FILOMAT (Ni3) 9:3 (1995), 765-781

Algebra, Logic & Discrete Mathematics
Nis, April 14-16, 1995,

IDENTITY, PERMUTATION AND BINARY TREES

Aleksandar Kron

ABSTRACT. Some extensions of the Anderson-Belnap (Dwyer-

Powers) con-
Jjecture for TW_, are applied to a set of binary trees.

A binary tree 7 is a tree with an origin and such that each node of 7
either has exactly two immediate successors or it is an end-node. A subtree
T'" of a tree 7 is a tree such that every node of 7’ is a node of 7 and the
immediate successor relation in 77 is the immediate successor relation in 7.
A tree 7 is a formula-like tree (FLT) iff it has no proper subtree that is
isomorphic to 7, and no proper subtree 77 of 7 has a proper subtree 7
isomorphic to 7.

Every infinite FLT contains infinitely many (distinct) finite branches; ev-
ery node of a FLT is a node of a finite branch. Hence, the maximal length
of a branch of a FLT is w.

If 7; and 7; are FLTs, then the tree obtained by adjoining a new origin
717y and such that 7; and 7; are immediate successors of 7175, is a FLT.

With every node of a FLT 7 one of the numbers 0 or 1 is associated, as
follows: 0 is associated with the origin of 77 if 0 (1) is associated with a node
at level n, then 1 (0) is associated with its left hand immediate successor
and 0 (1) is associated with its right hand immediate successor.

If0 (1) is associated with the origin of a subtree 77, then 7" is a 0-subtree
(1-subtree).

Let us consider the following operations on a FLT.

SU° Let 7 be a FLT and let 7; 75 be one of its 0-subtrees; then the subtree
7175 can be cut off and a subtree (7373)(T173) can be inserted in 7
instead, where 73 is any FLT.

PR Let 7 be a FLT and let 75 7; be one of its 0-subtrees; then the subtree

T, 73 can be cut off and a subtree (7173)(T173) can be inserted in 7
instead, where 77 is any FLT.
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SUL® Let 7 be a FLT and let 7; be one of its 0-subtrees; then the subtree
77 can be cut off and a subtree (7;73)((7373)73) can be inserted in
7T instead, where 73 and 73 are any FLTs.

SU! Let 7 be a FLT and let (7373)(7173) be one of its 1-subtrees; then
the subtree (7573)(7173) can be cut off and the subtree 737; can be
inserted in 7 instead.

PR! Let 7 be a FLT and let (7;73)(7173) be one of its 1-subtrees; then
the subtree (7173)(7173) can be cut off and the subtree 7373 can be
inserted in 7 instead.

SUL! Let 7 be a FLT and let (7:73)((7173)73) be one of its 1-subtrees;
then the subtree (7172)((7273)75) can be cut off and the subtree 7;
can be inserted in 7 instead.

PERM* Let 7 be a FLT and let 7;(7273) be one of its 0-or-1-subtrees; then

the subtree 7;(7;73) can be cut off and the subtree 75(7773) can be
inserted in 7 instead.

The main theorem: starting with a FLT 7 and successively performing
the operations SU?, PR®, SUL?, SU!, PR!, SUL!, and PERM* any finite
number of times, in any order, and such that at least one of the first six rules
is applied at least once, it is not possible to obtain 7 as a result.

1. Identity

When Alan Ross Anderson and Nuel D. Belnap were developing relevance
logic, among numerous systems they have been considering there was an
implicational fragment of a very weak logic called now TW. Since there
is only one connective in such a fragment, namely —, we omit it and we
write AB for A — B. Also, we omit parentheses, whenever this causes
no confusion. ABC stands for (AB)C and A.BC for A(BC). Under this
proviso, the implicational fragment of TW has modus ponens (MP) as the
sole rule of inference and the following axiom-schemata:

D AA
ASTU AB.BC.AC
APR BC.AB.AC
This fragment is now called TW_,. Let us write A = B iff both AB and

BA are provable in TW_,. Then Anderson and Belnap have conjectured
(cf. [1], p. 95) that

A = B if and only if A and B are the same formula.
We shall call this conjecture Anderson - Belnap conjecture (A-B).
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By A-B the identity of formulas in the language of TW _, is determined
by logical means only — by provability in the very weak theory of implication
TW_,.

