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ABSTRACT. When designing a parallel computer it is very important that
it has the predicted performances. The challenge for a computer designer is
to discover the minimum organization and equipement necessary to achieve
given level of performance. So, the developing analythical model for charac-
terizing and understanding the parallel system performances is of a crucial
interest. In order to avoid erroneous conclusions about the behaviour of par-
allel system a severe mathematical formulations should be involved. In this
paper we give a survey of axioms that were proposed in the literature in
order to introduce a scientific approach in studing the parallel system per-

formances. Further we shall propose a modified and reduced set of axioms
based on discrete mathematical apparatus.

1. Introduction

From the very beginning of digital computer development, the design-
ers always storve to increase the speed of operations. There are number of
possible ways to achieve this. An obvious approach is to improve the tech-
nology implemented in the realization of the computer components. There
is of course a natural limitation in technology development: no signal can
propagate faster than the speed of the light. Another way for increasing
the speed of computation is by performing as many operations as possible
simultaneosly, concurrently, in parallel, using parallel computers (8].

A parallel computer is one that consists of a collection of processing units,
or processors, that cooperate to solve a problem by working simultaneously
on different parts of that problem. The number of processors used can range
from a few tens to several millions. As a result, the time required to solve
a problem by a traditional uniprocessor computer is significantly reduced.
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This approach is attractive for a number of reasons [1]. First, for many com-
putational problems, the natural solution is a parallel one. Second, the cost
and size of computer components have declined so sharply in recent years
that parallel computers with a large number of processors have become fea-
sible. And, third, it is possible in parallel processing to select the parallel
architecture that is best suited to solve the problem or class of problems
under consideration. Indeed, architects of parallel computers have freedom
to decide how many processors are to be used, how powerful these should
be, what interconnection network links them to one another, whether they
share a common memory, to what extent their operations are to be car-
ried out synchronously, and host of other issues. This wide range of choices
has been reflected by many theoretical models of parallel computation pro-
posed as well as by several parallel computers that were actually built. Since
parallel computers are composed of multiple processors, interconnected to
each other, and sharing the use of memory, input-output peripherials and
other resources, estimating the performances of these systems is really com-
plex. The fact that the same system behaves differently when solving various
problems makes the performance evaluation even more difficult. Different
problems have different possibilities for parallelization. Some problems can’t
be parallelized at all.

When designing parallel computer it is very important that the system has
the predicted properties. It is also very important to design the algorithm
that exploits both parallelism inherent in the problem and that available
on the computer. The challenge for a computer designer is to discover the
minimum organization and equipement necessary to achieve a given level of
performance. By performance we mean the manner in which, or the effi-
ciency with which, a computer system meats its goal. So, the developing
analytical models for characterizing and understanding the parallel system
performances is of a crucial interest. But, attempts to express some measure
of performance as a explicit function of certain parameters were not success-
ful always. Moreover, omitting one of the parameters leads to erroneous
conclusions about the behaviour of parallel system. Thus, for example, in
1967 Amadahl (see [7]) made the observation that if s is the serial fraction
in an algorithm, then its speedup is bounded by 1/s, no matter how many
processors are used. For example, if there are only 5% of the algorithm that
can’t be parallelized, then maximal speedup that can be achieved is 20, no
matter how many processors are used. This statement, now popularly known
as Amadahl’s law, has been used by Amadahl and others to argue against
the usefulness of large scale parallel computers. Fortunately, Amadahl was
wrong. He missed the fact that the serial fraction, s, is a function of prob-
lem size, m. Moreover, for most scientific and technical applications it has
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property that lim s(m) — 0 [4].
M— 00

The above and other similar examples imply that in studing the perfor-
mances of a parallel system, a severe mathematica] formulations should be
involved. Therefore the following should be developed:

¢ Explicit mathematical formulas that characterize the performances of
parallel system

¢ Axioms for basic parameters.

