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SEMIGROUPS OF INTEGRAL FUNCTIONS
IN VALUED FIELDS

Ghiocel Groza

ABSTRACT. Let /i be a valued field and [K[[X]] the commutative algebra of
integral functions over A. This paper is devoted to study some semigroups
S of (IK[[X]],0), where fog is the composite function of f,g € TK[[X]]. In
the first section we define a topology vk & on K and we extend to integral
functions some notions used for polynomials (see.[5] and [6]). Here we study
some connections between the subsemigroups (5,0) of (/K[[X]],0) and the
topologies Imvg S on L. I the second section we study when a particular
subset of &' is an open set in the topology defined on K by some semigroup
of integral functions.

1. Semigroups and topologies

Let K be a field admitting a rank 1 nontrivial valuation | | (see [2] or [3]),
this is a mapping from A into € R such that for all #,y € K
i) |z|>0and |2 |=0iff 2 = 0;
i) oy |=l @ |l y |
ii) |z +y|<la|+]yl; -
iv) there exists an element z € K \ {0} such that | z |# 1.

For z,y € K, define d(x,y) =| « — y | . Thus (K,d) is a metric space and
we can, therefore, introduce the customary topological concepts into such a
space in terms of the metric.

A formal power series

0
(1) X)) =Y wX* e K[X]]
' k=0
is called an integral function over K if for every x# € K the sequence

(2) SulX) =) arX*
k=0
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is a Cauchy sequence. We denote by TK[[X]] the commutative algebra of
integral functions over . I f,¢ € I K[[X]] we consider fog € TK[[X]) the
composite function of f and g, where K is a cowpletion of K. We consider
(5,0) a semigroup of integral functions over K and we denote by

InvgS =41DcC K; f(DYc D,NYfe S}

Obviously, if & is a complete field, then (JK[[X]],¢) is a semigroup and for
every subsemigroup 5 C TA[[X}], k' € InvgS.

Proposition 1. LetKbe a valued field and let (S, 0) be a semigroup of in-
tegral functions over K. If K € Invy S, then Invi S defines a topology on
K such that K is a locally quasi-compact and locally connected topological
space. Furthermore for cvery ¢ € K there exists D, € Invg S such that D,
is the smallest open set from Invg S which contains a.

Proof. Suppose that {D;}.i € I is a family of sets from Inwvg 5. It is easily
to see that '

U D; e Invp 5 and ﬂ D; € Invy S.
i€l i€l

Thus Invg S is a topology on K. If @ € K we consider

Do= Jir@} el

FES

Then D, € Invi S and D, is the smallest open set from Invg S which con-
tains a. Since D, is a quasi-compact and connected subspace of K (see [4])
it follows that (K, InvgS) is a locally quasi-compact and locally connected
topological space. O

Remark 1. If
(Sl': 0)7 (SZ! O)

are two semigroups of integral functions over I, then Invg S is not neces-
sarily different from Invy 5,. For example we consider

K=¢c(, 5 =IcC[[X]] and 5 = € C[X].

Then
InvSy = Invg Sy

is the coarsest topology on € (. However for cyclic semigroups we have:
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Proposition 2. Let K be a valued field of characteristic zero and let (51,0),
(82,0) be two eyelic semigroups of integral funetions over . If 51 # 5,
then

[nvp ST # Invg S,.

Proof. Let f; be a generator of Si, %= 1,2. Since the set of zeros from K of an
integral function over K is countable (see [1], p. 144 for a non-archimedean
valuation), we consider the countable set M of zeros of the integral functions

FX) = (X ) ke € N + 82 £0.

There exists then ¢ € I \ M and we denote

D= U Arf ) Jad i =1,2.

heeN

Hence it follows that
JD;'1 Z D2andInvg S1 # Imvg S5, 0O

We now raise the question as to when the topological space (K, Invg S)

is separable. Since A(a) € D,, for every h € 8, from Proposition 1 it follows
immediately:

Proposition 3. Let K be a valued field and let (5,0) be a semigroup of
integral functions over [ . If K € InvgS, the Jfollowing conditions are
equivalent:

a) (K, InvgS) is a Hausdorff space.

b) §={X}.

