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ON HARTE’S THEOREM FOR
REGULAR BOUNDARY ELEMENTS

Vladimir Rako¢evié

ABSTRACT. This paper is a paraphrase and extension on my talk given at the
conference Algebra, Logic and Dicrete Mathematies, Nig, April 14-16, 1995,
and it is inspired by Harte’s theorem (Proc. Amer. Math. Soc. 99(1987),

328-330). In this paper we would like to present some results and problems
connected with Harte’s theorem.

1. Introduction.

Let 5 be a semigroup (ring) with identity. The element ¢ € § is ((von
Neumann) regular if a € aSa. That is, there is a solution of the equation
aza = a. These solutions are usually called inner or l-inverses of a, and will
be denoted by a~. If in addition, zax = z, then we call z a reflexive inverse
of @, and denote it by a*. The set of all regular elements in S will be denoted
by 5 and it obviously includes the invertible group 5! and the idempotents
5°={a€ 5:a%=a). An element « is unit regular or decomposably regular

provided there is b € S~ such that aba = a (11, [2]). It is easy to prove
that

(1.0.1) S718*=85""1={acAd:qc a$~ta}.

When A is a Banach algebra with the identity 1, Harte [14, Theorem 1.1]
(see also [15], [26]) has shown that the decomposably invertible elements are
the intersection of the regular elements with the closure of the invertibles

(for a subset M of A let 6M and el M denote, respectively, the boundary
and the closure of M) : ‘

(1.0.2) ATNA® = AN el (A,
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Let us remark that the left side in the equality (1.0.2) is purely algebraic,
while the right side in (1.0.2) depends on metric properties of A. Hence, the
remarkable characteristics of Harte’s theorem is that it proves the equality of
two different quantities. In this paper we would like to present some results
and problems connected with Harte’s theorem.

2. Harte’s type theorems

In this section A denotes a Banach algebra with identity 1.

Theorem 2.1. Let A be a Banach algebra with identity 1, and S be a mul-
tiplicative semigroup of A, such that A= C S C A. Then

(2.1.1) SA° = AN cl(S) < 5A4° C A.

Proof. 1t is enough to prove <= . Ifa € An o (S) then there are at € A
and b € § such that 14+ (b—a)at =c € A~'. Hence a+{(b—a)ata = ca,ie,
a = (¢ 'b)ata, and a € SA®. To prove ‘C’, suppose that a € SA°. Hence,
a € A, and there are ¢ € § and p € A® such that « = ¢p. Set p, =p—1/n,
n=223,...,and a, = cp,. It is clear that p, € A7l a, € S and a,, — a.
Hence ¢ € ¢l (5). O

Corollary 2.2. Let A be @ Banach algebra with identity 1, and S be a
multiplicative semigroup of A, such that A'c ScA. Then

(2.2.1) A®S = AN c(9) < A°S C A.

Proof. By the proof of Theorem 2.1; let us only remark that now if a €
AN cl(8) then there are a™ € A and b € § such that 1+at(b—a)=ce AL
Hence a + aat(b— a) = ac, ie., a = aa*(bc™!),and a € A°5. O

Let A7! (A;1) denotes the semigrop of all left (right) invertible elements
of A. Now we have

Corollary 2.3. Let A be a Banach algebra with identity 1. Then

(2.3.1) ATTA® = An el (A7D),
(2.3.2) AAT = AN el (A7Y),
(2.3.3) ATTA N ACATY = An d (ATY) nel (477).

Proof. By Theorem 2.1 and Corollary 2.2; let us only Tmark that A~! C
ATV C A ATTA C A, AT C AT C A and A®ATT C A O
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Remark 2./. Let us remark that

(2.4.1) AT'A® c{a€ Araeadia) c AA7 C 4,
and
(2.4.2) A'AT' C{a€A:acadla} c A1 4% C A,

Only for a special semigroup 5 C 2, say 5 is a subgroup of A1, one can
has

(2.4.3) SA*={acA:acaSal = A°S C A.

