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A CLASSIFICATION OF LOOPS ON
AT MOST SIX ELEMENTS

Snezana Matié¢-Keki¢ and Dragan M. Acketa

ABSTRACT. Eight kinds of equivalence classes (five of which are new) within
the family L(n) of finite loops on n elements (n < 6) are considered. The
classes arise by combining the operations of isotopy over L(n) (with some of
its specializations) and loop-parastrophy (parastrophy followed by a special
isotopy, which returns the image to L(n)).

The used isotopies are triples of permutations of the ground-set (applied
successively to rows, ‘columns and elements of the associated Cayley table)
which map L(n) onto L(n). Classical isotopy and isomorphic classes corre-
spond to the triples of the form (p, ¢, r) and (p, p, p) respectively. Three new
natural kinds of interclasses, denoted as (C-, R- and E-classes, correspond
to the triples of the form (g, p, p), (p, g, p) and (p,p, q) respectively. The
combinations “isotopy over L(n) + loop-parastrophy” and "isomorphism -+
loop-parastrophy” lead to the classical main classes and to a new kind of
classes, denoted as II-classes. Finally, a new kind of classes, called paras-
trophic closures, corresponds to the transitive closure of the loop-parastrophy
operator.

Cardinalities, intersections and dualities for all the eight kinds of equiva-
lence classes of loops are completely determined for n < 6. In additicn, the
following theorem, related to classical isomorphic, isotopy and main classes, is
proved by using the new II-classes: All theisotopy classes within a main class
have the same family of cardinalities of their included isomorphic classes.

1. Introduction

Isotopy classes, isomorphic and main classes belong to the "folklore” of the
theory of latin squares and loops. These classes were studied, for example,
in [8], [6], [4], [7].

In particular, the figures 9408, 109, 22 and 12 of Table 1. were for the first
time correctly determined in the papers [8], respectively [6]. These figures
were confirmed by computer in [4]. A systematic tabulation of latin squares
on at most six elements and of some their properties was given in [7]. An
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extensive review of the related results was given in the book [5], Sections 4.2
and 4.3.

In this paper are additionally considered five new ([2]) kinds od equiva-
lence classes of loops: C'—, R—, E—, II—classes and parastrophic closures.
The relationships among all the eight kinds of classes are studied in detail
for the case of loops on at most six elements.

Isotopy and isomorphic classes of latin squares correspond to the isotopies
determined by three and one permutation of the ground-set. C'—, E— and
E—classes correspond to the cases when exactly two among the three per-
mutations determining a loop-preserving isotopy — coincide.

A very small modification (abandoning of fixing the unit) of the algorithm
for generating isomorphic classes of loops generates ([1]) C— and RE—classes.
On the other hand, C'— and R—classes can be further used ([2]) for a con-
struction of isotopy classes.

It is known ([3]) that iterative applications of parastrophic operators
within the class of loops (o a fixed initial loop) — produce loops belong-
ing to at most six different isomorphic classes. Parastrophic closures are
obtained when the arising loops themselves are considered, instead of their
isomorphic classes. The upper bound for the cardinality of parastrophic clo-
sures with loops of order n is equal ([2]) to 6 - max g.c.d.(s1,... ,8k), Where
the maximum is taken over all the partitions n — 1 = 51 + ... + Sg.

The relationships between II—classes and isomorphic classes are com-
pletely analogous to the relationships between main classes and isotopy
classes.

The inclusion chart of the considered kinds of loop classes has the following
outlook:

r main classes |

\

[ isotopy classes |

|
(' —classes _ [ Rmclassesj | I —cla,ssesJ

F—classes

isomorphic classes |

parastrophic closuresJ

Figure 1.

In Table 1. are given some summary data for n < 6, which include
cardinality of the family L(n) of all loops of order n, as well as the number
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of all the above defined subclasses of L(n). The figures for the three well-
~known kinds of classes can be also found in [5]:

) <3 4 5 6
cardinality of L(n) I 4 56 9408
number of isomorphic classes in L(n) 1 2 6 109
number of E—classes in L(n) 1 2 5 103
number of C— (also number of R—) classes in Lin)] 1 2 3 40
number of isotopy classes in L(n) 1 2 2 22
number of II—classes in L(n) I 2 4 40
number of main classes in L(n) ‘ 1 2 2 12
number of parastrophic closures in L(n) 1 4 14 832

Table 1.

