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DISCRETE METHODS FOR VISUALIZING
FRACTAL SETS

Ljubisa M. Kocié

ABSTRACT. A short summary of some known discrete visualizig models of
fractal sets is given. A new algorithm, called graphical erosional algorithimn,
for visualising fractal sets from R2 is presented. Inpnt parameters for the
algorithim are functions from a hyperbolic iterated system. Beside visualiz-

ing, this algorithm permits estimation of fractal dimension for

a set being
visunalized.

1. Introduction

The set of points from R?. defined by § = {(wi,9:),% = L s d =
L...ny, ng,n, € N} will be referred as the picture support. Let P be an
arbitrary set such that 2 < Clard(P) < ne(€ N) and ¢ : S — P be any
mapping. Then P is called scl of colors and @ is color function. Under
discrete visualization of an arbitrary set A one assumes the map ¢: A — .5,
with a given color function ¢. The triple (¢, .5, ¢) will be called a discrete
visual model of A.

Discrete visual models are im portant for processing information by com-
puter, especially when the plane set A has a complicated form, for example,
when it is a fractal set or a chaotic attractor, like those in Figure 1. Actually,
this figure illustrates orbits of (wo different dynamical systems. Namely, let
(X,d) be a metric space and [ : X — X be an arbitrary mapping. Then,
(X, f) is a dynamical system. For any 29 € X, the sequence {x;}%, such

1=0"
that z;11 = f(2;) is called the orbil of the point xg. The limit of an orbit
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FIGure 1. A) NEURAL NETWORK AS FRACTAL SET; B) PENTAGONAL CHAOTIC
ATTRACTOR OF CHOSSAT-(1OLUBITSKY MAFPPING

can be a set A in X which “attracts” an orbit, so it is called attractor of
dynamical system. In fact, Lhe attractor

A= lm =z,, AeX,

n—ox

is a fixed point of the mapping f and it does not depend on zg. Interesting
attractors usually have noninteger Hausdorf dimension, wherefrom the term
“fractal” roots its name [5].

Example 1.1. Consider the mapping f : HR?* — HR? (HX is the partitive
set of X), such that f = fi(B)U fo( B), for any B C R?, where fi and f,
are affine plane transformations defined by

@ 0.1 —0.7 i 0
g+ (y) . (0-7 0 ) (y) ! (—1) ’
@ —-0.3863  0.1562 B 0.4
(1.1) ﬁ"(y)'* (—035&: —uumw) (y)*'(OA)
The attractor A of the dynamical system (HR?, f) has the form of a neural

cell (see Figure 5). By simple affine transformations of A the model of neural
network, a fragment of nenral tissue, displayed in Figure 1-A), is obtained.

Example 1.2. Let C be a complex plane and f : C — C be a mapping
given by

(L2 flz)=2(2" + 427 +2° - 26)+ 2 .
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The orbit of the point zy = 0 tends to the attractor of dynamical sys-

tem (G, f) shown in Figure 1-3). The mapping (1.2) is known as Chossat-
Golubitsky formula [3], [6].

In these examples, two different algorithmuis are used for creating visual
models of corresponding attractors. In both of them, the formula (1.1) or
(1.2) are treated like continued expressions,
earlier or later, they are rounded off and the discrete values are used for
creating visual model. In the next section, several methods that uses discrete
tools for creating fractal visnal models,

but in computer enviroment,

2. Discrete fractal structures

Hausdorf dimension is the most Important number connected with a frac-
tal attractor. It offers an estimation how “dense” this attractor occupies the

metric space in which it is imm erged. For an arbitrary A C X, the “Hausdorf
dimension* is defined by

Dp(A)y = inf {p},

u(A,p)=0

where, for p € R, p — (A, p) is the Hausdorff p-dimensional measure of A

+ o
w(A,p) = sup{inf{z | K7} .
£30

i=0

I[nfimum is taken over all c-covers A = {K;}te

i=p of A. In the above formula,
| K| stands for the diameter of I; Cc X.