Let TW_,~ID be the system obtained from TW_, by omitting the axiom
schema ID. Dwyer and Powers have shown that A-B is equivalent to the
following claim:

NOID In TW_-ID there is no theorem of the form AA.

NOID is a very strong claim. ID is a paradigm of a logical truth and
there is hardly a descent logical theory where 1D is not true. Nevertheless,
in TW_,~ID not only there is a formula A such that AA does not hold for
it, but, moreover, AA holds for no formula A.

The systems TW_, and TW_-ID have other formulations as well.

Let us consider a theory that has ASU and APR. as axiom-schemata, but
instead of MP it has the following rules of inference:

S5U From AB to infer BC'.AC
PR From BC to infer AB.AC
TR From AB and BC to infer AC

Let us call the new system TRW_ -ID. It is easy to see that the rules of
TRW _,-ID are derived rules of TW_,~ID; hence, all theorems of TRW_ -
ID are theorems of TW_,~ID. On the other hand, by an inductive argument
it follows that TRW_~ID is closed under MP (this was proved by Dwyer
and Powers; cf. [4] and [2] for details. TRW _,-ID and TRW_, are called
in [4] M and N, respectively). Therefore, TW_—-ID and TRW _,—ID are
equivalent.

Let us adjoin the axiom-scheme ID to TRW_, — ID; the resulting theory
is called TRW _,. It is clear that TRW_, and TW_, are equivalent.

Another equivalent formulation of NOID is the following one. Let us
consider the theory WTR_-ID, in the propositional language with — as
the sole connective.

The rules of inference are SU, PR and TR, as in TRW _—ID, but the
axiom-schemata are

USA (BC.AC).AB
RPA (AB.AC).BC
The axioms of WTR_.-ID are not logical truths at all. By an inductive

argument it can be shown that AB is a theorem of TRW_,—ID iff BA is a
theorem of WTR_~ID. Now NOID can be formulated as:
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NOID’ There is no formula provable both in TRW _—-ID andin WTR_,
-1D.

Let WTR_, be obtained from WTR_-ID by adjoining ID; then, of
course, NOID has the formulation

NOID” The only theorems common to TRW_, and WTR_, are all the
formulas of the form AA.

A natural deduction formulation of TRW _ —ID

In the seventies some one-premiss natural deduction formulations of TW_,
—ID and TW_, have been elaborated in Belgrade by Bozié, Dogen and the
present author.

Let us define consequent and antecedent occurrences of subformulas of a
given formula A, as in [1], p. 93.

The formula A4 itself is a consequent occurrence of A in A.

If BC' is a consequent (antecedent) occurrence of BC in A, then the
displayed occurrence of B is an antecedent (consequent) occurrence of B in
A, and the displayed occurrence of C' is a consequent (antecedent) occurrence
of C'in A.

The logic TRW _,—ID has a neat formulation called TRW' ~ID. There
are no axioms in TRW'_ —ID and instead of SU, PR and TR we have the
following four rules:

SUY Let AB have a consequent occurrence in a formula D; then we are
allowed to substitute an occurrence of BC.AC for that particular
occurrence of AB in D, for any formula C';

PR® Let BC have a consequent occurrence in a formula D; then we are
allowed to substitute an occurrence of AB.AC for that particular
occurrence of BC' in D, for any formula C';

SU! Let BC.AC have an antecedent occurrence in a formula D; then we
are allowed to substitute an occurrence of AB for that particular
occurrence of BC.AC in D;

PR! Let AB.AC have an a,nteeedent occurrence in a formula D; then we
are allowed to substitute an occurrence of B(C' for that partlcular
occurrence of AB.AC in D.

SU® and PR® are called consequent or O-rules; SU' and PR! are called
antecedent or 1-rules.

Let A and B be arbitrary formulas. Suppose that B is obtained from A
* by applying these four rules (at least one but not necessarily all of them) in
any order; then we shall write A —pgw'_ip B to denote this fact. Also,
we shall write A —ppw'_ip B —1rRW'-p € if A —prW'_Ip B and
B —mppwip C. It is clear that the relation —pRryw'_p is transitive.
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If A —opw p B, then AB is called a theorem of TRW'_ -ID.

The theories TRW _,—ID and TRWYL -ID are equivalent in the sense that
they have the same set of theorems. This can be seen from the following
considerations, '

Let us define the depth of an occurrence of a subformula in a formula A
as follows: A itself is at depth 0; if an occurrence of BC in A is at depth n,
then the displayed occurrences of B and C'in A are at dépth n 4 1.