It would be hard to extend such results to larger values of n, since
|L(7)| = 16.942.080 ([5]). .

The classes were enumerated and analysed with the aid of a PC computer,
by using algorithms given in [1]. Most of the running time was spent for the
generation of parastrophic closures. This is a consequence of the fact that
parastrophic closures are not superclasses of isomorphic classes.

The questions concerning the relationships among the considered classes
of loops of order n are obviously trivial for n < 3. The full description will
be given for n = 6, while the corresponding data for n € {5,4} will be briefly
listed in the last section.

Isomorphic classes of loops as well as their cardinalities are listed in the
Appendix. These classes are basic constituents of all the considered classes
of loops except for the parastrophic closures. ;

2. Definitions and denotations

Let S(n) denote the set {1,...,n}.

A latin square of order m is an n X n matrix A with elements in S(n),
which satisfies that there are no two coinciding elements in the same row or
in the same column of A.

A loop (with unit 1) of order n is a latin square A of order n, which
additionally satisfies A[7,1] = A[l,4] =14, for 1 <i < n.

Let L(n) denote the family of loops of order n.

We proceed with definitions of eight kinds of equivalence classes over L(n).

Two loops X and Y of order n belong to the same isotopy class if there
exists an isotopy , i.e., a triple T' = (p, g, r) of permutations of S(n) satisfying
Yp(i),q(5)] = r(X[t,4]), forl < 4,5 < n. In particular, if 7' is of the form
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(p,»,P), (¢,p,p), (p,q,p) or (p;p, q), then the loops X and Y are respectively
said to belong to the same isomorphic class, C—class, R—class or E—class.

The type of an isotopy class is the family of cardinalities of the included
isomorphic classes.

Let 74 and I 4 respectively denote the permutations of S(n) which produce
the right and the left inverse elements of the loop A (thus A[é,ra(i)] = 1
and A[l4(3),1] = 1 for i € S(n)).

Each loop A has six loop-parastrophes A, p(A), A\(A),7(A),AT(A), pT(A),
associated to it, where 7 is the transposition operator, while the opera-
tors p and XA have the following meaning (denotations p and A are in ac-
cordance with the denotations used in [3]): p(A)[ra(s), Al4,5]] = J, and
MAA[4, 5], 1a(F)] =14, for 1 < ¢, 5 < n.

Two loops X and Y from L(n) are said to belong to the same main class
if there exists another loop Z € L(n), such that X and Z belong to the same
isotopy class and Y is a loop-parastroph of Z. In particular, if the word
"isotopy” in this definition is replaced by the word ”isomorphic”, then X
and Y are said to belong to the same II—class.

Two loops X and Y from L(n) are said to belong to the same parastrophic
closure if there exists a sequence X = Z1, Zy, ... , Zx = Y ofloops from L(n),
such that Z; 1 is a loop-parastroph of Z;, for 1 <4 < k—1. The parastrophic
closure, associated to a loop A, will be denoted by PC'(A).

The order O of a permutation p is the smallest natural number such that
p? is the identical permutation.

- The-ordinal numbers of isotopy classes will be followed by the letter ”17.
The ordinal numbers of C'— and R— classes will be usually followed by the
letters 7C” and "R”, respectively. No additional letters will be used with
the ordinal numbers of isomorphic classes.

3. C—, R—, E— and isotopy classes

Given a permutation p of §(n), the permutations ¢ of S(n), such that the
isotopies (¢,p,p), (p, 4, p), and (p, p, ¢) map L(n) to L(n) — are characterized
in [2]. Although the definitions of C'~, R— and E—classes are analogous,
it turns out, when consideration is restricted to the loops in L(n), that
E—classes have a special role.