With this observation, we now come to Harte’s theorem [14, Theorem 1.1].

Cdrollary (Harte’s theorem) 2.5. Let A be a Banach algebra with iden-
tity 1. Then

(2.5.1) ATA = An el (A7Y).

Proof. By Theorem 2.1. O

Corollary 2.6. Let A be a Banach algebra with identity Lae A and §

be an open multiplicative semigroup of A, such that A= ¢ § ¢ A and
SA° C A. Then the following conditions are equivalent:

(i) a € 68,
(i) a=sp, s€ 5, pe A° and sp & S.

Proof. By Theorem 2.1. 0O

Corollary 2.7. Let A be a Banach algebra with identity 1, a € A and §

be an open multiplicative semigroup of A, such that A=' ¢ § c A and
A®S C A. Then the following conditions are equivalent:

(i) e €4S,
i) a=ps, s€8, pecA® andpsd §.
P P

Proof. By Corollary 2.2. O
Corollary 2.8. Let A be a Banach algebra with identity 1, a € A and § be

an open multiplicative semigroup of A, such that A= ¢ § C .2, A*S Cc A
and A*S C A. Then the following conditions are equivalent:

(i) a€és,
(i) @ =s1p1 = pasy, s; € 8, p; € A® (4=1,2), s1p1 € S and pys, & 8.
Proof. Clear., O
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Corollary 2.9. Let A be a Banach algebra with identity 1 and a € A. Then
the following conditions are equivalent: :

(i) a€ A,
(ii) @ = sp, s € Al_l, peA® andp # 1.
Proof. Clear. O

Corollary 2.10. Let A be a Banach algebra with identity | and a € A
Then the following conditions are equivalent:

(i) e € 64T,
(ii) e =ps, 8; € A7l pe A® andp # 1.
Proof. Clear. O

Corollary 2.11. Let A be a Banach algebra with identity [ and a € A.
Then the following condilions are equivalent:

(]) S 6A_1J
(i) @ = s1p1 = p2sz, i € A™', pi € A® and p; #1(i=1,2).
Proof. Clear. O ‘

Recall that the generalised exponential, Exp(A), [15, Theorem 7.11.4]
form the connected component of 1 in A~1;

Exp(A) = {e%e®...e* 1, €A, i= 1,...k}.

It is well known that Exp(A) is an open subset of A and a closed normal
subgroup of A~!. Also, (see [19, (5.5)]

Exp(A)A°® = {a € A:a € aExp(A)a} = A°Exp(A) C A.
For the proof of the next result see [19, Theorem 6]

Theorem (Harte-Raubenheimer) 2.12. Lel A be a Banach algebra with
identity 1. Then

(2.12.1) Ezp(A)A® = AN cl Ezp(A).

Recall that Exp(A) is the unique open subset of A~1 which is a connected
subgroup of A~ [21, Theorem 4.4.2]. In addition to Theorem 2.12 we have

Theorem 2.13. Let A be @ Banach algebra with identity I, and § be an
open subset of A~! and subgroup of A~1. Then '

(2.13.1) SA*= AN cl(§) = A° CdS.

Proof. It is enough to prove the <= . From A® C ¢l § we have SA® C cl 5.
Now (2.13.1) follows from the proof of Theorem 2.1. O
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Corollary 2.14. Let A be a Banach algebra with identity 1, a € fT, S be an
open subset of A~! and subgroup of A7, and A® C el S. Then the following
conditions are equivalent:

(i) a €68,

(i) @=s1p1 =p2sz, si € 5, pi € A® and p; # 1(i = 1,2).

Proof. By Theorem 2.13. O

Recall that an element o in A is hermitian if llexp(¢ta)|| = 1 for all real
¢ [28]. Let us denote the set of all hermitian idempotents in A by AS. In
connection with the Moore-Penrose generalized inverse, Rakocevié [22] (see

also [6], [17], [18], [23], [25]) has studied the set of elements a in A for which
there exists an @ in A satisfying the following conditions:

(2.14.1) are = a,
(2.14.2) B = W,
(2.14.3) ar is hermitian,
(2.14.4) za is hermitian.