Theorem 1. The theorems of TRW', -ID are theorems of TRW_, -ID.

Proof. Suppose that D ——TRwW'-ip L. Proceed by induction on the number
n of applications of 0-or-1-rules in the derivation D —rRwW'_p F to show
that DE is a theorem of TRW_, -ID.

Let n = 1. Suppose that £ is obtained from D by one of the 0-or-1-rules.
Proceed by another induction on depth at which the substitution takes place.

If the substitution takes place at depth 0, then DE is an instance of an
axiom of TRW _,-ID.

Let DE = D1Dy.E\Ey. If D —TRrRw'-ip P such that the substitution
takes place at depth greater than 0, then either Dy = Ey and Dy —ggpwi_ip
Ey or Dy = Fy and E4 —TRW'-1p D1. In the first case, by induction hy-
pothesis, Dy Fy is a theorem of TRW_. . Hence, DF is obtained by PR. In
the second case, by induction hypothesis, F; Dy is a theorem of TRW_,.
Hence, DE is obtained by SU.

Let » > 1. Suppose that E' is obtained from D by n — 1 applications
of 0-or-1-rules, and that E is obtained from E' by a single application of
a 0-or-1-rule; by induction hypothesis and the first part of the proof, DE’
and E'E are theorems of TRW_ -ID. Hence, by TR DFE is a theorem of
TRW_-ID. O

Theorem 2. The theorems of TRW_, -ID are theorems of TRW', -ID.

Proof. It is easy. to derive ASU and APR in TRW' -ID. Suppose that
A —prw'_ip B. This means that starting from A and applying the 0-or-
L-rules we eventually obtain B. Let us start from BC'; in this formula every
consequent occurrence of a subformula in B is an antecedent occurrence in
BC, and conversely, every antecedent occurrence of a, subformula in B is a
consequent occurrence in BC. It is easy to see that AC can be obtained
from BC' by applying the same rules that lead from A to B in reverse order.
This means that AC is obtained from BC by applying a 0-rule instead of
the corresponding 1-rule and a 1-rule instead of the corresponding 0-rule.

Hence, if AB is a theorem of TRW' -ID, sois BC.AC'. In a similar way
we can prove that TRW' —ID is closed under PR.

AS to TR,, it is trivia] that lf A __%TRW'-ID B &Hd B ——TRW'-ID C‘,
then A —ppw_ip C. Hence, the set of theorems of TRW', -ID is closed
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under transitivity and all theorems of TRW _,~ID are theorems of TRW'
ID. O

Many logicians have tried to prove or disprove A-B, but it turned out that
this was a very difficult task.

NOID and hence A-B has been proved true by R.K. Meyer and E. Martin
(cf. [6]) who used a semantics developed for this purpose. Thus, indeed, the
graphical identity of two formulas in alanguage with — as the sole connective
is determined by purely logical means defined in alogical calculus in the same
language.

A purely constructive proof of NOID has been obtained in [4] (cf. also

[2]).
2. Permutation

In TW_-ID there is almost no rule of permutation admissible. The next
theorem seems to give the maximum of permutation allowed in TW _-ID.

Theorem 3. If AB.CD is a theorem, then either (a) A= C and BD is a
theorem or else (b) B = D and C'A is a theorem or else (¢) CA and BD
are theorems or else (d) C.ABD is a theorem.

Proof. Consider TRW _,—ID and proceed by induction on theorems. 0

Let C.DE be a subformula of A; suppose that B is obtained from A by
substitution of D.C E for C.DE, at a single occurrence of C.DE and let us
write A ~ B iff B can be obtained from A by a finite (possibly zero) number
of substitutions of this kind. It is clear that ~ is an equivalence relation.
For any A by A* we shall denote any formula B such that A ~ B.

Let us consider the following permutation rules.

PERM* From A to infer A*.
RPERM If AB is a theorem, so is A*B™.
PERM If A is a theorem, so is A*.

Here ’theorem’ means 'theorem of the system under consideration’.

Let us adjoin RPERM to TRW_-ID and let the resulting system be
called PTW_-ID.

If PERM is adjoined to TRW _,-ID, the resulting system is called Lj;
APR is then redundant.

Obviously, the theorems of PTW _,—ID are theorems of L.

