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AUTOMATIC THEOREM PROVING IN FIELD THEORY
USING QUANTIFIER ELIMINATION

\

Aleksandar Jovanovié¢ and Zarko Mijajlovié

ABSTRACT. In this paper we describe a new method of elimination of quan-
tifiers for the theories of algebraically closed fields and theory of ordered real
closed fields which may be used for the theorem provers for these theories.
The method is bised on the properties of resultants of polynomials.

1. Introduction

One could say that mathematics was introduced in logic by Tarski and
Godel while for Abraham Robinson and A. Malcev could be said that they
introduced logic in mathematics. Namely, today probably most important
applications of logic in other parts of nathematics (nonstandard analysis and
model-theoretic algebra) originate in work of A. Robinson. First contribu-
tions of this kind in algebra were given by A. Malcev in 1936. The Robinson’s
solution of Seventeenth Hilbert problem by methods of mathematical logic,
more precisely methods of model theory, represents an important contribu-
tion to the model-theoretic algebra. The solution is based on the method
of elimination of quantifiers and notion of model completeness, the model-
theoretic version of the elimination of quantifiers. Beside, this notion can be
understood as a traunsfer principle, which is of significant importance for the
applications in algebra. ’

Definition 1. A theory 7" in the first order predicate calculus admits elim-
ination of quantifiers if for every formula ¢ or T there is a formula 4 in the
language of 7', without quantifiers such that: T F ¢ & .

Let us remind that the following theorem is basic for the model theoretic
solution of the seventeenth Hilbert’s problem.

We wish to thank to Professor Albert Dragalin for useful comments and remarks.
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Theorem 1. (A. Tarski, 1948) Theory of ordered real closed fields admits
elimination of quantifiers.

Theories which admit the elimination of quantifiers have this interesting
property: .
Every theory which admits climinations of quantifiers is model complete.
In order to explain this notion, suppose that T' is any first order theory
in the language L. Let A and B be any models (i.e. operational-relational
structures) of L. Model A is an elementary submodel of model B, or B is
an elementary extension of A if the following conditions are satisfied.
1. A is a submodel of B.
2. For every formula (%) of L and every @ € A,

A |= ¢(a) il and only if B = ¢(a).
The fact that A is an elementary submodel of B we denote by A<B.

Definition 2. Theory T is model complete iff for any two models A and B
of theory T if A is a submodel of B then A is an elementary submodel of

B.

2. Quantifier elimination for the
theory of algebraically closed fields

The axioms of the theory of algebraically closed fields are the axioms for
fields and the following set of formulas, expressing that every polynomial
of degree > 1 has a root. Let T be the field theory and T™* the theory of
algebraically closed fields. [or example, the fields of complex numbers and
algebraic numbers are models of the theory T*.

Examples of quantifier elimination for theory 7* are known for long time
in classical algebra. One of the best known, which will be used here is the
Resultant Theorem.

Definition 3. Let a(z) = Zégm a;z’, b(z) = angn 27 be complex polyno-
mials. The resultant of polynomials ¢ and b is the determinant

oy @1 ... @y 0 ... 0

0 a a ... a, ... 0

N 0 ke ap aq . gy
Res(a,0) =y 4. b, 0 ... 0
0 by by ... b, ... 0

0 by Iy by
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Hence, Res(a,b) is the m + n-degree determinant, where m and n are the
degrees of polynomials @ and b respectively. The main property of resultant
is given in the following theorem.

Theorem 2. The complex polynomials a and b have a common root in the
field of complex numbers C iff Res(a,b) = 0.

In other words, if @ and b are polynomials of degrees m and n respectively,
then

(1) (Fz)(a(x) =0 A b(z) = 0) & Res(a,b) =0

The resultant of two polynomials in any field can be defined in the same
way, thus within the theory 7.