Namely, isotopies a) (¢,p,p) b) (p,q,p) ¢) (p,p,¢q) map a loop X from
L(n) to another loop in L(n) if and only if ([2]) for 1 <1 < n:

a) q(i) = p(X[¢,p~ (1))
b) ¢(z) = p(X[p~(1),1])
c) ¢(X[p~'(1),4]) = g(X[i,p~ (1)]) = p(3)

The commutator of a loop X € L(n) is the set of those elements
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k € S(n), which satisfy that X[k, j] = X[j, k], for each j € §(n). The num-
ber of commutators is ([2]) an invariant of an E—class. An abridged search
for E—classes can be gained by partitioning (representatives of) isomorphic
classes w.r.t. this number.

Those E—classes, the loops of which have more than one commutator, are
listed (by means of their isomorphic subclasses) in the separate fields of 1.,
3. and 5. column of Table 2. (the remaining E—-classes necessarily coincide
with isomorphic classes). Each represented E—class has in the next column
to the right associated an expression of the form (f(A) ¢(A)+...), where:

- ¢(A) is the cardinality of the isomorphic class determined by A
- f(A) is the number of isotopies of the form ¢), which fix

the loop A.
2 commutators 3 commuta,to;"s 6 commutators
3 (2-120) 1 (12-60)
50 (2-120) 2 (12 - 60)

92| (2:120) | 4,79 |(6-20 + 6 - 40) 39 | (120 - 6)
94| (2:120) | 8,83 (260 +2-120)[40,42 (860 + 8 - 30)
103 | (2-120) |47,78|(6-20+6-40) |43,55| (4120 + 4 - 60)
104] (2-120) |54,82|(2-60+2-120)| 49|(12-60)

Table 2.
The cardinality of the E—class determined by A is equal to

—— - (n = 1)!- (number of commutators of A);

f(4)

the numerator is equal to the number of isotopies of the form c).

The next two tables give the intersection and inclusion relationships
among isotopy, C'—, R— and isomorphic classes over L(6).

The denotations in the z—th row and the y—th column of Table 3. mean
that the isomorphic class 10-z +y belongs to the intersection of the C'—class
C and the R—class R :

Each C'—class has a non-empty intersection with each R—class within the
same isotopy class ([2]). Consequently, each loop isotopy can be represented
as a product of two special isotopies within C'—classes and R—classes respec-
tively. Isotopy classes of loops in L(n) can be determined as the unions of
those R—classes, which have non-empty intersections with the same (' —class.

A further conclusion is that each C'—class has at least one common iso-
morphic class with each R—class inside the same isotopy class. E.g., since
the isotopy class 10/ includes three C'— and three R—classes, it follows that
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z|ly=20

y=1

y=2

y=3

=4

y=>5

y=6

y=7

y=28

y=9

7C 6R
14C13R
17C16R
21C21R
24C23R
25C25R
37C36R
39C39R
30C18R
26C25R

O WO =T W - O

-

1C 1R
8C TR
15C14R
13C12R
22C16R
30C14R
33C32R
24C23R
29C238R
40C 5R
33C32R

2C 2R

38C TR
16C15R
17C19R
23C22R
22C13R
27C33R
29C28R
28C40R.
24C30R
37C32R.

2C 2R
3C 38R
16C15R
18C14R
24C23R
28C29R
28C34R
21C21R
40C 4R
26C25R
25C25R

3C 3R

9C IR
14C16R
14C19R
25C24R
31C27R
35C35R
32C30R
24C23R
26C24R
32C23R

4C 4R
10C10R
12C B8R
16C15R
22C16R
32C30R
36C SR
21C21R
40C 4R
24C30R
31C40R

4C 5R
11C 9R
13C17R
18C18R
26C25R
26C24R
22C19R
20C20R
28C40R
26C25R
21C22R

5C 4R
12C TR
16C15R
17C13R
27TC26R
33C31R
37C31R
23C22R
28C34R
22C16R
23C21R

5C 5R
13C11R
11C SR
18C10R
28C2TR
34C 4R
33C36R
27C38R
34C 4R
22C16R
31C34R

6C 3R
13C12R
15C18R
20C20R
29C238R
31C29R
35C37TR
33C 3R
30C14R
34C BR
32C23R

the number of included isomorphic classes cannot be smaller than 9. This
number is actually equal to 12; each one of the isomorphic classes 41, 45, 97

Table

3.

and 98 is included into the intersection of the classes 22C and 16R.