Theorem 4. L = PTW_-ID + PASU + SUP + PRP, where PASU is
the following axiom scheme (ASU with permutation)

PASU A.AB.BCC
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and SUP and PRP are the following rules (SU and PR with permutation ):

sup From AB to infer A.BCC
PRP From BC to infer A.AB(C

Proof. Tt is clear that the theorems of PTW_,—ID + PASU + SUP + PRP
are theorems of L, for PASU, SUP and PRP are obtained from ASU, SU,
and PR by PERM, respectively.

On the other hand, by induction on theorems it can be shown that
PTW_—ID + PASU + SUP + PRP is closed under PERM. The only place
in this proof that requires a little care is TR. Suppose that A.C'D is ob-
tained in L from AB and B.C'D by TR, and that then C.AD is obtained
by PERM. By induction hypothesis, C.BD is a theorem of PTW_,—ID +
PASU + SUP + PRP. On the other hand, from AB we obtain BD.AD by
SU; hence, C.AD is a theorem, by TR." Therefore, the theorems of L are
theorems of PTW_-ID 4+ PASU 4+ SUP + PRP. O

It has been proved in [4] that NOID holds for L as well:

NOID(L) there is no theorem of L either of the form AA or of the form ABB.

or of the form ABBA or of the form A.ABB. }

This result was obtained by constructing a cut-free Gentzen-style formu-
lation of L also called L. The structure of the proof is the following: it was
-obvious that pp is not derivable in L; if we assume that AA is derivable
for some formula A, then there is a formula B of smallest degree such that
BB is derivable. In considering the possible derivations of B B, there always
was a formula C of degree smaller than the degree of B such that CC was
derivable.

Neither PTW _—-ID nor L is closed under modus ponens. A counter-
example provided in [5] can be used here as well. Let A — pp.pp.pp and
B = (pp.pp)p.ppp; AB is an instance of ASU. If PTW_ -ID were closed
under MP, applying RPERM to AB.Bp.Ap we would obtain AB.A.Bpp;
hence, by MP applied twice, Bpp would be obtained in PTW_—ID, contrary
to NOID(L).

There are proper extensions of L closed under MP such that NOID still
holds for them. Let K be the system defined by ASU, MP, PERM and the
following assertion rule

AS51 | If A is a theorem of K, so is ABB.

There is a Gentzen-style formulation of K called in [5] J; it has been
proved that’
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NOID(J) there is no theorem of J either of the form AA or else of the form
A.ABB or else of the form ABBA.

By ASU and MP K is closed under another assertion rule as well:
ASS2  If A and BC are theorems of K, so is ABC.
The connection between K and L is given in the next theorem.

Theorem 5. K =L + A551.

Proof. The rules of L + ASS1 are derived in K. We have to prove that L 4

ASS1 is closed under MP.

Suppose that (a) A; and (b) Ay ... .A;—1.A;.Ai4q ... .Ayp are theorems
of L + ASS1; we want to prove that (¢) Ay. ... .Aj—1.Ai41 ... Appis a
theorem of L + AS51. Proceed by induction on the combined weight of (a)

and (b) (for the definition of combined weight cf. [7], p. 113).

Let (b) be an instance A3C.C'D.A3D of ASU, where Ay = A3C, Ay =

&D; aid D= Ay »uy AP
If i < 3, then (c) is obtained from A; either by SU or by PR.

If i = 3, then from (a) we obtain (¢’) A3CC by ASSI; hence, by (¢’) and

SU we have CD.A3C D; eventually, by PERM we derive (c).

Let ¢ > 3 and E = A;y1 ... .A.p; from A; we obtain A;FE by A551.
Then we apply PR to derive A3D.A3.44 ... A;_1E and (¢’) (CD.A3D).CD
Az Ay ... .A;_1E. But as an instance of ASU we have A3C.CD.A3D;

hence, by using (c¢’) and TR we obtain (c).

Let (b) be obtained by SU; if ¢ = 1, then Ay = AjC, where C' =
As ... Aup and Ay = A,C, and (b) is obtained from (b’) AjA}. From

(a) and (b’) we obtain A5C by TR, as required.

If i = 2, then (b) is A{C.A2C and it is obtained from (b’) A;A7. By
(a), (b’) and the induction hypothesis we have (c’) Aj; by (¢’) and ASS1 we

obtain (¢) AjCC.

