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THEORY OF MULTIPLE ANTISYMMETRY

Slavik V. Jablan

ABSTRAGT. Survey of problems in theory of multiple antisymmetry, which
can be solved using antisymmetric characteristic method, is given.

0. Introduction and definitions

Originated from Speiser (1927) and realized by Weber (1929), the idea
of representing symmetry groups of bands by black-white plane diagrams
was the starting point for introducing the antisymmetry (Heesch, 1929).
The color change white-black used as the possibility for the dimensional
transition from the symmetry groups of friezes (751 to the symmetry groups
of bands (321, or from the plane groups G to the layer groups (s, applied
on Fedorov space groups (v5 in order to derive the hyperlayer symmetry
groups (43 (Heesch, 1930) was the beginning of the theory of antisymmetry.
The further development of the theory of antisymmetry can be followed
through the works by Shubnikov, Belov and Zamorzaev [1].

Its natural generalization, the multiple antisymmetry is suggested by
Shubnikov (1945) and introduced by Zamorzaev (1957). Three months later,
the different concept of the multiple antisymmetry is proposed by Mackay.
During the next 30 years, mostly by the contribution of Kishinev school

(Zamorzaev, Palistrant, Galyarskij...) the theory of multiple antisymmetry .

has become an integral part of mathematical crystallography and acquired
the status of a complete theory extended to all categories of isometric symme-
try groups of the space £™ (n < 3), different kinds of non-isometric symine-
try groups (of similarity symmetry, conformal symmetry...) and P-symmetry
groups [1,2,3,4]. On the other hand, investigation of Mackay approach to the
multiple antisymmetry was not continued.
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Let the discrete symmetry group (7 with a set of generators {S51,...,9,}
be given by presentation [5] :

gfn.(S'la-" a‘gr‘).: E, n= Lw

and let e7,...,¢ be antiidentities of the first,...,/th kind, satisfying the re-
lations

e =ese; € =B ¢8;= 8¢, Li=1l ¢=T17 (1).

The group consisting of transformations 5" = €', where ¢’ is the identity,
antiidentity, or some product of antiidentities, is caled the (multiple) an-
tisymmetry group. In particular, for [ = ¢ = 5 = 1 we have the simple
antisymmetry. From the point of view of the mathematical logic or discrete
mathematics the system of antiidentities can be considered as [-dimensional
Boolean space.

The groups of simple and multiple antisyminetry can be derived by Shub-
nikov-Zamorzaev method: by replacing the generators of G by antigenerators
of one or several independent patterns of antisymmetry. Having in mind the
theorem on dividing all groups of simple and multiple antisymmetry into
groups of C* (1 < k <), C*M™ (1 < kyin;k+m <l)and M™ (1 <m <)
types, and the derivation of the groups of C'* and C'*M™ types directly from
the generating group ' and from the groups of M™-type respectively, the
only non-trivial problem is the derivation of the M™-type groups [1].

In this paper we will consider only the junior multiple antisymmetry
groups of the M m_type, L.e. the multiple antisymmetry groups isomorphic
with their generating symmetry group, that possess the independent system
of antisymmetries. '

Every junior multiple antisymmetry group G’ of the M™-type can be
(uniquely) defined by the extended group/subgroup symbol

(;/(Hl, 5H7?L)/H1

where & is the generating group, H; its subgroups of the index 2 satisfying
the relationships G/H; ~ Cy = {e;} (1 £ ¢ < m), and H the subgroup of G
of the index 2™, the symmetry subgroup of G' (G/H =~ CJ* = {e1} X ... X
{em})-

For the equality of multiple antisymmetry groups can be used three dif-
ferent criteria:

(1) ”strong” equality criterion according to which the antiidentities e; are
noneq uivalent. Consequently, in the symbol G/(Hq,..., H,,)/H the order
of the subgroups Hiy,..., H,, is important. In the sense of interpretation,
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this means that the bivalent changes ¢; are physically different (nonequiva-
lent) (e.g. (white black), (+ -), (5 N), (0 1)...);

(2) "middle” equality criterion, where all e; are treated as the equivalent
ones (i.e. permutable), so the order of the subgroups mentioned it is not
important; (3) "weak” equality criterion (7/H.

Using the "strong” equality criterion, as the result we have Zamorzaev
groups ( Z-groups), and using the "middle” Mackay (or compound) multiple

antisymmetry groups (M-groups) [6]. In this paper the consideration is
restricted on Z-groups.

Theorem 1. (THE EXISTENTIAL CRITERION FOR M™-TYPE GROUPS) A
Z-group G’ will be of the M™-lype
(a) if all the relations (1) remain satisfied after replacing the generators
. by antigenerators; and
(b) if G' exausts all the antisymmetry patterns, for fized m.