Example 2.1. Let consider the Pascal’s triangle of binomoal coefficients
[8]. Select these elements P i = (I) for which p,, ; mod 2 = 1 to obtain the
set A. Choose the set of colors > = {white, black}, and map A in the picture
support § by replacing each element of A by a black point (see Figure 2).
The visual model of A recognizes as a famous Sierpinski triangle. As it is
shown in [8], Hausdorf dimension of A is Dy = log, 3 = 1.58496... which is
known to be the dimension of Sierpinski triangle [5]

Example 2.2. Many biological object possesses typical fractal properties.
One of them, the neural tisue, is mentioned in Figure 1. Another one is the
DNA chain, very important natural pattern that conways genetic informa-
tion. DNA has a form of a double helix being composed of two strands that
bind together by a specific hase- pairing rule. Adenine (A) always pairs with

*Also known as Hausdorf-Besiconiteh or geometric dimension
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FI1GURE 2. BINOMIAL COEFFITIENTS MOD 2 FORM THE SIERPINSKI TRIANGLE

thymine (T) whilst cylosine (C') always pairs with guanine (G), like in this
fragment

- AACT GG GAT AT ATTTO GGG -
NS N A N A A A Y A A I I
- T T G ACCCT AT AT AAACCC -

Each DNA strand can be connected with a Brownian motion path as
follows: the pair AT corresponds to a particle being moved forward the x-
axis for a given step. TA combination moves the particle in the oposite sense
for the same step. CG and GC pair moves the particle along the y-axis or in
the opposite direction. Alternation AC or CA with GT or TG directs along
the [(0,0)(1,1)] vector and the contrary, while AG/GA followed by CT/TC
moves the particle along [(0,0)(—1, —1)] or back.

Experiments, done by authors of [2], show that amino-bases of DNA,
taken from GenBank has Dy = 1.631 £ 0.137 which is significantly lower
than Hausdorf dimension of the curve being a trajectory of a Brownian
motion, which is Dy = 2. Figure 3 shows the path of Brownian motion (A)
and the pseudorandom walks of two DNA (B) and (C).
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FIGURE 3. A) BROWNIAN MOTION, Hp = 2; B), DIMER OPSIN GENE, Dg ~
1.744; ¢) ALPHA-1-GLYCOPROTEIN, Dy = 1.671°

Example 2.3. Another discrete method for visualizing fractal sets is con-
nected with tilling-patterns. Again start with genetic sequence of DNA taken
from the human immunodeficiency virus type 1 (AIDS), and associate the
Escherian* tile pattern shown in Figure 4-A) (above) in different orienta-
tion, depending on the letter A, T,C or (3 in the strand. An Escher-like tile
is obtained (Fig. 4-A) bellow). Number of closed diamonds in the pattern,
divided by the number of tiles, so called digmond fraction, characterize the
randomnes of the data. If this fraction is about 0.05, the data are randomly
distributed. Correlation appears if the fraction tends to zero.

Another type of patern, shown in Figure 4-B) is called Truchet patern,
after Sebastian Truchet that studied such patterns in his paper from 1704.
Diamond fraction is now replaced by the dumbell fraction which makes about
0.0125 for the random data. Increasind diagonal trend in the pattern reveals
increasing correlation of the data. For more details see [6].

3. Graphical erosional algorithm

One of the most suitable wavs to define and produce fractal sets is by (hy-
perbolic) Iterative Function System (IFS). This is a collection of contractive
maps (f1,..., fn) that act in a metric space (X, d),i.e. W = {X, f1,... o Jic'¥e
The Lipschitz factor of W is s = max;{s;}, where s; is the contractive factor
of fi. Then, there exists a unique attractor A such that 4 — F(A), where
F'= UL, fi, the assertion known as the Hutchinson theorem. In other words,
A € HX is a fixed point for the dynamical system (X, F).

*after Mauritus Cornelis Escher ('I898—1!171), duch artist
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FIGURE 4. A) ESCHER-TILE OF RANDOM DATA {ESCHERGRAM); B) TRUCHET-
TILE OF RANDOM DATA

According to the literature ([4]), there are five different algorithms for
calculating (and therefore for visualizing) fractal attractors in (R?,d).