¢) InvgS is the diserele topology on K .

We recall that the assertion that for every two distinct points at least one

of them has a neighbourhood that does not contain the other is called axiom
T(). '

Proposition 4. Let be K a valued field and let (S,0) be a semigroup of
integral functions over K. If K € [ mg s, then (K, InvgS) is a T,- (Kol
mogoroff ) space if and only if for every a € K, either a is a fived point of §,
that is h(a) = a, for all h € S, or, if there exists hy € 5 such that hi(a) # a,
then hohy(a) # a, for all hy € §.

Proof. 1If (K, Invg S)is a Ty-space, then we consider ¢ € K such that there
exists fiy € § for which hi(a) # a. Suppose there exists he € 5, such that
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hyhi(a) = a. By Proposition 1, either hy(a) ¢ Dy, or a ¢ Dy,(a), Which is
absurd since hy(a) € D, and @ = hohi(a) € Djy,ya)-

Conversly, let a,a’ € K,a # o'. If @, for example, is a fixed point of 5,
then o' ¢ D, = {a}, otherwise suppose a' € D, and @ € D,. Hence there
exist h1,hy € § such that @' = hy(a) and a = hy(a'). Since hy(e) # a it
follows that haohq(a) # @, which is absurd since a = hy(a') = hahi(a). This
shows that (K, Invg ) is a Kolmogoroff space. O

Corollary. Let K be a valued field, f(X) € IK[[X]] and let 5 = (f) a cyclic
semigroup of integral functions over K. If K € Invg S, then (I, 1 nugS) is
u Kolmogoroff space if and only if for all a € K either a is a fized point of
f(X) or for all k € € N.k >2, there exists an integral functions gy (X) over
K such that gi(a) # 0 and f’“( () = gu(X) + X.

The proof follows directly from Proposition 4.

Example 1. Suppose that Ix. =€ R, K, = € ( and || is the usual archi-
medean valuation. Let

Y)A(‘ )(

If 5 = (f), then by Corollary it follows that (€ R, Inve rS) is a Kolmogoroff
space and (€ C, InvecS) is not a Kolmogoroff space.

Remark 2. If (K, Invy§)is a Kolmogoroff space, we define a partial ordering
< on K such that @ < o if and only if a belongs to the closure of {a'} in
Invg S (see [4], Ch. 1). Then the open intervals of (K, <) form a basis
for the topology Invy 5. The assertion follows by Proposition 1 and by (4],
Ch. 1.

2. Invariant sets and semigroups

In this section we study the connection between particular subsets of K
and particular semigroups of integral functions. We shall use the terminology
and notation introduced in Section 1. We shall need the following result from
[7].

Theorem 1. Let K be a complete valued field, {@,}u>1 an infinite sequence
of distinct elements in I such that
(3) lim |2, |= o0

=t OO
and {yn}n>1 an arbitrary infinite sequence of elements in K. Then there
exists a function f(X) € [N[[X]] such that

(4) flaj) =y, Vi 2 1.
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Theorem 2. Let &' be a complete valued field and let M = {Zn}uz1 be a
countable subset of K which satisfies (3). Then there exists an infinite cyclic
semigroup S of integral functions over K such that M € Invg S.

The proof follows immediately from Theorem 1.

We shall now study some particular cases when K is not necessarily a
complete field. We begin with a lemma on a determinant which is a gener-
alization of the Vandermmonde determinant.

Lemma 1. Let K be a field of characteristic zero, m,n,k € € N andm > k.
We consider the polynomial D, , 1(Xo, X1,...,X,) € K[ Xy Xy vvn 5K
defined by the determinant which has the order (k+ 1)(n + 1), its j-th row,
g=1,...,n4+1 has the form

( X \ m+] ., Xv;iiql—i-(k+1)(u+]))
and the following rows are their derivatives up to order k inclusive. Then
there exists C' € K \ {0} such that

- [ . ‘ "
(5) Dm,n,k(iYO,‘Xla Tty Xrn) = H /YiMUH'l) H (Xj - Xi)(k-i-l)
’ i=0 0<i<j<n