For the derivation of Z-groups very efficiently used is the antisymmetric
characteristic method [7,8,9].

Definition 1. Let all products of the generators of (7, within which ev-
ery generator participates once at the most, be formed and then subsets of
transformations that are equivalent in the sense of symmetry with regard
to the symmetry group G be separated. The resulting system is called the
antisymmetric characteristic of group (¢ (AC(G)).

The most of AC' permit the reduction, i.e. a transformation into the
simplest form; e.g., the AC' of the plane symmetry group pm given by the
presentation [5]

{X,)Y,R} XY =YX R*=(RX?®)=FE RY=YR

is {R, RX {Y {RY, RXY H{X H{XY} and its reduced AC' is {R, RXHY}.

Definition 2. Two or more Z-groups belong to a family iff they are derived
from the same symmetry group .

Theorem 2. Two Z-groups (/) and Gy of the M™ -type for m fized, with
common generating group (i, are equal iff they possess equal AC.

Every AC((F) completely defines the series N..(G), where by N,,(G) is
respectively denoted the number of Z-groups of the M™-type derived from
G, for m fixed (1 < m < 1). For example, Ni(pm)= 5, Ny(pm)= 24,
Ni(pm)= 84.
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Theorem 3. Symmetry groups that possess isomorphic AC generate the
same number of Z-groups of the M -type for every fired m (1 < m < 1),
which correspond to each other with regurd to structure.

Corolary. The derivation of all Z-groups of the M ™ -type can be completely
reduced to the construction of all non-isomorphic AC' and the derivation of
the corresponding groups of the M™-type from these AC.

According to Theorem 3, it is possible to identify every AC with the
corresponding isomorphic algebraic term, a representative of the equivalency
class which consists of all isomorphic AC'. For example, it is possible to
identify AC'(pm)= {R, RX }{Y} with the term {4, B}{C}.

1. The derivation of (P,l)-symmetry
groups from P-symmetry groups using AC

Let GF be a junior group of P-symmetry derived from ¢ [3]. By replacing
in Definition 1 the term "transformations that are equivalent with respect to
symmetry” with a more general notion ”transformations that are equivalent
with respect to P-symmetry”, the transition from G to GF induces the
transition from AC((7) to AC((GP), which makes possible the derivation of
groups of (P, 1)-symmetry of the M™-type using the metod of AC'.

The said can be illustrated by the example of derivation of groups G;A
from groups G4: {a,b®}(m) and {a®), 5 }(m).

In the first case, in the transition from G =pm to G* = {a,b}(m)
AC remains unchanged. In the second case, in the transition from G =pm

to G* = {al®, 6™} (m), the equivalency of symmetry transformations is

disturbed and the term {m,ma®}{b(} is transformed into a new ACY

{m}{ma}{b}. In accordance with the facts already mentioned, we have
{a, b} (m) AC: {m,ma}{b} ~ {A,BHC} N1 =5 Ny =24 N3y=384
{a® pM}(m) AC : {m}{ma}{b} ~ {AHB}HC} Ni =17 Ny=42 N3 =168.

The given numbers N, denote the number of groups of the M™-type of
the uncomplete (4,1)-symmetry. In a general case, besides the numbers N,
for p-even, we can discuss also the numbers (N,,—1) (1 < m <), where by
(Nin—1) is denoted the number of groups of the complete (p,!)-symmetry of
the M™-type. For p-odd, the relationsip N,,, = (/N,,) holds, and for p-even

(N} =Ny — (2" = 1) (N, — 1), (No)=1, 1<m<L

One of the most important results obtained using the mentioned method,
is the derivation of the groups 57 from the groups G5 (p = 3,4,6, P =~ C})
[10] and calculation of the numbers N,, and (N, -1):

Ny = 4840 Ny = 40996 N3 = 453881 N4 = 5706960 Ny = 59996160
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(N1) = 4134 (N3) = 29731 (N3) = 260114 (N4) = 2048760 (Ns) = 1249920

By the same method, the crystallographic (p2,1)- and (p',1)-symmetry
groups are derived from the P-symmetry groups (¥§2 and Gg" (pi=: 3,4:6,
P~ D,,”Dn(z.,,,)) [11,12]

The derivation of (P,!)-symmetry groups of the M™-type from P-sym-

metry groups using the AC-method can be reduced to a series of successive
transitions

0 e (;P g (TrP,l B (_';P,I

and induced transitions
AC(G) = AC(GP) = AC(GPY) o L s AC(GPY.