By [22, Lemma 2.1] there is at most one z such that equations (2.14.11),
(2.14.12), (2.14.13) and (2.14.14) hold. The unique r is denoted by af and
colled the Moore-Penrose inverse of a. Let A! denote the set of all elements
in A which have Moorg-Pen_rose inverses. Clearly A" ¢ A, and if 4 is a

C*-algebra then AT = 4 [18, Theorem 6].
For the proof of the next two results see [22, Theorem 2.5, Corollary 2.6]

Theorem (Rakoéevié) 2.15. Let A be a Banach algebra with tdentity 1.
Then

(2.15.1) , ATMA N AS AT = AT el (A7),

Corollary 2.16. Let A be a Banach algebra with identity [ and a € Af.
Then the following conditions are equivalent:

(i) a € 6471,
(i) a=s1p1 = pass, s; € A7, p; € Ay andp; #1(1=1,2).

3. Semigroups in B(X).

Now we shall describe others semigroups which obey condition (2.4.3).
Let X be an infinite-dimensional complex Banach space and denote the set
of bounded (compact) linear operators on X by B(X) (K (X)). The fact that
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K(X) is a closed two-sided ideal in B(X) enables us to define the Calkin
algebra over X as the quotient algebra C(X) = B(X)/K(X). C(X) is itself
a Banach algebra in the quotient algebra norm

(3.0.1) |7+ K(X)| = Kel?:l;x) T + K|

We shall use 7 to denote the natural homomorphism of B(X) onto C'(X);
m(T) =T+ K(X),T € B(X). Throughout this paper N(7) and R(T) will
denote, respectively, the null space and the range space of T'. Set a(7') =
dim N(T) and 8(T) = dim X/R(T). An operator T € B(X) is Fredholm if
R(T) is closed, and both a(T") and B(T) are finite. If T € B(X) and R(T)
is closed, it is said that T is semi-Fredholm operator if either a(T) < oo or
B(T) < oo. Set

(3.0.2) ¢, (X)={T € B(X): R(T) isclosed and «(T) < oo},
and
(3.0.3) ¢_(X)={T € B(X): R(T) is closed and pA(T) < oo}.

It is clear that ®(X )= &, (X)N®_(X). Let us mention that ®(X), ®,(X)
and ®_(X) are multiplicative open semigroup in B(X) ([7], [15]) and by
Atkinson’s theorem ([7, Theorem 3.2.8], [15, Theorem 6.4.3]) we have

(3.0.4) (X)) =r"1(C(X)™).

The index of an operator 7' € B(X) is defined by i(T) = «(T) — B(T), if at
least one of a(T") and #(T') is finite. It is well known that B(X) 1+ K(X) C
®(X), and that T € B(X)~' 4 K(X)if and only if T € ®(X) and #(T) = 0.
Set

(3.0.5) ®o(X) = {T € ®(X):i(T) = 0},
(3.0.6) ®,(X) =7 1(C(X)[),
(3.0.7) ®,.(X) =71 (C(X); ).

It is well-known that ®¢(X), ®,(X) and ®,(X) are open semigroups in
B(X) ([7], [15]). Further, T € ®;(X) if and only if 7 € (X )and there
exists a bounded projection of X onto R(T'); T' € ®,(X)) if and only if
T € ®_(X)and there exists a bounded projection of X onto N(T) ([6], [7],
[15]). Recall that an operator T is regular, i. e., T € B(X), if and only if
N(T) and R(T) are closed, complemented subspaces of X ([6], [15], [26]).
Let us mention that Gonzalez [11, Theorem] has proved [14, Theorem 1.1]
for operators. His proof was based on a theorem of Caradus [6, Chapter 5,
Theorem 13] involving two kinds of “gap” between the subspaces (see a good
comment [14, pp. 329], and for further related results see e.g. [3], [4], [5];
[10], [27]).
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Theorem (Gonzalez) 3.1. Let X be a Banach space, T € B(X) and P
is a projection in B(X) with N(P) = N(T). Then the following conditions
are equivalent.