Proof. By induction on k. using Laplace’s theorem, it is easily verified that
the (total) degree of D,, ,, ;. is

:  + 1)k +1
(6) deg Dy (X0, X1,..., X,) = M—l?z(k-l_—)(%n +n+ kn)

We shall denote D, ,, » by D, for simplicity. Let (X1 — Xo)7 be the highest
power of Xy — X¢ which divides D in K[X,, X1,...,X,]. Then

o/ D
(7) o X, X, X)) =0,5=0,1,2,... ,g—1
0
and
arn
(8) )Xq(Ylaleﬂle "aX'n._)

is not identically equal to zero. Since the derivative of a determinant A of
order N is the sum of N determinants A, in which all rows (except the s-th)
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are the same as in A and the s-th row in A, is the derivative of s-th row in
A, it follows that
D
A Xg

(Xo, X1,..., Xy)

is a sum of such determinants in which all rows (excepts the i-th rows,
t=1,n4+22n+3,... . kn+ &+ 1) are the same as in D and i-th rows are
the i-th rows in D or a derivative of the i-th rows in D.

On the other hand. by using suitable derivative of D, it follows that D is
not identically equal to zero. To obtain (7) it is enough to prove that

(9) 4(}(0‘}(1,... -;Xn)

is a sum of such determinants in which there exists a row which is equal to
the first row of D or is equal to a derivative up to order % inclusive of the
first row of D. If ¢; is the smallest value of j such (9) has not this property,
it follows that

(10) g2 q = (k+1)°

Since D is a homogeneous polynomial and it remains unchanged, to within
sign, under any transposition of two unknows, it follows that the degree of
the product of all the factors (X; — X;)9, j > i, where (X; — X;)? is the
highest power of X; — X; which divides D is equal to

(11) (71+1(] =

4

n—+1
‘(F_)(,lh + 1)
2
Similarly, if we denote by X! the highest power of X; which divides £, it
follows that the degree of the product of all the factors
(12) XPi=0,1,...,n, isequal to (n+ 1)p>(n+1)(k+ 1)m

k3
Since

_(m+ Dkt 1)

n(n+1)
— (k41
2 (kt 2

P+ (n4+1D)(k+ 1)m (2m+n+kn) = deg D,

by (11) and (12) it fo]lows that ¢ = (K + 1) and p = m(k + 1), which gives

the assertion. O
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Theorem 3. Let K be a field of characteristic zero and || @ rank I nontrivial
valuation of K. We denote by K a completion of K for its topology defined
by ||. We consider Ky a countable subset of K\ {0} and K> a dense subset

of K. If {Ln}neen is a family of dense subsets of K, then there ewvists a
function

20

(13) f(X)=> X" e IK[[X]]\ R[[X]]

n=>0
such that

a) a, € L, forallmn e € N;
b) f(k')(:r.) €Ky foralle e Ky and kb € € N.

Proof. Let {z;}icen be the elements of K and we denote by

T

(14) Su(X) = apX*

k=0
We consider the sequences u, =1-24+2-34 ... 4 n(n+ 1)—1,
iy =Bl ™

Because K is a dense subset of K and the polynomials are continuous
functions we can find o, y10 € iy such that the system

bo +bi2o = yo,0
by + b1z1 = 110

(15)
has the solutions by, by € K with the following property
(16) | bi |< v, i =0,1.

With the notations of Lemma | we have

Dy 2o, 21,22) # 0.

Let F, be the finite set of the cofactors of the elements in Ds 2 1(zg, T1,T9).
Since Lo, Ly are dense subsets in K, there exist a; € L;; i =10,1, such that
| @i |< v,

(17) | S1(25) — w0 |< v
C

Diysa

L i - o
(.5'1(:12]') — :E}j’()) < :2-_3’”3’ Ve € Fs, 3= 051y
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Because K is a dense subset of I there exist the elements
Y2,0,%0,1,Y1,1,Y2,1 € W2 such that

c

DZ"I

gy

< ! ()
2.3 %

(S1(x2) = y2,0)

(18)

1
<ot Yee Fy, 7=0,1,2.