Let a(Z) = Y + Y12 + ...+ o™, b)) = 2, + 2ngz + ... + Zpa™
be polynomials, where ¥, ..., 9, 20,..., 2z, are variables. Define polyno-
mials ag(z) = a(z), a1(2) = Yy + ... 2™, @y (%) = Yy, and similarly
polynomials b;(x). Then, by Theorem 2, we have

(Fz)(a(z) =0 Ab(2) =0) &
\/ (deg(ai) =m —iAdeg(bj) =n—jA Res(a;, b;) = O) %

i< m
i<n

/\('_.’}.,5 =0A 2y = 0) i=4
(2) . i

V(yOZD/\.../\j{}i_J :O/\yi#OAZU:U/\.../\Zj_lz()/\

i_<nt
j<n
zj # 0 A Res(ai, bj) = 0) v \(i = 0A 2 = 0).
(2%}

Consider other two simple quantifier elimination cases. Since every al-
gebraically closed field is infinite (roots of the polynomial (z — zo)(z —
z1)...(2 — 2, )+ 1 are different from g, . .. , &y ), for the polynomial a(z) =
> vzt we have

(3) (Fo)(a(z) #0) & 90 0V ... Vy, #0.
Now, let us show that quantifier elimination for the formula
(4) (Ja)(a(a)=0Ab(x) £ 0).

is reduced to the case (2). First note that b(z) # 0 < (Jy)(yb(z) — 1 = 0)
and- that y is a factor of every member of the polynomial yb(z) — 1, except
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in the free member. If we select the variable y so it is not a variable of the
formula a(z) = 0 A b(2) # 0, then

(dz)(a(z) = 0AD(x) # 0) & (Fy)(Fz)a(z) = 0./\ yb(z) —1=0).

By (2), formula (Ja)(a(x) = 0 A yb(z) — 1 = 0) is equivalent to the
disjunction @y V...V ¢y, which is quantifier free, and each of the formulas
@i, J < k is of the form

Yo=0A...Ayici =0AYy #0Ay; Z0A 200 =0A ... Azj_1y = 0A
ij?é[]/\ﬁph(ﬂ”b’j) = 0.

for a polynomial b"j. Since Ju:V;p; & V;dww is a valid formula, it is sufficient
to eliminate quantifiers of the formula dye;. Now, ohserve that the following
sentences are true in the field theory:

1° 3y(y = 0 A Y(y)) & H(0),

2° y(y=0A) & 1, il y does not oceur in 2,

P A0S 20Ny #0,

4° y(zy =0A ) < (= =0ATyp) vV Iy(y = 0 A4p), if zis a variable

different from y.

Therefore, it will suffice to eliminate existential quantifier of the formula

(3y)(y # 0 A Res(a;, b3) = 0),

I,
J

ie. forinulq of the form (Jy)(y # 0 Am(y) = 0) where m(y) is a polynomial.
Let m(y) =mo+mq + ...+ myy®. Then the following is obvious.

Fy)y#0Am(y)=0) & \/(mi #0Am; #0).

i<

Now we consider the general case of quantifier elimination in the theory
T*. Let ¢ be any formula of the theory T'. It is equivalent to a formula

(Qrz1) ... (Quy )
in the prenex normal form, where 2 is quantifier free. Using the equivalence
(Va)a(z) & ~(3a)~alx),

and the fact that the quantifier elimination for —¢ is done in the same way
as for ¢, we may assume that (), is the existential quantifier.
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Further, by the theorew on the disjunctive normal form, there are formu-
las 91, ..., 1y such that o < 4 V...Vih, and each formula #; is a conjunc-
tion of formulas of the form u = 0, v # 0, since every algebraic expression
of T is equal to a polynomial. Since v; #0A ... v # 0 & vy .. .0, #0
we may suppose that every disjunct 1 is of the form

ar =0A ... Aday, =0A04#0.

Using (valid formula) (32:) \/; v; < \/,(32)1; it follows that it is sufficient
to eliminate quantifiers for forinulas of the form

(5) (Ja)as = 0A .. (Lm_[)/\b#())

Let us denote by # the [ormula (5). Now we describe the recursive pro-
cedure of the quantifier elimination for 6. Let A;a™ be the highest degree
member of the polynomial «;(2), i =1,...,m, and let ng = m+ 3. n;. We
shall determine the formulas 6 and 6, 0’[ thP [01111 {5) such that § & 6, v 8,
and ng, ,ng, < ng if ng > 1 and m > 2.

First suppose that ny = 0. Then

0 a=0A(Ja)aa=0A...Aa,,, =0Ab#£D0).

S0, assume that nq > 0 and m > 1. We can also suppose that ny < n;. Let
al = Agay — Aa™ "2 qay, al = ay — A", Then

<A =0A(F2) (1 =0Aa,=0A...Aa, =0Ab#0)A
(Ae#OA ()3 =0Aaz =0A...Aa,, =0AbF#0)).