(i) There is a sequence {U,} in B(X)~! with {|JU I} bounded, such

that ||T — U, P|| — 0.

(ii) There is U € B(X)™! such that T = UP.

(iii) 7 € 6B(X)~".

(iv) N(T) is isomorphic to a complement of R(T).

Theorem 3.2. If X is a Banach space, then

(3.2.1) ®(X)B(X)* = B(X)N el (B(X)y),
(3.2.2) B(X)*®(X) = B(X) N ol (&,(X)),

(32.3)  @/(X)B(X)* N B(X) @, (X) = B(X)n el (B(X)) N el (T (X)).

Proof. By [6, p. 132, Theorem 2] we have that ®;(X)B(X)® C B(X) and
B(X)* @,(X) C B(X). Hence the proof followes by Corollary 2.3. [

Corollary 3.3. Let X be a Banach space and A € m ‘Then the follow-
ing conditions are equivalent:

(3.3.1) - T € 6&,(X),
(332) T=PB, PeB(X)'\®(X) and Be &/(X),

Proof. By (3.2.1) and the fact that ®;(X) is an open subset of B(X). O

Corollary 3.4. Let X be a Banach space and A ¢ m Then the follow-
ing conditions are equivalent:

(3.4.1) T € §9,(X),
(342) T=0CQ, Q€B(X)*\&,(X) and (e &.(X),

Proof. By (3.2.2) and the fact that ®,.(X) is an open subset of B(X). O
Let us mention that it has been proved in [24, (3.5)] that
(343) {A€B(X): A€ AD(X)A} = B(X)*®(X) = ®(X)B(X)".

The following three results are from [24].
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Theorem (Rakocevié¢) 3.5. If X is a Banach space then

(3.5.1) B(X)*®(X) = B(X) N el $(X).

Corollary 3.6. Let X be a Banach space and A € E(g)?) Then the follow-
tng conditions are equivalent:

(3.6.1) A € 68(X),
(3.6.2) A=PB, PeB(X)*\®(X) and Be ®(X),
(3.6.3) A=0Q, QeB(X)’\®(X) and (C e o(X),

For any Hilbert space X, let dimy X denote the Hilbert dimension of X,
that is the cardinality of an orthonormal basis of X. We set nuly(7T) =
dimg N(T) and defy(T) = dimy R(T)* for T € B(X). If X is a separable
Hilbert space, then with connection according to Theorem 3.5 we have

Theorem 3.7. Let X be a separable Hilbert space. Then

(3.7.1) B(X)Nel®(X)
=®(X)U{T € B(X) : nuly(T) = defg(T) and R(T) closed}.

Theorem 3.8. If X is a Banach space then

(3.8.1) B(X)"®0(X) = ®o(X)B(X)" = B(X) N cl &(X).

Proof. By [6, p. 132, Theorem 2] we have that ®(X)B(X)® C m_j and

B(X)*®¢(X) C B(X). Hence we can apply Theorem 2.1 and Corollary
22. 0O

—

Corollary 3.9. Let X be a Banach space and A € B(X). Then the follow-
ing conditions are equivalent:

(3.9.1) A € 68y(X),
(39.2) A=PB, PeB(X)"\®(X) and B € dy(X),
(393) A=CQ, Q€B(X)"\®(X) and C € 0g(X),

Proof. By Theorem 3.8, Corollary 2.7 and Corollary 2.9. O

a
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Remark 3.10. Let X be a Banach space. By Theorem 3.8 we have
(3.10.1) B(X)*®o(X) = &¢(X)B(X)".

From the proof of [24, Theorem 3, (3.3)] we can conclude that
(3.10.2) {A€B(X): Ae ABy(X)A} C B(X)*®o(X).