Algorithm A. Based on the ITutchinson theorem, this algorithm starts with
an arbitrary closed subset B from R? and transforms it by F. More precisely,
a) initialize By € H(R?Y,
b) caleulate Bypy1 = Ui f( Bi) i k=01 0y
¢) apply a discrete visualizalion & : By, — B3.
Repeat b) and ¢) until h( B}, B, ) <é, where h is Hausdor[f metric and ¢
is the minimal distance between points in the picture support (picture norm).
Good results are gain by choose By to be a singleton, typically a fived point

of one of contractions f; from [FS.

Algorithm B (Barnsley, Demko). This algorithm uses a sequence of inde-
pendent random variables {w;}ien, such that pr{w; = f;) > 0 for any j and
1 = Ly

a) Choose ro € R?,

b) calculate v, = pleg-1), k=0,1,...,

c¢) map each Ty onto the piclure support.
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Repeat b) and c) until the Hausdor[f distance between two consecutive
pictures become smaller than the picture norm.

The following three algorithms are given by Dubuc and Elgortobi [4].

Algorithm C (Based on Williams formula). Let W* be the set of all finite
compositions of functions of W. Let for g € W=, Fiz(g) denotes the fized
point of g. Williams in [7] has shown that the closure of Ugew« Fiz(g) is
invariant and there is no other closed bounded invariant sets for F.

Let ¢ > 0 and W{e) be a family of contractions. A function g is in W(e)
if there is a finite sequence of functions of W, fi, fay..., fu, such that:

(1) g is the composition f; 0 0.0 fn and the Lipschitz constant of ]
is < g,

(2) If ¥ < n, then the Lipschitz constant of fj o0 f is larger than e.

Then the set B = {Fiz(g): g € W(e)} is an approximation of A.

Algorithm D. This is a vaviant of the Algorithm C. The attractor A is

approzimated by B = {ho R o g(z), h e W(e)}, where R is a rounding map
of the metric space X. ¢

Algorithm E (Graphical algorithm). Let § be a positive real number, and
M(6) be a subset of X such that

(a) for any = in X, d(x, M(8)) < ¢;

(b) in any ball of X, there is just a Jinite number of points of M(§).

Let B,, and C,, are two sequences of subsets of X forn =0, 1,.... Then,

(1) A point z is choosen in (/,; .

(2) A temporary set T is wmistially empty. A loop over W is done, such
that for each f € W for which d(f(x),B, NT) > 6§, one chooses a point
a' € M(6), such that d(f(z),2') < &, and is added to T.

(3) Bng1 = By UT and Cyy = € UT\{z}.

Probably the most important quantity connected with the fractal set is
its dimension. There are many definitions of dimensions, but the way of
calculating them may be an awquard question. The most popular method
for experimental estimating the fractal dimension of an attractor in R? is
the box-counting method, which is based on the following theorem [1]:

Theorem 1 (Box Counting Theorem). Let A € H(R?), and Euclidean
metric is used. Tile the plane R* by the square uniform mesh with the step

27", Let N (A) denote the number of boxes from the mesh that intersect the
attractor, If

: W In N, (A4)
(21) DH— 1m {T(‘Z"'-j_} 3
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FIGURE 5. A "NEURAL ¢'ELL” AND THE BOX COUNTING METHOD

exists, then A has fractal dimension™ Dy,

The graphical erosional algorithin which will be described bellow, gives
succesive approximations of fractal sets in R and calculates an approxima-
tion of its fractal dimension at same time.

Actually, let M,, be a uniform mesh as described in Theorem 1. Note
that the scale plays no role in calculating Dy from (2.1). So, for a unit
of measure one can take the side of a square that "nicely” framed the set
A. Figure 5 shows a fractal atfractor that resembles to the neural cell. It
is framed by an apropriate square My with the side lenght 1. It is divided
into four subsquares which correspouds to the net My (the upper left square
in Figure 5). The process continues for n = 3,4,5,6. Let K,(A) denotes
2-"_cover of A. The following algorithin produces sets J,,(A) and calculate
the fractal dimension at the same time.