The key for scientific approach in studing the performances lies in solving
the above problems. )
Some common performance measures of parallel algorithm running on a

parallel computer are the execution time, the speedup, the efficiency, the
scalability, etc.

2. Definitions and assumptions

In this section, we introduce some terminology used in the rest of the
paper.

We assume the system of n identical processors interconnected in some
way for the purpose of passing data and control information between the
processors. Communication between the processors can be achieved via
common memory modules or by message passing. Each processor is sup-
plied by some amount of local memory. By a parallel system we mean a
combination of a parallel algorithm and a parallel architecture comprising
of identical processing units.

Definition 2.1. The degree of parallelism of a numerical algorithm is the
number of operations in the algorithm that can be done in parallel.

Note that the degree of parallelism is indeperident of the number of pro-

cessors in the system; it is an intristic measure of the parallelism in the
algorithm,

Definition 2.2. The average degree of parallelism of an algorithm is the
total number of operations in the algorithm divided by the number of stages.
A stage is comprised of the operations that can be performed in parallel.

Comnsider a program for which execution time on a single processor is equal

to T(1). When this program runs on a multiprocessor, the execution time
can be divided into two components:

e component with running time 7, that must be run sequentialy;
* component with sequential running time T, that can be subdivided
into parallel components running on different processors.
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Note that
(1) T) =Tt Ty

Since a small number of problems posses ideal intristic parallelism, T, is
greater than zero. '

Assume that T'(n) is execution time when program is running on n-
processor system. The T'(n) involves the following components:

e serial execution time T, )

e parallel execution time, equal to T,/n if the parallelizable part of the
program can be partitioned into » parallel components of equal running
time, and

o synchronization and communication overhead Tp(n).

According to the previous, we have the following definition.

Definition 2.3. The ezeculion time of an algorithm running on n—processor
system is

) ﬂm:n+%+%w.

Definition 2.4. The speedup of parallel system is defined as

3 ﬂ@:%%.

The parallel algorithm may not be the best algorithm on a single pro-
cessor, so for T(1) we take the execution time on a single processor of the
fastest serial algorithm.

Definition 2.5. The efficiency of the parallel system is

(4) E(n): %n):él;%

Definition 2.6. Parallel cost penalty is defined as

(5) C(n) = 2T (n).




A set of axioms for evaluating the multiprocessor performances 843

Definition 2.7. Relative parallel cost penalty is

nT(n)—T(1) ‘
n—1

(6) R(n) =

Definition 2.8. The gain factor of a parallel system is

(7) G(n):T—(%E_nﬂn_)zl_S—(lfﬁ'

It is not difficult to see from the above definitions, that the execution time
is the primary measure of a parallel system performance which is used as a
basis for estimating other characteristics of a system. So, it was natural to
establish the set of axioms for this metric.

3. The set of axioms

In the text that follows we are going to give the survey of axioms that were

proposed in literature in order to introduce a scientific approach in studing

' the parallel system performances. Further, we shall propose a modified set
of axioms based on discrete mathematical apparatus.

As we have already mentioned, the execution time is the most important
measure of parallel system performance. Tts component Ty(n) represents
the influence of communication and synchronization between processors on
execution time. The value of To(n) directly affects the performance of the
whole system. So, the analytical methods for characterizing and understand-

- ing this measure were developed. In [2] Flatt and Kennedy introduced the
following axioms for Tp(n):

F.1 Ty(n) is continuous and twice differentiable in respect to n,
F.2 Ty(1) =0, |

F.3 T5(n) > 0 for all n > 1, hence To(n) is nonnegative,

F.4 nTg'(n) + 2T5(n) > 0 for all n > 1,

F.5 There exists n; > 1 such that To(m) = T(1).

On the basis of the involved axioms, the authors have investigated the
impact of synchronization and communication overhead on the performance
of parallel systems. They have established upper bounds on the power of
parallel processing in the presence of synchronization and communication
overheads.