Each row of Table 4. contains in order the ordinal number of an isotopy
class, the included C —classes, the included R—classes and the set of included

isomorphic classes:

1/ =1C=1R =
21 =20:= 2R =
37 =3C 4+6C+38C =3R =
4] =4C +5C 4 34C 4+ 40C = 4R+ 5R =
5 =7TC = 6R =
6] =8C +12C =TR+8R =
71 =9C +11C + 36C =9R =
8/ =10C 4+ 19C = 10R =
9/ =13C =11R+ 12R+ 17TR =
107 =14C 4+ 17C +22C = 13R + 16 R + 19R ={20, 24, 30, 32, 34, 37, 41, 45, 52, 66, 97, 98}
117 =15C 4+ 18C +30C = 14R + 18R =
12] =16C = 15R =
137 =20C = 20R =
141 =21C + 23C =21 R + 22R =
157 =24C +32C =23R 4+ 30R =
16/ =25C 4+ 26C = 24R + 25R =
17f =27C = 26R + 33R + 38R =
181 =28C + 31C = 27R + 29R + 34R + 40R ={48, 53, 54,59, 63, 82, 86, 87, 105, 108}
197 =29C = 28R =
20f =33C +37C =31R+32R+ 36R =
217 =35C =35R+37R =
2271 =39C = 39R =

(1)
{2,3}

{4,9,79}
{5,6,7,8,58,83,85,688,91, 99}

{10}

{11,12,13,17, 25}
{14, 16, 28, 65}

{15, 38}

{18,19, 26,31)

{21, 29, 33,36, 51, 89,90}

{22, 23, 27,35}

{39, 76}

{40, 42, 73,75, 77,106,107}
(43,50, 55,71, T4, 84, 92, 95, 104, 109}

{44, 46, 56,60, 93, 94, 96, 100, 103}

{47, 62,78}

{49,72, 81}
{57, 61, 67,68, 70,101, 102}

{64, 69}

{80}

. Table 4.
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4. II—classes and main classes

II—classes play a central role among the classes in Figure 1. They can be
used for establishing a relationship among the well-known kinds of classes
(isotopy, isomorphic and main):

Theorem 1. All the isotopy classes within the same main class have the
same type.

The proof is based on the intermmediate notion of II—class. It easily
follows from the following three lemmas:

Lemma 1. Fach l—-class and each isotopy class within the same main class
have non-empty intersection.

Proof. Suppose that a main class contains a II—class II and an isotopy class
ITstONIT=0.f Ly € Mand Ly € IT, then by definition of main class,
there exists an isotopy 7 and a loop-parastrophy = satisfying Ly = mil,.

Thus the loop 7Ly belongs to the classes IT and II, contradicting II N IT =
. 0O

Lemma 2. Isomorphic classes within a Tl—class have the same cardinality.

Proof. Consider two isomorphic classes [ My and I M, within the same

IM—class. Let I, € IM; and 7 be a loop-parastrophy satisfying 7(L) € I M,.
The function = maps IM; to IM, since 7il, = irl, € IM; for arbitrary
tL, € IM;. The operator 7 is expressed by means of the operators A, p and
7. Since all these operators are involutive [2], it follows that there exists the
inverse function 7=1. This implies that the function 7 is a bijection between

IM; and IM;. O

Lemma 3. The intersections of a I—class with distinct isotopy classes from
the same main class — have the same number of included wsomorphic classes.

Proof. Analogously to the proof of previous lemma, one primarily proves
that the intersections of isotopy classes with the same II—class have the same
cardinality (the proof remains valid when the isomorphism ¢ is replaced by

the isotopy). The application of Lemma 2 to the equicardinal intersections
completes the proof. O

Proof of Theorem I. Lemmae 1, 2 and 3 give that the intersections of two
isotopy classes with each IT—class within a main class — consist of the same
number of equicardinal isomorphic subclasses. O

It turns out that each two isotopy classes, taken from any two distinct
main classes over L(6) have different types (such a conclusion need not be




816 S. Matié-Keki¢ and D. Acketa

valid for larger ground-sets). Therefore, main classes over L(6) can be recon-
structed by use of the relationships between isotopy and isomorphic classes.