Every induced AC' consists of the same number of generators. Since every
transition GPF-1 s Pk (1 <k < 1), is a derivation of simple antisym-
metry groups using AC((Z7#~1), for derivation of all multiple antisymmetry
groups, the catalogue of all non-isomorphic AC' formed by ! generators and

simple fantisymmetry groups derived by these AC', is completely sufficient.

3. Reduction of multiple antisymmetry simple antisymmetry

The basis of this reduction is the idea already mentioned about the tran-
sition G — GT and induced transition AC(G) = AC(GF), where AC(G)
and AC(GT) consist of the same number of generators. This means that
every step in the derivation of multiple antisymmetry groups

~+1

" 9 - o
N €A o L st I .1 N iy o
b

i.e. the transition G*1 — Gk (1 < k < 1), is a derivation of simple
antisymmetry groups using AC(G*=1), followed by the induced transition
AC(G*1) s ACTGF), (1 € B £1—1). ANl the AC of induced sefies consist
of the same number of generators.

The said can be illustrated by the example of derivation of multiple anti-
symmetry groups from the plane symmetry group pm:

pm  {a,b}(m) AC:{m,ma}{b} ~ {A, B}{C}.
For m = 1 five groups of simple antisymmetry of the M!-type are obtained:

(A, BY{C)

{E,E}er} = {A, BYC}.

{61361}{5} = {A': B} {('}

{51161}{61} — {4, BH{C}

{B, e HE} — {AJ{BHC)

{E,e1}{ex} — {AHBHC).
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In the first three cases A(' remains unchanged, but in two other cases AC
is transformed into the new AC' : {A}{B}{C}. To continue the derivation of
multiple antisymmetry grups of the M™-type from the symmetry group pm,
only the derivation of simple antisymmetry groups from AC : {AH{BHC}
is indispensable. This AC' is trivial and gives seven groups of simple an-
tisymmetry. If AC' : {A, B}{C} is denoted by 3.2 and AC : {AH{BHC}
by 3.1, then the result obtained can be denoted in a symbolic form by
3.2 — 2(3.1) 4+ 3(3.2). Then we have

Nl(pm): N](g32): B ;V](‘}l]:’r

No(pm)= N3(3.2) = 2N(3.1) + 3N(3.2) = 5-1 =

= 2Ny (3.1) — 1)+ 3(N1(3.2) — 1) = 26+ 34 =

= 2N1(3.1) + 3N1(3.2) — N1(3.2) = 2N1(3.1) + 2N,(3.2) = 24.

The meaning of every step in the mentioned computation is:

1) substructron of the number N1(3.2), i.e. of the five groups of uncom-

_plete multiple antisymmetry of the 2M-type;

2) every group of the M*-type gives exactly one of these 2 -type groups,
so we obtain 26 + 34 groups of complete multiple antisymmetry of the M?2-
type [5,8,10]. This step contains also essential data for the calculation of the
number N3: 6 groups mentioned possess AC' 3.1, two of 4 groups mentioned
possess AC' 3.1 and two AC' 3.1. Among five groups of uncomplete multiple
antisymmetry of the 2M-type there are three groups with AC' 3.2 and two
with AC 3.1;

3) by substitution 5 = N{(3.2) we obtain Ny(3.2) expressed by N1(3.1)
and N1(3.2),i.e. 2N1(3.1)+2N,(3.2). The sum of coeflicients corresponding
to the numbers Ny in the last line gives No(pm)= 24.

Na(pm)= N3(3.2) = 2-6N1(3.1) + 3 (2N1(3.1) + 2N1(3.2)) — 24 - 3 =

= 18N1(3.1) 4+ 6N1(3.2) — 24 -3 = I8(N1(3.1) — 3) + 6(N1(3.2) —3) =

= 184+ 62 = 18N1(3.1) + 6N1(3.2) — 3(2N1(3.1) + 2N1(3.2)) =

= 12N;(3.1) = 84 (N(3.2)) = 12.

Consequently, the method proposed makes possible complete reduction
of the theory of multiple antisymmetry to the theory of simple antisymme-
try. This refers not only to the possibility of computation of the numbers
N, and (N,,_1), but also to the possibility of applying the method of par-
tial cataloguation of multiple antisymmetry groups of the M™-type [8]. If
we take the advantage of the suggested reduction, the use of this method
is considerably simplified and demands only the catalogues of the simple
antisymmetry groups of the M'-type obtained from non-isomorphic AC.