Now it is clear that for 6, we can choose the first disjunct and for €5 the
second disjunct of the right side of this equivalence. In this way, the recursive
procedure of the quantifier elimination is defined which reduces the formula
to the cases (2) and (3) whose solutions are described above.

Now, we can derive few corollaries for the theory of algebraically closed
fields T*.

1. Let ¢ be a sentence of the field theory and let ¢ be the quantifier free
formula such that T* = ¢ < 1), Then 1) is variable free. Since the language
of the field theory is {+,-,0, 1}, it is clear that for 1 we can take a Boolean
combination of formulas of the formn n = 0, where n = 14...41 (n times). If
Py 5P are all prime factors of n then T Fn=0&p =0V...Vpp =
0. Further, for a formula ¢ of T* and distinet primes p, ¢ we have:

1°T*Fp=0=q#0, 2°7T*Fp=0Vqg#0& q#0,

P T*Fp=0V(p#£O0Ae)ep=0Vep,

4° p=0A ¢ = 0 is inconsistent with 7.
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Using DNF and the above listed properties, we see that T* F ¢ < P,
where 9’ is true, false, or one of the formulas:

Pr=0Vp=0V...Vp, =0,
finite disjunction of formulas of the form ¢; # 0A g2 = 0 A .. .q =0,

where py1,p2, ..., Dk, @15 G2, - .. , @ are distinet primes. As for a prime ¢ in
any field F' of finite characteristic holds

¢#0e \/p=0,
P#Y
it follows that all complete extensions of theory T™ are the theories of the
form T, = T* U {p = 0}, p is prime, (theories of algebraically closed fields
of the characteristic p), and Ty = T* U {p; # 0,p2 # 0,p3 # 0,...}, p; are
primes, (the theory of algelraically closed fields of the characteristic 0).

2. We have just described all complete extensions of 7%, and we see that
there are countable many of them, and all of them can be listed in an effective
and uniform way. Therefore, see e.g. Theorem 2.4.15, p. 57, [Mijajlovié
1987], the theory of algebraically closed fields is decidable. Let us remind
the reader that the field theory is not decidable.

3. Real closed fields

Artin-Schreier theory of real fields is used for the solution of seventeenth
Hilbert’s problem in the algebraic way. Beside it has applications in the
other parts of mathematics, especially in algebraic geometry, as in Hilbert’s
the proof of Nullstellensatz. and nonstandard analysis. We note that every
model of nonstandard analysis is a real algebraically closed field. On the
other side, we used elements of this theory in the development of an algorithm
for quantifier elimination for the theory of ordered real closed fields.

Sturm’s algorithm

The quantifier elimination for the theory of algebraically closed fields can
be done in somewhat another way. Let F be an algebraically closed field
and let f and g be polynomials over F in the variable z. If f and ¢ have a
common root a, then the greatest common divisor of polynomials f and ¢
is of degree > 1 (since z — u divides both f and ¢). Thus

(32)(f(x) =0 A g(2) = 0) & degree GCD(f,g) > 1.

The GCD(f, g) can be found bu use of the Euclid algorithm. For given
polynomials f and g the algorithm ends in finally many steps, because its
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length depends essentially only on the degrees of f and g. Hence, we can

easily see that this algorithm is described with the quantifier free formula,
i.e. if

f=qo+ms, g=qgm+ m3, My = ¢3Ma + My,...,
(1) Mi—y = Qo1 Mi—q + My My = gy and
deg(f) > deg(g) > deg(ma) > ... > deg(m;),

then

(Fz)(f(2)=0Ag(x)=0)& f=qg+miA...A Mi—1 = mi Az # 0,

where 2 is the coefficient of the highest degree of variable  in m;. Note that
the right side of this equivalence is quantifier free. The other details of the
proof are the same as in Section 2.

The method of the quantifier elimination for the theory of ordered real
closed fields is similar to the previous procedure for algebraically closed fields.
In fact, the procedure for the ordered real closed fields can be built on

Sturm’s algorithm in the way the above described algorithm is using the
Euclid algorithin.

Sturm’s Theorem. Let p(z) be a real polynomial and let P0,P1y--- . Pr be
the sequence of real polynomials defined by:

L. po =p.
2. p1 = p', where p’ is the first derivation of p.

3. For all 4, 0 < i < r, there is a polynomial ¢ such that Wi =
Pigi — Pit1, Where p;q # 0 and deg(p;41) < deg(p;). In other words
¢ is the quotient, —p;4q is the reminder when p;_q.is divide by ;.