According to the following Table 5., the isotopy classes of loops on 6
elements can’be collected into 12 wholes (denoted by LIL... ,XII) w.r.t.
the type. The families of cardinalities of the included isomorphic classes are
given in the third column of the table (e.g., the family {60,60,120,120} is
written as 2 - 60 + 2 - 120).

1| 11 1-60 VII 2271140

Im| 27(1-604+1-120| | VIII| 31, 177, 197|1-20+4+1-40+1-60

1| sf 1-20 IX| 41, 151, 187 |2-60+48-120

IV| 6I|1-604+4-120 X\ 7I, 9f, 12I|2-60+2-120

V107 |4-30+8-120 XI| &I, 131, 217|116 +1-30

V1| 16/ 9-120 XIT| 111, 141, 207 |2-30+2-6043-120
Table 5.

It follows from Theorem 1 and Table 5. that there are at least 12 main
classes on 6 elements. The data from [5] confirm that each one of the 12
registered candidates is itself a main class. The same conclusion can be
derived from Table 6; there are only 12 different collections of isotopy classes
which have non-empty intersections with a II— class.

5. Duality

Loops L and 7(L) are said to be dual to each other. Two isotopy (isomor-
phic) classes are dual whenever they contain two mutually dual representa-
tives. It easily follows from the definition that the dual of a C'—class is an
R—class within the same isotopy class, and conversely. On the other hand,
Il—classes and main classes contain complete pairs of mutually dual isomor-
phic classes, since the duality operator is a special kind of a loop-parastroph
operator.

Duality operator will be denoted by ~; the denotation ~ between two
equicardinal sets of classes means that the underlying bipartite matching of
mutually dual classes is not yet decided exactly.

The mutually dual pairs of isomorphic classes are (4, 47), (5, 53), (6, 59),
(7, 48), (8, 54), (9, 62), (13,17), (14, 18), (15, 64), (16, 19), (21, 57),

(24, 52), (26, 65), (28,31), (29, 67), (30,66), (33, 68), (34, 37), (36, 70), (38,
69),

(51, 61), (56,60), (58, 63), (78, 79), (82, 83), (85, 86), (87, 88), (89, 101),
(90, 102), (91, 105), (92, 104), (93, 96), (94, 103), (95, 109), (97, 98),

(99, 108), (106, 107), while the remaining 35 isomorphic classes are self-dual.
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An abridged way to recognize duality of isomorphic classes would be to use
dualities between C'— and R— , as well as between isotopy classes. Necessary
data can be found in Tables 3, 4 and 9.

E.g., XII main class contains isotopy classes 111, 147 and 2017. Consulting
the numbers of included C'—classes and R—classes, we conclude that 117 ~
20! and that the isotopy class 147 is self-dual.

Let the class 147 be represented similarly as in Table 4. In addition, the
isomorphic classes, as well as their cardinalities (in () brackets) are listed
in [ ] brackets after the corresponding C'( R)—class:

147 21C[40(80), 73(120), 75(60), 106(120)]

23C[42(30), 77(30), 107(120)]
21R[40(60), 73(120), 75(60), 107(120)]

22R[42(30), 77(30), 106(120)]

e

Comparing the cardinalities of isomorphic classes included in distinct ¢'—
and R—classes, it follows that 21C' ~ 21R and 23C ~ 22R. This implies
(using also the cardinalities of isomorphic classes) that {40,75} ~ {40, 75},
{42,77} ~ {42,77} and 106 ~ 107, which further gives that the isomorphic
class 73 is self-dual.