4. Non-isomorphic AC formed by 1 < I < 4 generators

As it is shown in §3 the theory of multiple antisymmetry can be reduced
to the theory of simple antisymmetry. For that it is necessary to know all
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non-isomorphic AC' formed by [ generators. Non-isomorphic antisymmetry
characteristics formed by 1 <1 < 4 generators are investigated in [9]. As
the result of their study, the catalogue of that AC’ formed by 1 < | < 4
generators, and the tables of the corresponding nmnbers N,,;, are obtained.
The completness of this catalogue is proved for [ < 2, but for [ > 3, hav-
ing in mind a great number of possible cases which we must consider, the
completness is not proved, and there is a possibility that some AC are not
included into the catalogue.

In this catalogue for every AC' is given a list of corresponding simple
antisymmetry groups of the M!-type, connections between AC in the case
of transition from m = 1 to m = 2 and tables of the numbers N,,. The
notation used and the method for obtaining results are the same as in the
example of the syminetry group pm given in §3. In AC' by parenthesis (
) is denoted the obligation of cyclic permutation of appertaining elements,
by [ ] the obligation of simultaneous commutation of elements; the elements
in // parenthesis remain fixed on their places. AC' obtained in all previous
studies of the theory of simple and multiple antisymmetry for 1 <1 < 4 are
included in this catalogue. The list is the following;:

=il
1.1 {A}.

l=2

31 {AHB):
2.2 {A, B},

2.3 {A, B, AB}.

=3

3.1 {AHBHC);

3.2 {A, BY{C};

3.3 (A, B,C,AB, AC, BC, ABCT);
3.4 {A, BHC, ABC};

.50, B

3.6 (A, B, C, ABC);

3.7 {4, B, C'};

3.8 {A, B}, {C, ABC}};

3.9 {A,B,(,ABCY};

3.10 {A, B,, AB, AC!, BC, ABC'}.

=4

4.1 {AH{BHOH D)

4.2 {A, BHCHD};

1.3 ([A, B],[C, ABC],[D, ABD),[AC, BC],[AD, BD],[¢! D, ABC D),[ACD, BCD));
4.4 {A, BY{C, DY AC, BD}

4.5 {A}B,CH{D, BCD};

4.6 {A, BY{C, D};

4.7 {B, AB}HC, ACHD,AD};
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4.8 {AXB, C, D);

4.9 (/A,B/,/C,ABC{, /D, ABD/, JACD, BCD/);

4.10 {A, B,CH{ D}

4.11 {{A, B,{CA,CB}}{D, D},

4.12 {{A, B]: [(‘f) D]}1

4.13 {{B, AB},{C, AC}}{D, AD};

4.14 (A, B,C, D);

4.15 (O, A, CAY{(B,C, ABC),(BD, BC' D, ABC D)},

4.16 {{4, B}, {C, D}};

4.17 ({A, B}, {C,ABCY, {D, ABD},{AC, BC},{AD, BD}, {C'D,ABC D},
{ACD, BCDY);

4.18 {A, B, AB}Y{C, D};

4.19 {A, B, ¢, ABC}{D};

4.20 {{A, B},{C, ABC}{{D,ABD},{AC'D,BCD}};

4.21 ({A, ADY, {B, BD}, {C, (! D});

4.22 {A, B,C, D}; :

4.23 ({A, B}, {C,ABCYY{D,ABD},{AC: D, BC DY});

4.24 {{B, ABY{C, AC},{D, AD}};

4.25 {{{A, B}, {C,ABC}},{{D,ABRD},{ACD,BCD}}};

4.26 {A, B,C,ABCYD,ABD, AC'D, BC DY,

4.27 '{{A1 B}7 {(7“7 D}7 {A("1 BD}};

4.28 {{A, B},{C, ABC'},{D, ABD}, {AC'D, BCD)}};

429 {A, B,C, D, ABC, ABD, AC D, BC DY;

430 {A, B,C,D,AB, AC, A}, BC, BD,(!D, ABC, ABD, AC!D, BC D, ABCD}.

Besides all AC' found in practice during previous studies of the theory of
simple and multiple antisymmetry for | <17 < 4, in this catalogue there are
some AC which are not found hefore.

Conjecture 1. Fvery absiract algebraic term formed in accordance with
Definition [ is AC' of some symmetry group.

Most of the AC' given in this catalogue, which are not found in earlier
practice, satisfy Conjecture 1. For example, AC 4.22 corresponds to the
symmetry group mmmm of the category (G4, and AC' 4.30 corresponds to
the symmetry group P1111 of the category (4.

If Conjecture 1 is valid, AC' 4.21 and 4.22 are counter-examples of the
supposition [1, pp. 138] that equality of the first and last members of the
series N, () and N,, (") iinplies equality of the second members of these
series.