Now we have the following question (problem): If X is a Banach space, must
we have

(393)  B(X)*®o(X) = &o(X)B(X)" = {A € B(X): A€ A®o(X)A)?

Recall that by Atkinson’s theorem a bounded linear operator on a Banach
space is Fredholm if and only if it has an invertible coset in the Calkin
algebra. Motivated by this Harte ([12], [13], [15], [16], [19]) has associated
(and has investigated) “Fredholm” elements of a Banach algebra A with
an arbitrary homomorphism 7' : A — B; (A and B are complex Banach
algebras with identity 1 # 0, 7 is bounded with T(1) = 1). An element
a € A is Fredholm (inore precise T-Fredholm) iff T(a) € B~!. The set
of all T-Fredholm elements of A is denoted by ®7(A). Recall that the
homomorphism 7" : A — B is finitely regular if

T71(0) C 4,

and an ideal 7 of A is inessential if the set of accumulation points of the
spectrum of z € I is a subset of {0} for each z € I.

Recently Djordjevi¢ ([8], [9]) has investigated regular and 7-Fredholmn
elements and, among other things, he has proved

Theorem (Djordjevié¢) 3.11. Suppose that the inessential ideals Iy, %=
1,2, of A have the same sets of idempotents, Iy is a closed subset of A, and
let P;: A — A/I; be the natural homomorphisms of A onto AlL, i =1,2.
Now, if Py is a finitely reqular, then

(3.8.1) A*®p, (A)= AN ¢l (®p,(A)).

Djordjevi¢ has got Theorem 3.5 as a corollary of Theorem 3.11. ( The
proof is based on the facts that the ideal of finite-rank operators in B(X),

F(X), and K(X) have the same sets of idempotents and F(X) C f?a(_j,

and then applying Theorem 3.11 with B(X) in place of A, F(X) in place of
I; and K(X) in place of I.).
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4. Partial order and regular boundary elements

Recall that in semigroup 5 the relation
(4.0.1) e< fee=ef=fe, efels®

is well-known standard partial ordering relation on the set of idempotents,
if any. Hartwig [20] has introduced the following, so colled plus-relation.

Definition (Hartwig) 4.1. Let S be a semigroup. For a,b € § set a <,
if

(i) @ 1is regular, and

4.1.1
( ) (ii) there is some at €8, suchthat ata=a"h aa® = bat.

It is well known [20, Theorem 1] that the plus-relation of (4.1.1) defines
a partial-order on §. This partial order is colled plus-partial order, shortly
+-order, and for idempotents the standard order (4.0.1) coincides with the
+-order.

Remark 4.2. Let (G, <) be a partially ordered set. By a closed intervalin (z
we shall mean any*subset of the form {z € G :a <z < b}, {z € G:z > a},
or {z € G :z < a}, where a and b are arbitrary elements of (. There are
many known ways of using the order properties of (¢ to define a topology on
G. Recall that a base for the open set in the well-known interval topology of
G consists of all subsets of the form N{C; : i = 1,2,...,n}, where each Cj is
the complement of a closed interval. We let Z denote the interval topology
on G. It is natural to set the following question (problem):

If S is a semigroup, (5, <) is a partial ordered set with the plus-partial
order and cl7 (571) the closure of S~! in interval topology on 5, must we
have

(4.2.1) §718° = §nelz (8717

Clearly, instead of interval topology, we can consider other topologies de-
fined by plus-partial order (or other partial order) on 5, and set the similar
question to (4.2.1).

If we specialize to the case where 5 = R is a ring with unity, then we have

Theorem 4.3. Let R be a ring with unity, and L(R™Y) = {y € R : y <
x for some x € R™1} be the set of predecessors of R, where < is the
plus-partial order. Then we have

(4.3.1) R'R*=Rn L(R™Y) = L(R™Y).
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Proof. By (20, Proposition 3, (i), (v)] and (1.0.1). O
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