Let i > 3 and let E be as before; then (b)is A{(As ... .Aj_1.A;E).A2. 43
. .Ai_1.A;E, and it is obtained from (b’) A3 A}, where, obviously, A; =

AYAs ... A1 AE.

From (a) A; we obtain A; EE by ASS1, and then (¢’) Aj(43 ... .Ai—1.4;E)
AY.As ... .A;_1E by PR. By using PERM we have (c”) A}. A1 (43 ... .Ai—
A;E).As ... A;_1E, Hence, by (b’), (c”) and TR we obtain A4;.41(As

oo JAj_1.AiE). Az ... .A;_1E; by using PERM again, we obtain (c).

Let (b) be obtained by PR; if i = 1, then Ay = AyC and (D) is obtained
from (b’) C.A3 ... .Aup. From (a) and (b’) we obtain Ay.A3 ... .Anp by

- TR, as required.

If i = 2, then (b) is A3C.Ay.A3 ... .A,p and it is obtained from (b’)
C.As ... .Anp. By (a) and ASS1 we obtain A;CC, and then, by using (b’)

and TR we obtain (c).
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Let ¢ > 3 and let E be as before; then (b)is A3C.Ay. A5 ... .A;_ 1. AE,
and it is obtained from (b’) C.A3 ... .A;_1.4;E., where, obviously, A; =
AyC. By induction hypothesis, 4,C.A3. 45 ... A; 1Eis a theorem; now
(c) is obtained by PR.

If (b) is obtained by PERM, the use of induction hypothesis is straight-
forward.

Let (b) be obtained by ASS1; then A; = Aj.Ay ... .Aup and (b) is ob-
tained from (b’) A. If ¢ = 1, then by (b’), (a) and the induction hypothesis,
(c) Ay ... .A,pis a theorem.

If i > 1,let E be as before; from (b’) we obtain (¢”) AJ(A; ... Ai 1 E).
Ay ... .A;_1E by ASS1. On the other hand, from (a) we derive (c”)
Ai(A1.Az ... A E).AL Ay ... A; 4 E by ASS1. Hence, by (), (e,
TR and PERM we obtain (c).

Let (b) be obtained from (b’) A1;C and (b”) C.4; ... .A,p by TR. If
it =1, then by (a), (b’) and the induction hypothesis we obtain C'; hence, by
¢, (b”) and the induction hypothesis we obtain (e): ,

If 7 > 1, let £ be as before; by induction hypothesis, (¢)C.Ay ... AjE
is a theorem; hence, by (b’), (¢’) and TR we obtain (c).

This completes the proof of the theorem. 0O

The system K has an interesting property called NOE. It has been proved
in [5] that J and hence K is closed under the following rule:
NOE (A; ... .A,B)B is a theorem of K iff so are A, .. A

-
In particular, there is no theorem of K of the form AABB.

Natural deduction systems L', L” and L'’

Let L' be the one-premiss natural deduction system obtained from TRW',
—ID by adjoining the rule PERM*.

Let A and B be arbitrary formulas. Suppose that B is obtained from A

by applying SU?, SU!, PR®, PR!, or PERM* a finite number of times; then
we shall write A — s B to denote this fact. If A —y, B and one of the
first four rules is applied at least once, then AB is called a theorem of L.
The restriction in the definition of theorems of L’ is obvious; without it we
have the following derivation: starting from A.BC we apply PERM* twice
- and we obtain A.BC' again; hence, without the restriction, A(BC).A.BC
would be a theorem of L',

" Theorem 6. PTW_ -ID and L' have the same set of theorems.

Proof. Let A*B* be a theorem of L' obtained from AB by RPERM; by
induction hypothesis, A —g, B. Hence, A* —1 A —1/ B —, B*.
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This shows that L' is closed under RPERM and it is easy to see that the
theorems of PTW _,—ID are theorems of L.

Suppose that D —y+ E and proceed by induction on the number n of
applications of 0-or-1-rules. Let n = 1 and let F be obtained from E' by an
application of such a rule and proceed by another induction on depth. If the
rule is applied at depth 0, then E'F is a theorem of PTW _—-ID by axioms.
Obviously, D ~ E' and DF is obtained by RPERM only.

Let B'E = E{E}.E1FE,. If E is obtained from E' such that F5 is obtained
from Fj by a 0-or-1-rule, then E] = F; and, by the second induction hy-
pothesis, Ej E5 is a theorem of PTW_,—ID. Hence, F'FE is obtained by PR.
Again, we have D ~ E’ and we obtain DE.