It might be interesting to note that among the only six E-classes, which
consist of two isomorphic classes each, there are two pairs of mutually dual
E—classes: (4,79) ~ (47,78) and (8, 83) ~ (54,82)

6. Parastrophic closures and II—classes

Let r4 denote the permutation which produces the right inverse element
of aloop A (A[i,74(i)] = 1 for each i € §(n)). It can be proved that:

Theorem 2. It is satisfed for each loop A from L(n) that:
|[PC(A)| < 6- order(r4) < 6 - maz g.c.d.(sq,. .. + 8k,
where the mazimum is taken over all the partilions n — 1 = sy + ... + sg.

This is an analogue® to a statement ([3]) which claims that. PC'(A) has
non-empty intersections with at most six isomorphic classes for each loop A.
Each loop from PC(A) can be obtained from A by an application of trans-
formations of the form ApAp..., when the order of T4 1s odd, respectively
of the form ApAp... or TApAp..., when the order of T4 1S even.

Among all the 9408 loops in L(6), only 5650 reach the above upper bound
6- order(r) for |PC'(A)|. More precisely, the bound is reached with all those
loops A € L(6), which satisfy that |PC(A)| > 12, and only with 150 loops
with smaller |[PC(A)| (120 with |PC(A)| = 12 and 30 with [PC(A)| = 6).
- We conjecture that PC(A) = 6 - order(r4) whenever |PC(A)| > 12.

!when non-isomorphic loops are replaced by non-identical loops
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The loops A € L(6) with |PC(A)| = 10 seem to be particularly interest-
ing. All of them have order(r4) = 5. In addition, 10 is the largest length
that we know of a minimal ApAp... cycle which maps A to A, which is less
than the theoretical maximum.

On the basis of tests with random loops, we conjecture that the length
of the parastrophic closure of a loop A € L(n) for a larger n almost always
coincides with 6 - order(r,). The minimal value of |[PC(A)| is, however,
equal to 1 for each n (e.g., when A is the multiplication table of the cyclic
group).

The following lemma claims that the above considerations may be raised
to the level of Il—classes:

Lemma 4. Parastrophic closures within a TI—class have the same cardinal-
1y.

Proof. Let PCy and PC; denote two parastrophic closures within a I —class.
There exist two isomorphic loops L; and Lz belonging to PCy and PCy
respectively.

A parastrophic closure is determined by its any incident loop. Using
commutative diagrams which connect isomorphism and loop-parastrophy
operators, one easily concludes that the parastrophic closuures corresponding
to L, and L, have the same cardinality. O

The first two columns of the following Table 6. contain the cardinality of
parastrophic closures and the total number of parastrophic closures within
L(6) of a fixed cardinality. The denotation X : Y is associated to the
isomorphic class X, which is included into the isotopy class Y. IT—classes
correspond to the () brackets. The number of parastrophic closures within
each I—class? is given in [ ] brackets after ( ) brackets:

In particular, Table 6, can be used for an illustration of Theorem I. For
example, data from Table 6 give the structure of isomorphic classes within
XII main class, distributed w.r.t. isotopy classes and II-classes, given in
Table 7. Note that the type of isotopy classes within XII main class is
2.30+ 2604 3-120 (this can be also found in Table 5.

The second, the third and the fourth row of Table 7 correspond to isotopy
classes, while all the columns, except for the first, correspond to II-classes.
For each Il-class are given three additional data. The cardinalities and the
number of the included parastrophic closures are given in the 5th and the
6-th row of the table respectively. On the other hand, the first row of the
table contains the cardinalities of the included isomorphic classes (taken from

24311 the parastrophic closures within a II—class have equicardinal intersections with all
the isomorphic classes within the same Il—class




1) [60]
2)  [40]
3) [96]
4)  [25]
6) [240]
8) [30]
10) [48]
12)  [50]
18) [80]
24)  [75]
30) [48]
36) [40]

A classification of loops on at most six elements

(1:11)
(2:2I)

[50]
[30]

(10 :51)

(9:31, 49:191, 62:171) [60] (15:81, 39 : 131, 64 : 211)
1111, 42 : 141, 70 : 201) [30]
(25: 61)
31, 47:171, 72:191) [10]
14l, 54: 181, 55:151) [30]
(111, 671201, 77 : 141) [15]
111, 68 : 201, 75 : 141) [30]
(43 : 151, 58 : 41, 63:181) [60]