c
(a1 — Y1)
‘[)2’2‘] NEEE

Applying Cramer’s rule it follows that the system

dao + ajxg + bgzzrg + b;g,’iig + b,m:?, -+ b;,mg + b(-,-:z:g + b7zcg =Yoo
ag + ayxy + bg.’lﬁ% + [Jg!l:? + b,;:x:”l1 + b5:z:'? + bsa:?_-I— b-,va;;" =Mo
ap + a1xs + IJQZL‘% | b;;:z:g -+ b4m% + b5ar:g + bﬁwg + b»,-:n; =120
ay + 20y + J}b;;.;:n% + 4()4:1:8 -+ Sb‘r]:z?g + Gb.;:z:g + Tb—;mg = Yo,
a1 + 2baxy + 3b;3:1:% + 41)4:::",3 + 565:1:‘1' + Gbs:n? + 71)79:? =i
ay + 20wy + 3!’)3;1;% -+ 4[14;1:‘3 -+ 5[15::;;‘ + ()'bﬁwg + Tb—;mg =21

(19)

in the unknowns b;, has solutions with the following property
(20) | i |< o3, i=uy +1,...,u.
We now consider

I)g‘;;*g(;t)o, T1,L9, .’1‘,‘3) 7£ 0

and we denote by Fy the set of the cofactors of the elements in Dg 3,2. Since
Li, i = uy + 1,...,us, are dense subsets in K, by (19) and (20) it follows
that there exist a; € L;, 4 = uy + 1,...,uq, such that

| a; |[<vs, 4= ui+ 1.0, ug,
| Sus (i) — ¥i0 |< v3,
| S5, (25) — yia I< v,

¢
Giip (83) = Wi0)| < 5—V4s
DS,B,J( | (l‘;) 3;'_,1‘0) 3'404
(8 (2;) = yi1)| < ——va, Ve € Fy, §=0,1,2
L Ds'ﬁ, P N Yia 3.4 4, 4 3,1 =4Y, 1, 2.

Now by induction on 7, we consider

Dy 1,041,0(%0, 8150 -+, Bog1) F 0
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and we denote by F,,q the set of the cofactors of its elements.
We suppose that we have found Yih € K2, 5=0,1,... ,7,k=0,1,... ,r—
land a; € L;, ¢ =0,1,...,u,, such that

(22) iai |< Vit = Ug_q + 1, 5 Uiy = 1, W T

(23) | SEH25) = ik |< Vg1, V5 =0, 0 k= 0,... 7 —1

¢ It
24 —_— (SN — i —————— Uy
( ) Du,.+1,-r+[‘r( o (I‘j) lek) < (7’ + l)(’l' + 2),0 o

Ve e Fry1,7=0,..,r, k= 0,...,r—1.
Since K; is a dense subset in i there exist the elements
Yr41,05 Y4105 o 5 Yot Yors -+ Y1, € Ky such that the condition (24)
hold true for all j = 0.1,... ,r 4+ 1 and k = 0,1,...,7. Then the system
. : u i k
(25)  SEs) 4 bupa X oy X))y
0<j<r+1L,0<k<r '

in the unknowns b;, which for » = | coincides with the system (19), has the
solutions b; with the following property

(26) | B |2 mydin ¥ = e 4 s s S T

Since Li, @ = t, 4+ 1,... ,u,4; are dense subsets in I, by (25) and (26) it
follows that there exist a; € L; such that the conditions (22) - (24) are
satisfied for r + 1. This proves (22) - (24) for every 7.
We consider now # € € N. Then there exists re N such that
Ty <n S 'ft-,,+1
and by (22) it follows that

g _— 1
| a0, (%< vty < ur_l‘_‘?tz/n < .
U2
Hence
3 1
lim |a, [*=0
==
and
X
F(X)= ) aX™ € IK[[X]].
n=0

We remark that we can find a, # 0. To prove b) we consider k,j € € N
and we chose r > k and r > j. Then by (23) it follows that

f(k)(-‘i"‘j) = yin € Ky
and this establishes the theorem. O
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Corollary. Let K be a countable field of characteristic zero and || a rank
1 nontrivial valuation of I{. We denote by

27) Sk = {f(X) e IK[[X]], f¥(x) € K, foralle € K andk € € N}.

