. Let ω =

√
2, α = a + b

√
2, β = c + d

√
2. The norm of α is

N(α) = a2 − 2b2 and we define the function H by H(α) = a2 + 2b2. Now H
does not have properties (a), (b). However H(α/ω) = H(α)/2 holds. Further
H(α) = 1 implies α = −1 or α = 1. These properties are sufficient for our
purposes. Note that ω

∣∣ α if and only if 2
∣∣ a and the quotient α/ω can be

computed by α/ω = b + (a/2)
√

2.
The type of α = a + b

√
2 is u if a ≡ u (mod 2), 0 ≤ u ≤ 1. The remaining

part of the computation is given in Table 9.
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7 The integers in Q(
√−3)

Let ϑ = 1
2 (1+

√−3). The elements of the form a+bϑ, where a, b are integers form
a subring R of the complex numbers. The elements of R can be written in the
form 1

2 (a+b
√−3), where a, b are integers a ≡ b (mod 2). For α = 1

2 (a+b
√−3)

we define H(α) = 1
4 (a2 + 3b2) which is equal to the norm of α.

The modulo 4 type of α is (u, v) if

a ≡ u (mod 4), b ≡ v (mod 4), 0 ≤ u, v ≤ 3.

As u, v ranges independently from 0 to 3, the pair (u, v) ranges over 16 values.
However, as u ≡ v (mod 2) must hold, there are only 8 choices for (u, v).

Let (u, v) and (r, s) be the types of αk and βk respectively. The units in R
are ϑi, 0 ≤ i ≤ 5. From the equation

αϑ =
1
2
(a + b

√−3)
1
2
(1 +

√−3) =
1
2

[ (a− 3b)
2

+
(a + b)

2
√−3)

]

it follows that if αk is of type (1, 3), (3, 1), then αkϑ is of type (0, 2). From the
equation

αϑ =
1
2
(a + b

√−3)
1
2
(1−√−3) =

1
2

[ (a + 3b)
2

+
(b− a)

2
√−3)

]

it follows that if αk is of type (1, 1), (3, 3), then αkϑ is of type (2, 0). Using
suitable rotations if necessary we may assume that the type of αk and βk is one
of the following (0, 0), (2, 0), (0, 2), (2, 2).

If u = v, then 2 (as an element of R) divides αk and we can set αk+1 to be
αk/2. In other words we are in a “division” cell. We handle βk similarly.

In the remaining cases the types of αk and βk may be assumed to be (0, 2),
(2, 0). In these cases we are in an “addition-subtraction” cell.

The usual consideration on the height shows that the algorithm terminates.

8 The integers of Q(
√−7)

Let ϑ = 1
2 (1 +

√−7). The elements of the form a + bϑ, where a, b are integers
form a subring R of the complex numbers. Elements of R can be written in the
form 1

2 (a + b
√−7), where a, b are integers a ≡ b (mod 2). Let

α =
1
2
(a + b

√−7), β =
1
2
(c + d

√−7).

The function H is defined by H(α) = 1
4 (a2 + 7b2), that is, H(α) is the norm of

α. Clearly H(ϑ) = 2.
Note that ϑ

∣∣ α if and only if a ≡ b (mod 4). Indeed, from the equation
α = βϑ it follows that c = 1

4 (a + 7b), d = 1
4 (b− a). Thus a ≡ b (mod 4) imply

that c, d are integers and c ≡ d (mod 2). The modulo 4 type of α is (u, v) if

a ≡ u (mod 4), b ≡ v (mod 4), 0 ≤ u, v ≤ 3.
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Table 11: The quaternions

(1, 1, 1, 1) (3, 3, 3, 3)

(1, 1, 1, 1) αk+1 = αk+βk

2 αk+1 = αk+βk

2

βk+1 = αk−βk

2 βk+1 = αk−βk

2

δk+1 = δk δk+1 = δk

(3, 3, 3, 3) αk+1 = αk+βk

2 αk+1 = αk+βk

2

βk+1 = αk−βk

2 βk+1 = αk−βk

2

δk+1 = δk δk+1 = δk

There are 8 possible choices for the type of α.
We compute the modulo 4 types of αk, βk. If the type of αk or βk is one of

(0, 0), (1, 1), (2, 2), (3, 3), then we can divide by ϑ, that is, we are in a “division”
cell. In the remaining cases we may assume that the type of αk and βk is one
of the following (0, 2), (2, 0), (1, 3), (3, 1). One can check that in each case
ϑ divides αk ± βk and so we are in an “addition-subtraction” cell. A routine
consideration gives that the height decreases in each case.