The pioniers work of Flatt and Kennedy has motivated researchers to
investigate the following: : '
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a) Is the set of axioms F.1-F.5 the minimal one, or it can be reduced,
and, can some conditions be weaker?

b) What is physical and/or geometrical meaning of F.1-F.57

¢) Why Ty(n) and other measures are considered as real functions, if they
are defined on the set of natural numbers, N7

In [6] the problems a) and b) were considered. The axiom F.5 is rejected
as too strong, and instead of it the condition

(8) Jim To(n) = +o0
is tested. ’

As a basic value in [6] the function D(n) = nTy(n), instead of To(n), is
taken. This enables author to introduce the following more geometricaly
intuitive axioms:

D.1 D(1) =0,
D.2 D(n) >0,
D.3 D(n) is strictly convex and differentiable.

The author has proved that any Ty(n) satisfying F.1 to F.4 also satisfies
D.1 to D.3. The question ¢) was not addressed in this paper.

In [5] the problems a) and c) were addressed. Namely, the values To(n)
and T(n) were considered as members of sequences {Tp(n)} and {T(n)},
respectively. This enables authors to reduce the set of axioms, defined by
Flatt and kennedy, from five to the following three:

P.1 Tg(].) = 0, T(](Q.) Z 0,

P.2 (n+ 2)A%To(n) + 2ATp(n) > 0, for n > 1.

P.3 There exists n; such that To(ny) = T(1).

It was shown that performance evaluation can be carried out very efficiently
using discrete mathematical apparatus.

Let us note that it is natural to use the discrete mathematical apparatus,
since the number of processors in the system is an integer value. Besides, by
utilizing this apparatus the condition F.1 (that the function is continuous
and twice differentiable) becomes needless. Also, the axiom F.2 is expressed
as natural and elemental condition To(2) > 0. The physical and/or geomet-
rical meaning for P.2 and P.3 can’t be given. ,

Inspired by the papers [6] and [5] and having in mind questions a), b) and
c), we propose in this paper a new set of axioms for sequence {D(n)}nen,
D(n) = nTo(n), as follows:
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Al D(1) =0,
A.2 D(2) >0,
A.3 A’D(n) >0, for n > 1.

Usage of discrete apparatus enables us to propose somewhat weaker con-
ditions for D(n) compared with D.2 and D.3 from [6]. Namely, instead
of D(n) > 0 we take a condition D(2) > 0 and for sequence {D(n)} we
assume to be convex instead of function D( n) being strictly convex and dif-
ferentiable. Further, instead of axiom P.3 from [5] we shall take a weaker
condition (8) as in [6].

Now, we shall prove the following result.

Theorem 3.1. The set of azioms A.1-A.3 is equivalent with P.1-P.2.

Proof. Statement of the Theorem 3.1 directly follows from the equalities
D(1) = Ty(1), D(2) = 2T4(2) and A’2D(n) = (n+2)A*T,(n)+2ATy(n). O

The assumption of axiom P.3 is not involved in A.1—-A.3. Therefore,
we are going to prove the main result for T(n) from [5] using A.1-A.3 and

under assumption that (8) is satisfied. But, first, we shall prove two auxiliary
results.

Lemma 3.1. The sequence {D(n)}nen, is positive and monotone increas-
ing.

Proof. According to A.3 it follows that

i KAD(k +1) > ikAD(k) .
k=1

k=1

From the above inequality it follows that

D(n+2) N D(n+ 1)’ e
n+1 n

D(n + 2) . D(n+1) - D(.Z)’
41 0 1

and according to A.2 we have D(2) > 0, i.e. the sequence {D(n)} is mono-
tone increasing. O

Lemma 3.2. The sequence {To(n)}nen is monotone increasing.

Proof. According to inequality A?D(k) > 0, i.e. AD(k) > AD(k — 1), we
have that

(k + DATo(k) > (k — )ATy(k - 1).
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i.e.
1

To(n) < T, (1 — ;) :

From the last inequality it follows that

lim Ty(n) < T,

=00

which is in contradiction to the assumption that (8) is valid. Consequently,
we conclude that the assumption AT(n) <0 for all n > 1, is not correct.
Namely, there are values for u for which AT(n) > 0, i.e. there is at least one
value n = ngy for which the inequalities

(12) AT(ng —1) <0, AT(ng) >0

and (9) are valid.