If F is obtained from E’ such that E] is obtained from E; by a 0-or-1-rule,
then Ej = E, and, by the second induction hypothesis, F; F] is a theorem
of PTW_-ID. Hence, E'E is obtained by SU. Again, D ~ E' and DE is a
theorem of PTW _-ID.

Let n > 1. Suppose that E’ is obtained from D by n — 1 applications of
0-or-1-rules, and that F is obtained from E' either by a single application
of a 0-or-1-rule or by PERM*; by the first induction hypothesis DE' is a
theorem of PTW_-ID. If £ is obtained from FE’ by an application of a
0-or-1-tule, then E'F is a theorem of PTW _—-ID by the first part of this
proof; hence, DE is a theorem of PTW_,—ID by TR. If F is obtained from
E' by PERM*, then DF is obtained by RPERM from DE’.

This completes the proof of the theorem. O

Let L" be the one-premiss natural deduction system obtained from L' by
adjoining the following two new 0-or-1-rules

SUL® Let A have a consequent occurrence in a formula D; then we are
allowed to substitute an occurrence of AB.BC(C for that particular
occurrence of A in D, for any formulas B and (;

SUL! Let AB.BCC have an antecedent occurrence in a formula D; then
we are allowed to substitute an occurrence of A for that particular
occurrence of AB.BCC in D.

Theorem 7. The theorems of L' are theorems of L.

Proof. The proof of Theorem 6 can be extended in the case when either
SUL? or SUL! is applied to E' at depth 0; then in L we can apply PERM
to an instance of ASU. O

It is easy to derive ASU in L". Also, we can show that L" is closed
under SU, PR, and TR. Hence, L contains TRW _,—ID. However, there are
theorems of L that are not theorems of L”. In particular, L" is not closed
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under PERM: there is a theorem of L” of the form A.BC' such that B.AC
is not a theorem of L, as in the following example.

We have (pp.ppp)p — 1/ pp by SUL!, but not p — 1 (pp.ppp)pp; the
latter derivation is impossible in L"”. On the other hand, in L from the
instance pp.pp.pp of ASU we obtain p.pp.ppp by PERM; then we apply SU
to obtain (pp.ppp)p.pp; eventually, we use PERM to prove p-(pp.ppp)pp.

Let L"" be obtained from L” by adjoining PERM. This means that the
set of theorems of L' is defined as the smallest set of formulas satisfying
the following two clauses: (1) if A —s B in L”, then AB is a theorem of
L' and (2) if A.BC is a theorem of L', then B.AC' is a theorem of L.

The definition of a theorem of L' can be given by (1) and (2’): if A —p
BC in L”, then B.AC is a theorem of L',

It is not difficult to see that the definition using (1) and (2) is equivalent

to the definition using (1) and (2°). Of course, L and L'’ have the same set
of theorems.

A natural deduction system K’

Let us adjoin ASS1 to L" and let the resulting system be called K’ .
Hence, the set of theorems of K’ is the smallest set satisfying the following
conditions: (i) if AB is a theorem of L', then AB is a theorem of K’ and
(ii) if A is a theorem of K', then ABB is a theorem of K'.

The definition of a theorem of K’ can be given by (i) and (ii’): if A.BC
is a theorem of L', then B.AC is a theorem of K'.

It is easy to prove

Theorem 8. K and K' have the same set of theorems.

3. Binary trees

In [3] a connection between TRW'_~ID and binary trees has been estab-
lished.

By a binary tree we understand a tree such that (1) there is a unique
element at level 0 called the origin of 7 and (2) each node of 7 is either an
end-node or has exactly two immediate successors.

By a subtree 7' of a binary tree 7 we understand a subset 77 of nodes
of 7 such that 7' is a binary tree and the immediate successor relation in
7' is the immediate successor relation in 7.

A subtree 7' of T is proper iff 77 is a subtree of 7, and 7" and 7 are
not identical. Obviously, a subtree 7" of 7 is proper iff the origin of 7" is
distinct from the origin of 7.

A binary tree 7 is finite (infinite) iff the set of nodes of 7 is finite (infinite).
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After several conversations with Ilijas Farah in the period 1990 - 92 the
concept of a formula-like tree (FLT) has emerged and the present author
was able to represent the one-premiss natural deduction systems considered
above as systems of operations on FLTs.