9 The Hurwitz quaternions

Let ζ = 1
2 (1 + i + j + k). The elements a0 + a1i + a2j + a3ζ, where a0, a1,

a2, a3 are integers form a non-commutative subring R of the quaternions, the
so-called Hurwitz ring of integral quaternions. It is proved in [5] that the one
sided ideals of R are principal. This property of R then was used to prove
Lagrange’s theorem about four squares of integers. We will show that Stein’s
algorithm works in R which also establishes the above property of R.

The elements of R can be written in the form 1
2 (a0 +a1i+a2j +a3k), where

a0 ≡ a1 ≡ a2 ≡ a3 (mod 2). Let α = 1
2 (a0 + a1i + a2j + a3k). The function H

is defined by H(α) = 1
4 (a2

0 + a2
1 + a2

2 + a2
3). We say that (u0, u1, u2, u3) is the

type of α if

a0 ≡ u0, a1 ≡ u1, a2 ≡ u2, a3 ≡ u3 (mod 4), 0 ≤ u0, u1, u2, u3 ≤ 3.

There are 16 types (u0, u1, u2, u3), where the components take the values 0, 2 in-
dependently. We call these types even types. There are 16 types (u0, u1, u2, u3),
where the components take the values 1, 3 independently. We call these types
odd types. As usual we describe the algorithm by means of a 32 by 32 table,
where the rows are labeled by the possible types of αk and the columns are
labeled by the possible types of βk.

Let ω = 1 + i. The element α ∈ R is a left multiple of ω if there is a
β = 1

2 (b0 + b1i + b2j + b3k) in R such that α = βω. A routine computation
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reveals that

b0 =
a1 + a0

2
, b1 =

a1 − a0

2
, b2 =

a2 − a3

2
, b3 =

a2 + a3

2
.

It follows that α is a left multiple of ω if and only if the type of α is even. If a
row or a column is labeled by an even type, then all of its squares are “division”
squares. So we can focus our attention to squares whose rows and columns are
labeled with odd types.

Next we use the fact that ζ is a unit in R. Assume that the number of 1’s
and the number of 3’s in the type of α is odd. One can check that in this case
the type of αζ is even. As a consequence we left with the cases when the number
of 1’s and the number of 3’s is even in the type of α. We will use the fact that
i, j, k are units in R. We also will use the following three observations.

If the type of α is (1, 3, 3, 1), (3, 1, 1, 3), then the type of αi is one of (1, 1, 1, 1),
(3, 3, 3, 3).

If the type of α is (1, 1, 3, 3), (3, 3, 1, 1), then the type of αj is one of
(1, 1, 1, 1), (3, 3, 3, 3).

If the type of α is (1, 3, 1, 3), (3, 1, 3, 1), then the type of αi is one of (1, 1, 1, 1),
(3, 3, 3, 3).

Therefore we can focus our attention to the squares that are labeled with
the types (1, 1, 1, 1) and (3, 3, 3, 3). The instructions are listed in Table 11.
The standard argument shows that the height hk = H(αk) + H(βk) eventually
decreases and so the computation cannot go forever.

10 Open problems

We close the paper with some topics for future work.

Problem 1 There are five imaginary quadratic fields admitting Euclidean al-
gorithm. For a reference see [4] page 213. By the present paper four of them
admit Stein type algorithms leaving the Q(

√−11) case undecided. As −11 is
congruent to 5 modulo 8, the prime 2 in Z stays prime in Q(

√−11). Is there a
Stein type algorithm similar to the one in Q(

√−3)?

Problem 2 There is a list of all quadratic fields that are Euclidean. Do they
have binary algorithms?

Problem 3 Higher degree Euclidean fields are known. Can binary algorithms
be found for them?

Problem 4 Is there an analog to the Lehmer method, which works with short
approximations rather than the complete number?

Problem 5 Is there a simple to state field property that guarantees the existence
of a binary algorithm? That is, along with the known lists of Euclidean number
fields, could one compile lists of “Steinian” fields?

Problem 6 Are there any non-commutative rings worth considering beside the
Hurwitz quaternions?
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