Graphical Erosional Algorithm (GEA). Let n € N. The set of nodal
points {(1/2%,7/2")} from R* determines the standard orthogonl net M,.
Let AT; be a cell of My, i.c. the sel of points (z, y) such that i/2" < x <

*also called box dimension
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n=4, N(4)=72 i n=5, N(4)=187 n=6, N(4)=522

n=7, N(A)=1377 n=8, N(A)=3743  n=9, N(4)=14928

FIGURE 6. Grararican ErosSIONAL ALGORITHM
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(i+1)/2" and j/2" <y < (j+1)/2". Let S € R be the picture support with
the norm 6(5) = max{d(x; ziy1), d(y;,yj41)}, and P = {black, white} be
the set of colors. For any [FS, say W = {R, fi,... , fm} with the attractor
A, the sequence of eolor functions ¢, + A — S is associated with the net M,
according to the following steps:

(1) Initialize n = 1 and R — {white};

(2) Produce the point pi = (wy,yx) by the Barnsley-Demko algorithm;

(3) If px € AV, then K, = 5 N AL, — {black};

(4) Count the number Ni(A) of A-cells in Ky,

(5) n —mn+1. If6(5)> 27" then go to (1), otherwise go to (6).

(6) Caleulate an approzimation value of Dy, given by (2.1), by fitting the
data {(In(2"),In N,,(A))} by a least-squaré affine function. The coefficient
of the linear term is Dy. Dy = tan .

This algorithm is illustrated in Figure 6 with A being a neural cell from
Fig. 5. Note that the ’black’ set, K., generated in step 3-approximates
2.,-covers of A. The number of black squares is, denoted by N(A).

Then the following theorem supports the algorithm:

B
-

+ [Fim = 1.20231300853128 . .| { [oin = 1.14674950740448.. .

-~

Lo HntA Y
Ln NnthA>

n_max=>6

m Ln2

Dim = 1.41028524014706. . .]

Ln Mn{A?

n_max=9

n Ln2 Dim=1.4102...

FIGURE &. DIMENSION "BY HANDS' AND BY GEA
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Theorem 2. If §(5) — 0 and n — oc, then the sequence {K )%, gener-
ated by the GEA converges to .\, in Hausdorff metric.

Proof. Denote the Hausdorff distance between two sets X and Y from R?

by A(X,Y). Suppose that this metric is induced by the Euclidean metric in
R2. It is obvious that

(3.1) hS. A) < ?5(5) .

Let 7y = (24, yx) be the point produced by the Algorithm B. If 7, € AL,
then the cell Al becomes a part of K,(A). As h(r, Al < V227" then

(3.2) h(K,(A),A) <273

3

As by definition, f(,;(A} = K,(A)N .S, then by (3.1) and (3.2)

M, (A), ) < «?(‘2-”“ +6(8)) .

Thus, if n — oo and §(5) — 0 then h(ﬁ',“('/l),A) — 0, in Hausdorff metric.
Note that the proof holds if tle Euclidean metric is replaced by any other
metric in R2.

Calculation of fractal dirr.1e1mit31'1 follows from Theorem 1.

Since the algorithm constructs succesive 1/2%-covers of A, it resembles the
process of erosion, which suggests the name. Algorithm is tested through
several examples. Here, the results of applying GEA on Sierpinski triangle
fractal attractor is shown in Iigure 7. The estimated fractal dimension is
1.5817... which approximates the true dimension 1.58496... with accuracy
1072, which is a good resull for PC computer where n can not exceed 9.

Fractal dimension of the "neural cell” is estimated to be 1.4102.... The
data and the fitting line are shown in Pigure 8 (left-bellow). Comparing
with box-counting performed “hy hands” for n <6 and n < 7 (same figure,
above), the data produced by ({EA are much more regularly placed along
the line. Note that accuracy fails for n = 7 due to the weakness of the hwnan
eye.

The GEA has one more advantage. It can be used for the rough estimation
of the fractal attractor’s shape. its dimensions and location in R2.
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