(36

(4
(8
(29
(33

(93 : 161, 96 : 161)
(6 :47, 59:187, 74 :
(28 :71, 31:91, 35 :
(7:41, 48 : 181, 71 :
(16 :71, 19:9[, 23 :
(5:41, 50:157, 53 ;

(3:20)

157)
127)
157)
121)
181)

(26:91, 27 : 121, 65: 71)
(51 :117, 61:201, 73 : 141) [15]

(85: 41, 86: 181, 91:41], 95
(89 : 117, 90 : 114, 101 : 201, 102 : 207, 106 : 147, 107 : 141)

(82: 181, 83 ; 41, 84:151) [10] (94 : 161, 100 :

117
141
201

(15]

(15]
[24]
(15]
[15]
(20]
[20]
[15]
[15]

(80 : 227)

(14 : 71, 18 : 91, 22 : 121)
(21 : 111, 40 : 141, 57 : 20])
(32 : 1071, 34 : 107, 37:10J)
(38 : 81, 69: 211, 76 : 131)

(20:107)
(46 : 161)

(97 : 101, 98 : 100)
(78 : 171, 79 : 31, 81 :191)

(12 :671)

(11:61, 13 :61, 17 : 61)
(24 : 101, 41: 101, 52 : 101)
(30 : 101, 45 : 101, 66 : 107)
(44 : 161, 56 : 161, 60 : 167)

: 157, 105: 181, 109 : 157)

(87 :181, 88:41, 92: 151, 99 : 41, 104 : 15[, 108 : 181)
' . Table 6.

30 60 30 60 120 120

36 | 21 | 29 | 33 | 51 | 89,-90 .
42 140 | 77 | 75 | 73 106, 107

70 | 57 | 67 | 68 | 61 [ 101, 102

3) 6) 6) 6) 24) 30)

[30] [30] [15] [30] [15] [24]

Table 7.

[10]
[6]

[10]
(30]
[30]
[15]
[15]

(5]
[15]
[24]
[10]
[10]
[20]
[20]
[15]
[15]

[24]
[24]

161, 103 : 161) [10]

[20]
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Table 9 of Appendix). For example, the last column of the table corresponds
to a Il-class having 3-2-120 = 30-24 = 720 loops.

7. Classifications on 5 and 4 elements

In this section are given the corresponding classifications of loops on 5
and 4 elements. Denotations in the tables are completely analogous to those
on 6 elements, with the additional denotations ’ and ” for loops on 5 and 4
elements respectively.
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n==5,

Table 2’ 2 commutators 2 commutators
1, 2[(3.843-8) 6| (20-6)
Table3 y=1|y=2|y=3|y=4]|y=5|y=6
LR*1C” [2R7:2C [ 1R"2C" | 2R™1C7 | 2R"1C’ | 3R":3C”
1P =1C"+2C" = 1R + 2R’ = {1,2',3,4,5"}

Table 4’
20" = 3C" = 3R’ = {6}
Table 5* [F1P[1-2+3 -8+ 1-24] [ [21°]1-6]
1) [6] (67:217) [6]
9 (@1 1]
Table 6y ) | (v, 2mipe, 4up) [4]
8 [ (510) 3
n=4
Table 27 4 commutators

17 [(24-1)[27](8-3)

Table 37 y=1 | y=2
1R”:1C” | 2R :2C”

Table 5” II,7III,,|1T| IE” IQ’I”IIB—I
Table 67 1) [4] | (1":1/7)[1]  (27:217)[3]

Table 4” 117 = 1C” = 1R” = {17}
2]:1 — 2077 — 2Rn i {27:}
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Appendix i

The representatives of the 109 isomorphic classes within L(6) are given in
Table 8. Each one of these loops is represented by a 16-digit sequence; the
four consecutive quadruples of the sequence contain the middle four elements
of the 2nd, 3th, 4th and 5th row of the loop respectively:

1 =1436456136526123
4 = 1436456156126123
7T =1436456256136124

10 = 1436516262513614

13 = 1436516262514623
16 = 1436516462514623
19 = 1436516462534612
22 = 1436516465213612
25 = 1436526161523624

28 = 1436526165233614
31 = 1436526461533612
34 = 1436561261533264
37 = 1436562162533164
40 = 1456416256136234
43 = 1456426156236134
46 = 1456426165323614
49 = 1456456156326123
52 = 1456456162133624
55 = 1456456256316213
58 = 1456456262313614
61 = 1456461265313264
64 = 1456516462133621
67 = 1456526461233612
70 = 1456562165323164
73 = 1456621435614623
76 = 1456651432614623
79 = 3156126456236412
82 = 3156146256216234
85 = 3156426156236412
88 = 3156426165321624
91 = 3156456156236412
94 = 3156461215636234
97 = 3156462115636234
100 = 3156462165321463
103 = 3416156461524623
106 = 3416456261531624
109 = 3416562165321264

Il

2 = 1436456136526124
5 = 1436456156236214

= 1436456256216213
11 = 1436516262513624
14 = 1436516262534621
17 = 1436516462533612
20 = 1436516465123621
23 = 1436516465233612
26 = 1436526161524623

29 = 1436526165234612
32 = 1436526465213612
35 = 1436561262533164
38 = 1436562462514163
41 = 1456416265233614
44 = 1456426165233612
47 = 1456456136126123
50 = 1456456156326213
53 = 1456456236216134
56 = 1456456261233614
59 = 1456461235616234
62 = 1456462135626134
65 = ]456526161323624
68 = 1456526465313612
71 = 1456612435614632
T4 = 1456621435614632
T7T = 1456652431624613
80.= 3156126465214632
83 = 3156146256236214
86 = 3156426156326413
89 = 3156456116236234
92 = 3156456256216413
95 = 3156461265231264
98 = 3156462115636432
101 = 3416156256216234
104 = 3416456216536124
107 = 3416526461521623

Table 8.

3 = 1436456136526213
6 = 1436456161523624
9 = 1436456262513614
12 = 1436516262514613
15 = 1436516265134621
18 = 1436516462533621
21 = 1436516465124623
24 = 1436516465234612
27 = 1436526161533624

30 = 1436526461524613
33 = 1436526465214613
36 = 1436561461524263
39 = 1456416256136231
42 = 1456426156236132
45 = 1456426165233614
48 = 1456456136126234
51 = 1456456161323624
54 = 1456456236216213
57 = 1456456262133621
60 = 1456461265233164
63 = 1456462165323164
66 = 1456526165323614
69 = 1456561265313264
T2 = 1456612435624631
T5 = 1456651431624623
T8 = 3156126456216432
81 = 3156126465234612
84 = 3156146265314623
87 = 3156426165231634
90 = 3156456116236432
93 = 3156456262311624
96 = 3156462115626234
99 = 3156462165321264
102 = 3416156456236132
105 = 3416456256316124
108 = 3416562115626234

Table 9. gives the number of loops within distinct

isomorphic classes of
L(6). The set of (labels of) isomorphic classes which

have cardinality c is
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denoted by ”5.”.

S5¢ = {15, 39, 64} S90 = {4, 10,47, 72}
Sso =  {20,29,32,34,36,37,38,42,67,69,70,76,77}  Ss0 = {78,79,80,81}
Sep = {1,2,6,8,9,14,18,21,22,25, 28, 31,33, 35,40, 49, 54, 55, 57, 59, 62, 68, 74, 75}
Siza = {1,2,...,109} — (S U Sa0 U S30 U Sa0 U Se0)

Table 9.

Table 8.7 1 = 145451523 2’ = 145452513 3’ = 145512351
4' — 145521352 5' = 315451523 &' = 345451512

.

The corresponding tables for L(5) and L(4) are: i
|
i
|
|

Table 9.  S§ ={3'}, St={6'}, S's={1,2,4} S'={5)
Table 8.” 17 = 1441 2" = 1442
Table 9.7 571 = {1}, 573 = {27}
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