Now, it is necessary to prove that ng is unique. Using A.3 we obtain
(13) A(n(n + 1)ATo(n)) = (n + DA?D(n) > 0.

From (13) it can be concluded that the sequence {n(n+1)ATy(n)} is mono-

tone increasing. Accordingly, there exist the unique value n = ng such that
inequalities (9) and (12) are valid.

Now, we are going to prove that for n = ng the sequence {T'(n)} reaches
a minimum. To prove this it is enough to show that A%7(ng — 1) > 0 and

that the sequence {T(n)} is monotone increasing for n > ng.
From (10) we obtain

2

(14) AZT(TL) = AZTQ(?L) + m ipp .

According to (10) and (14) it follows that
(15) AT(n) = —— (A*D(n)) — —2— ATy(n).
n+ 2 n+42

Substituting n = ng — 1 in (15) and using inequality (12), the inequality

2 _ 2 _
A*T(ng —1) > m— (A?D(no — 1)) > 0

is obtained.
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Since the sequence {n(n+1)ATp(n)} is monotone increasing, and accord-
ing to equality n(n + 1)AT(n) = n(n + 1)AT(n) — Tp, it follows that the
sequence {n(n+1)AT(n)} is monotone increasing, also, On the other hand,
since no(no + 1)ATo(ng) — Tp > 0 it follows that ng(no + 1)AT(ng) > 0.
Now, according to inequality n(n + 1)AT(n) > ng(no + 1)T(ng) = 0, we
obtain that AT'(n) > 0, for all n > ng.

1

If we assume that D(2)>7T),, then from (10) we obtain AT(1)= o (D(2)-
T,)>0. Further, since AT(n) > AT(1) > 0 for all n > 1, we conclude that
in this case ng = 1. O
Remark. Theorem 3.2 have been proved in [5] under conditions P.1 to P.3.

According to the results proved in Theorem 3.2 we are going to prove the
following results for sequences {S5(n)} and {C(n)}, n € N.

Theorem 3.3. Let the inéquality (8) be satisfied. The sequence {5(n)} has
an unique mazimum at ng > 1. Also, if D(2) < T, then

(16) Az(éfo) < Slno) < Acifol)— 0

Proof. In theorem 3.2 we have proved that, under certain conditions, the
sequence {T'(n)}, n € N, has the unique minimum at no > 1. The following
is also valid

(17) AT(ng = 1)<o0, AT(ng) > 0.

From (3) we have that
(18) AS(n) = T(1) (_ﬂ—?;)ﬁ%(%——n) .
Combining (17) and (18) we obtain
(19) AS(me—1)20, AS(ng) £0.
This means that the sequence {5(n)}, n € N, has the unique maximum
at ng > 1.

Siree O] = nT'f)y T B = Tt

S(n)
S(n) — nAS(n)
S(n)S(n+1) "’

, the following is also valid

AC ) = T(1)
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and

By substituting n with ng —1 in (20) and n with ng in (21), the right and
left parts of inequality (16) are obtained, respectively. [

Similarly as in [2], [5], some other properties of sequences defined by (2)
to (7) can be proved. For the sake of lustration, we give some properties
that directly follows from axioms A.1 to A.3.

Theorem 3.4. The sequence {C(n)}, n € N, is monotone ncreasing and
convexr.
Theorem 3.5. The sequence {E(n)}, ne Ni

s monotone decreasing, con-
ver, and has a property E(l)=1.

Theorem 3.6. The sequence {R(n)}, n € N, is monotone increasing for
n > 2.

Theorem 3.7. If the equality (8) is valid, then the sequence {G(n)}, n € N,
has an unique mazimum at ng > 1.
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