Then Sg is a semigroup which contains some integral functions which are
not polynomials.

The assertion follows from Theorem 3 by taking Ky = L, = K for all
nee N and K1 = 1\ {0}.
Let
Seo = 151:3(X) € IK[X\ K[X], f € $1},

where (57, 0) is a subsemigroup of (5k,0). In the last part of this paper we
shall prove that we can find an infinite subset D of € @} such that, for all
51 € S, the topology Inv€gl; does not contain the set [). More precise
we have the following assertion:

Theorem 4. Suppose K = € () and || is the usual absolute value function.
Let D = {1/n}peen~ and let f(X) € Seg such that

(28) f(iDycD

then f(X) is a polynomial which is of the form

|
(29) f(X)=X*,reeN* sceN
Proof. If
(30) f(){) = Z(L‘J"Yj“ oy = ﬁﬂ a.‘fﬂﬂ‘f g €4, r‘fjj‘ # 0
I YW l

we may assume that 3; > 0 and 3, | f;41 for all j € € N. We denote

31) il Lokeen

n e
Since f(X)is a continuous function it follows that

| l
(32) lim f(—)=ap = lim

P20 T Nn—ro0o

“TL
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We may assume that f(X) ¢ K and because the zeros of an integral function
which does not vanish identically are isolated, it follows that

1
lim — = 0 = ag.

T 7

Let a; be the first coeflicient which is not equal to zero. Since f(X) is an
integral function we have

lim | [ |m =0
T — )

and then there exists mg € € N,mg > { such that for all m > my

T

(33) | fle) — Z(tj.’]t‘f | < 2™t Ve e [0,1].

i=1

By (31) and (33) it follows that, for all m > mg and n € € N*,

1 a1 w, 1 1
34 e e o o o — )| £ ——.
(34) by B nt Tt B nm) = gl
Hence
i .
(35) ; lim - =

=X A"N - ?j:

and for all m € € N* and m > my

ks,
('5()) |ﬁ'm n" — n(“ }[jmf "fm_t + 5wt ﬂm) = ﬂm?

Suppose that there exists a fixed
(37) m > mg, m > 21 suchthatalpha,, # 0.
Then by (35) and (36) there exists r,, € € Z such that for all n € € N*
(38) Bunn™ — k(i 370" L ) — P = 0,

where r,,, = O(n'~1). We consider the polynomials

By (/Y) = ffjm/ m,
Py (X)) = aif,, ’ji‘l ;. + .oty
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Then there exist R1(X),Q1(X) € € Q[X] such that
(39) PX)=Q1(X)P(X)+ Ri(X),

where degR1(X) < m — i and deg()1(X) = ¢. By (38) and (39) it follows
that

Riy(n) =1y

ky = Gi(n .
(40) Ji(n) + Py () 0
Since Ry(n)

1. At ) — T —

n E}r]x: Py {’I?,) 0
there exists ng € € N* such that

? — Tm 1

(41) \R](_n) i ’ < , Y > myp,

Ps(n) d+1
where d is the least common multiple of the denominators of the coefficients
of @1(X). Because k,, € € N, by (40), it follows that there exists ny € € N*
such that

kyp = Qq(n), Yn > nq.

Hence

‘ . l B | - n~!
(42) NG = Q1(n) — Qa(n71)’
where

: 1
Qa(X) = X'Qu(5)-
Since D has a limit point, by (42). it follows that

X'i

X0 =5y

Since also f(X)is an integral function we must have 2(X) € € @ and ¢ = 0.

Then there exists m € € N such that e, # 0 and for all my > m, o, =
0. Thus f(X) is a polynomial and by {34)

; . 7
| Baiti™ — kn(“’iﬁmﬂi—] Tt 4+ Qi) |< [;”

i
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Hence there exists ny € € N* such that for all n > fy
(4'3) [jw;“-” == An(”ﬁﬂm-‘ m—z + v s + am)-

We denote (n,a,,) = d,, and n = dyv,. Then limv, = oo and by (43)
o | ky,. Hence, if m > 1, then '

XN)=—=—X"'
f1X) )
Hence by (28) it follows (29). O
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