4. pr_1 = prgr.

Let d(a) be the number of the sign changes in the sequence pola),...,p.(a)
(zeroes are ignored). Let a and b be real numbers which are not roots of P
and let a < b. Then the number of roots of p (not counting the multiplicity
of a root) in the interval [a, b] is equal to d(a) — d(b).

Now we give an illustration of Sturm’s theorem application to the quan-

tifier elimination on the example of a formula of the theory of ordered fields. .

Applying Sturm’s theorem we get at once
(Fz)(a <z Az <bAp(z)=0)& d(a) > d(b).

Besides, similarly as for the formula (1), using Sturm’s theorem, we can
find quantifier free formulas ¢ such that d(a) > d(b) < . In this way the
quantifier is eliminated from the formula (3z)(a < z < b A p(z) = 0).
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Further reduction is obtained similarly to the procedure of algebraically
closed fields. In this reduction the following equivalence is useful:

pl:0/_\.../\3)”:D@f)f+...+pi:0

(note that this formula is not a theorem of the theory of algebraically closed
fields). :
Also, one can obtain in a similar way the following for the theary T’ of
ordered real closed fields:

1. T is complete,

2. T is decidable.

4. Programming implementation

A group of students under our supervision implemented a prover for the
theory of algebraically closed fields in the standard programming language
(. The program is based on the procedures described in Section 2. It is
running well on personal computers quickly solving problems stated in the
language of the field theory. The input formula is proved or refuted by
reducing it to a quantifier free formula.

The processing of sentences with more than a few quantifiers would be
greatly accelerated with the introduction of fast calculators for long and
very long disjunctive normal forms, and fast DNF transformers, which are
suitable for parallelisation.

The prover for ordered real closed fields based on Sturm’s theorem is being
integrated. The plan is to optinize, accelerate and collect these procedures
in one Elementary Mathematics problem solver, which might be expanded
to other applications as well.

Let us mention just one possible application, namely we can apply the
method of elimination of quantifiers in mathematical programming. Pro-
gramming problem with algebraic constraints in several variables zq,... ,z,

f —= min;, pr=0,...,pe=0, @>0,...,¢0>0

where f, P1,... s Pky 1y --- , ¢ are polynomials in variables z1,...,z,, with
rational coeflicients, is easily stated in the theory of ordered fields as follows:

Ty 5+ Fall = J(Br e 5 Bl

p1($1,..; s Bl =008 oo N Bl . - 80) = 0N
(@1, 580) > 0A oA G(R1, ..., 20) > 0)A
Vaor...an(pi(@r, ..., 20) = 0A . A (1, .00 20 ) = OA

@21y oo s Z0) > 0A A (21,00 2) > 0=
Y < fl@r,..20)))
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Eliminating quantifiers from the above formula, we obtain a formula P(y)
of the theory of ordered fields in the single variable y. This formula is a
finite disjunction of the formulas of the form y > r, y < r, y = r, where
7 is a rational number. Obviously this is a solution of the above stated
mathematical programming problem. Observe that we, in fact, proved that
problem of finding of solutions of mathematical programming problems with
polynomial constraints is decidable.

5. Bibliographical and other remarks

First and most important step in the solution of the seventeenth Hilbert’s
problem was given in [Artin 1927]. Artin-Schreir theory of formally real
fields is presented in detail in [Lang 1965]. The proof of Hilbert’s basis
theorem can be found in [Artin 1955]. Solution of Hilbert’s seventeenth
problem with described methods of mathematical logic is given in [Robinson
1955]. Elimination of quantifiers in the theory of algebraically closed fields
and in the theory of ordered real closed fields with some detailed analysis
evolving from these procedures, could be found in [Kreisel, Krivine 1971].
Here presented procedure of elimination of quantifiers differs from the last
source, e.g. where we use the resultant of polynomials, in [Kreisel, Krivine
1971] one lemma which relates to divisibility of polynomials is used.

The proof of the theorem on resultant of polynomials could be found in
any book on higher algebra, for example in [Kurepa 1965].

Complete solution of Hilbert’s seventeenth problem based on Logic can
be found in [Cherlin 1976] as well.

Problem of quantifier elimination can be treated in model theory in other
way, too. In the other approach the diagrams of models, saturated models
and elementary embedding have special importance. This approach is more
complex but results are deeper, see ([Sacks 1972]).
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