Conjecture 2. FEvery series N,, obtained from AC'; formed by | generators
is identical with some series (Np,pq1) obtained from corresponding AC 144
formed by I+ 1 generators.  °

As the examples of AC;1 and AC which satisfy the Conjecture 2 for
1 <1< 4,1t is possible to notice the pairs of AC": 2.2 and 1.1, 3.4 and 2.1,
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3.8 and 2.2, 3.9 and 2.3, 4.7 and 3.1, 4.13 and 3.2, 417 and 3.3, 4.20 and
3.4,4.21 and 3.5, 4.23 and 3.6, 4.24 and 3.7, 4.25 4nd 3.8, 4.28 and 3.9, 4.19
and 3.10.

Conjecture 3. Let AC, formed by generators Ay, Ay be given. Then
by the substitution A} = A;Ajpq, i = 1.1, can be obtained a new AC\44, such
that AC) and AC\yq satisfy Conjecture 2.

The study of particular non-isomorphic AC for [ > 4 is almost a technical
problem. However, a proof of completness of the catalogue of non-isomorphic
AC for I > 2 is immensely important and one of the aims of future studies of
the theory of simple and multiple antisymmetry must be the construction of
an algorythm, which makes possible direct derivation of all non-isomotphic
AC formed by ! generators.

In many cases, especially for AC’ with a large number of generators, for
the computing of numbers V,, it is possible to use the direct product of AC.

5. Direct product of AC

Definition 2. Let AC' and AC” with disjoint sets of generators be given.
The new AC' = AC"AC”” obtained by adding in writing AC” to AC" is called
the direct product of AC” and AC™”.

Theorem 3. Let N,,, N!, N,,” be the series of numbers defined by AC,
AC', AC” respectively. Then the relationship

N, = Z 2(’”_;")(7”_”('\'(m,m— k,m—1)N.N,,”

k41>m,
m>k (>0

holds, where

(2(’ _ 1)(21—] _ l)_”(z!—k—m-i-l _ 1)
12T —D).2- DR -DE™T-1).. . 2-1)

C{l, kym) = (

As an illustration of the AC' which satisfy Theorem 3, we are giving the
following example

AC'=22={A,B} Ni(22)=2 Ny(2.2) =3

AC? =21 ={CHD} Ni(21)=3 N3(2.1)=6

AC = {A, BH{CHD} = 4.2.
In accordance with Theorem 3,

N1(4.2) = 2:34243 = 11N5(4.2) = 3-64+3+6+3-2-643-3-34+6-2-3 = 126

N3(4.2) =28-2-64+28 -3-3+42-3.6 = 1344

N4(4.2) = 560 -3 - 6 = 10080.
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Other examples of AC' = ACAC” from the catalogue of non-isomorphic
AC for 1 <1 < 4 are 2.1 = (L.1)(1.1), 3.1 = (2.1)(1.1), 3.2 = (2.2)(L.1),
4.1 = (3.D)(1.1) = (2.1)(2.1), 42 = (3.2)(1.1), 46 = (2.2)(2.2), 4.8 =
(3.0)(1.1)54.10 =(8:7)(1-1), 4. 18 = (2.3)(2.2), 4.19 = (3.9)(L.1).

6. Tables of numbers N,

As the result we have the table survey of the numbers N,, for all noniso-
morphic AC formed by 1 <1 < 4 generators:

=1

Ny
1.1 1
(=2

Ny No

2.1 3 6
2.2 2 3
2.3 1 1
=3

Ny N N3
3.1 i 42 168
3.2 B 24 84
3.3 4 24 96
3.4 4 15 42
3.5 3 14 56
3.6 3 12 42
3T 3 10 28
3.8 3 9 21
3.9 2 4 T
3.10 1 1 1
=4

Nl N2 N3 JJV4
4.1 15 210 2520 20160
4.2 11 126 1344 10080
4.3 9 120 1440 11520
4.4 9 108 1260 10080
4.5 9 84 756 5040
4.6 8 75 T14 5040
4.7 8 63 462 2520
4.8 T T4 840 6720
4.9 L 66 672 h040
4.10 7 58 h04 3360
4.11 T 54 420 2520
4.12 6 57 630 H040
4.13 6 39 2h2 1260
4.14 5 54 630 5040
4.15 5 44 448 3360




4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

(1]
[2]

(3]
14]
(5]

[10]
[11]

[12]
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5 39 357 2520
5 36 264 1440
5 34 266 1680
5 28 168 840
5 27 147 630
4 23 154 840
4 22 147 840
4 21 126 630
4 19 98 420
4 18 84 315
4 16 63 210
3 21 210 1680
3 10 35 105
2 4 8 15

1 1 1 1
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