Let 7' and 7" be two binary trees. We shall say that they are isomorphic
iff there is a mapping h from 7' onto 7" such that the following conditions
are satisfied: (1) if # is the origin of 77, then h(z) is the origin of 7" and
(2) if the nodes y and z of 7' are the left and the right immediate successor,
respectively, of a node z in 77, then A(y) and h(z) in 7" are the left and
the right immediate successor, respectively, of h(z) in 7.

If 7" and 7" are finite trees and one of them is a proper subtree of the
other, they cannot be isomorphic. However, if they are infinite, it is possible
that they are isomorphic and yet that one of them is a proper subtree of the
other.

Let the full binary tree (FBT) be the infinite binary tree with no finite
branch. In FBT every subtree is FBT. There are examples of binary trees
that have isomorphic proper subtrees and are different from FBT. Here is
one:

N
Py
T

This is an infinite tree; each node in the infinite (rightmost) branch has
an end-node as the left successor and a node in the infinite branch as the
right successor. Any proper subtree with the origin in the infinite branch is
isomorphic to the whole tree.

Let us call a tree 7 formula-like tree (FLT) iff (1) it has no proper subtree
that is isomorphic to 7 and (2) no proper subtree 7' of 7 has a proper
subtree isomorphic to 7.

There is a trivial consequence of the above definition and the fact that
being a subtree is a transitive relation.

Theorem 9. A subtree of a FLT is a FLT.

Every finite binary tree is a FLT, but there are infinite FLTs as well. For
example, take the above infinite tree and extend each end-node by a finite
tree that is different from all finite trees adjoined to previous end-nodes.

Every infinite FLT contains infinitely many (distinct) finite branches; ev-
ery node of a FLT is a node of a finite branch. Hence, any branch of a
FLT is at most of length w. Therefore, the nodes of a FLT are arranged in
levels and to each level there is attached a natural number. The number 0
is attached to the origin.
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Theorem 10. If 7y and 7 are FLTs, then
h T
o
ye
ts a FLT.

Proof. If the contrary is the case, then there is a proper subtree h(7;7;) of
717, isomorphic to 7;7;. By definition of isomorphism, A(7;73) = h(71 )h(T3)
and h(7;) and h(73) are isomorphic to 7; and 73, respectively, The origin of
h(T1T;) is either in the subtree 77 or in the subtree 73, say in 7;. Now the
origin of h(7;7;) coincides either with the origin of 7; or with another node
of 71. Since h(717T3) = h(71)h(7z), the left successor of the node h(ThT3) is
h(71). But 77 and A(7;) are isomorphic and h(77) is a proper subtree of 77,
contrary to the assumption that 7; is a FLT.
We proceed similarly if the origin of h(7173) is in the subtree 73. O

Formulas and binary trees

Formulas of the propositional language with — as the sole connective are
naturally connected with finite binary trees. The nodes of such a tree are
subformulas of the formula 4 we are constructing the tree for. Thus, the
formula A itself is at the origin of the tree. If an occurrence of a subformula
BC' of Ais at a node at level n, then, at level n+1, the displayed occurrence
of B is the left and the displayed occurrence of (' is the right successor of
the displayed occurrence of BC'. The end-nodes of such formula trees are
occurrences of proﬁositional variables.

Suppose that in the propositional language that we are considering there
is only one propositional variable, say p (this is sufficient to prove NOID,
NOID(L) NOID(J) and NOE); then we can identify formulas and finite bi-
nary trees. Let p be the tree consisting of a single node. If A and B are
finite binary trees, then AB is the tree obtained by taking a node as the
origin of the tree such that A and B are the left and the right immediate
successor of the origin.

In the sequel we shall interpret formulas as FLTs. For any propositional
variable p we choose a FLT 7 and we interpret p as 7. Let A and B be any
formulas and let 7; and 75 be the FL.Ts such that A and B are interpreted
as FLTs 7 and T3, respectively; let us choose a new node called 1175 as the
origin of a new tree and take 7; and 7; to be the only immediate successors
of 737,, thus: '

T T
N A
T'Ty
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By Theorem 10, 7;7; is a FLT and we interpret AB as 71 7;.

In denoting trees we shall use the conventions adopted in writing formulas.

Propositional formulas have a property called substitution; let us show
that FLTs enjoy the same property. Suppose that 7; is a FLT and 7; a
subtree of 77:

T

Tt
then this occurrences of the FLT 73 in 77 can be cut off and a FLT 73 can
be inserted instead: :

73
T
Theorem 11. Let 7; be a FLT, let T, be a subtree of T and let Ty be the

tree obtained from T, by cutting off Ty and by inserting a FLT 73 instead;
then Ty is a FLT.

Proof. Proceed by induction on levels. Let 73 be 77; then, obviously, 7 is
T3. If 7y is T/'T]", then the origin of 7; is at a certain level » in 7;. If it is in,
say, 7{, then in 7{ it is at level smaller than n and by induction hypothesis
the result 7, of substitution of 73 for 73 in 77 is a FLT. By Theorem 9, 7,
is a FLT; hence, by Theorem 10, so is 7,/7/", i.e. 74. O

Natural deduction and FLTs

There is a connection between derivations in one-premiss natural deduc-
tion systems TW' -ID, L/, and L” and FLTs. In order to explain this
connection, let us show how the rules of L” can be interpreted as operations
on FLTs.

To every node of a FLT 7 we associate one of the numbers 0 or 1, as
follows: 0 is associated with the origin of 7; if 0 (1) is associated with a
node at level n, then 1 (0) is associated with its left hand successor and 0
(1) is associated with its right hand successor at level n + 1.

If 0 (1) is associated with a node of a tree, then we shall call it a 0-node
(1-node).

Now the rules SU°, PR?, SU!, PR!, SUL?, SUL!, and PERM* can be
represented as operations FLT's as follows.
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spe Let 7 be a FLT and let 7;7; be one of its 0-nodes:
LT
L
717,

Then the subtree 7;7; can be cut off and a subtree T73. 7775 can be
inserted in 7 instead:
Ty s T
NSNS
73 N1

NS
130T

where 73 is any FLT. Let us call the new tree 7.

In a similar way we can represent the remaining 0-rules.

As to the l-rules, let us represent SU. Suppose that 7" is a FLT and let
T573. 7173 be one of its 1-nodes; then the subtree T,73. 77 T3 can be cut off
and the subtree 7;7; can be inserted instead, producing thus the tree 7.

In a similar way we may represent the remaining 1-rules.

Now we represent PERM*.

PERM* Let 7 be a FLT and let 77.7375 be one of its 0-or-1-nodes:

T T
NS
T TT
NS
.12 75

Then the subtree 77.737; can be cut off and the subtree 73.7773 can be
inserted in 7 instead:
i Tz
NS
T, ThTs
NS
T, 173

By Theorem 11, the result of an application of a 0-or-1-rule or PERM*
to a FLT is a FLT. Suppose that these rules are applied to a finite binary
tree; then NOID can be stated as follows:
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NOID(T) (1) Starting from a FLT 7 and successively performing the oper-

ations SU°, PR, SU!, PR!, SUL?, SUL!, and PERM* any finite
number of times and in any order, and such’ that one of the first six
operation is performed at least once, it is not possible to obtain 7~
as a result, where 7' is either 7 or 77T,71;

(2) starting with a FLT 77T, and successively performing the op-
erations SU°, PRY, SUY, PR!, SUL?, SUL!, and PERM* any finite
number of times and in any order, and such that one of the first six
operation is performed at least once it is not possible to obtain 77
as a result;

(3) starting with a FLT 77,77 and successively performing the op-
erations SU?, PR, SU', PR!, SUL?, SUL?, and PERM* any finite
number of times and in any order, and such that one of the first six
operation is performed at least once it is not possible to obtain 7
as a result,

If the rules are applied to a finite FLT 7, then NOID(7) is true, since we
can identify formulas and finite binary trees.

Theorem 12. NOID(T) is true for any FLT T.

Proof. An interpretation of a theorem of L in the set of all FLTs is a ho-
momorphic image of a theorem of L; hence, it has a form of a theorem of
L. By NOID(J) there is no theorem of L either of the form AA or of the
form A.ABB or of the form ABB; hence, there is no FLT either of the form
TT or of the form 73.71737; or of the form 717;7;. If a FLT 73 can be
obtained from a FLT 77 by a finite number of applications of 0-or-1-rules
and PERM*, then 777, is a homomorphic image of a theorem of L. Hence,
NOID(7) is true. O

There is no natural interpretation of one-premiss natural deduction sys-
tems L' or K' in terms of operations on FLTs, for there are theorems of
these systems that cannot be obtained by performing such operations only.
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