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VARIETIES OF POLYADIC GROUPS

Wieslaw A. Dudek

ABSTRACT. In this note the class of all n-ary groups is considered
as the class of some universal algebras with different systems of
fundamental operations. In any such case we give the minimal
systems of identities defining this class.

1. Introduction

Wilhelm Dérute, inspired by E. Noether, introduced in 1928 (see [1]) the
notion of n-group (called also n-ary group or polyadic group), which is a nat-
ural generalization of the notion of group. The idea of such investigations
seems to be going back to E. Kasner’s lecture at the fifty-third annual meet-
ing of the American Association for the Advancement of Science, reported
(by L. G. Weld) in The Bulletin of the American Mathematical Society in
1904 (see [2]). The second paper which plays a very important role in the
theory of n-ary groups is the large paper (143 pages) of E. L. Post [3].

We shall use the following abreviated notation: the BEQUEICE By, Tig1y ey &y
will be denoted by 7. For j<i alisthe elpty symbol. In this convention
f(z}) denotes f(x,xq,....,2,). The word

Fwi s2ay sog Bpaimog s Braprr 105555 B3 )
. . . ()
where @ appears ¢ times, will be denoted by f(a¥, T, 2%, ,4q). For t <0

the symbol % will be empty.
If m = k(n — 1)+ 1. then the m-ary operation g given by

k(n—1)41 5 n 2n— k(n—1)41
9™ = LU PR, 22051, ) 2 )
k
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will be denoted by f). In certain situations, when the arity of ¢ does not
play a crucial role, or when it will differ depending on additional assumptions,
we write f), to mean f, for some k=1,2,....

A non-empty set (7 with an n-ary operation f:G" — & will be called
an n-groupoid or an n-ary groupoid and will be denoted by (G; f). An n-
groupoid ((7; f) will be called an n-group or an n-ary group if and only if

19 for all @y, 29, ..., 00,_1 € (7 the (i, §)-associative law

(1) i~ P, 2t = f(:u{—l,f(:n;?”-l),mfﬂ;l

hold for every i,5 € {1,2,...,n},

2° for all o, 1,000y Bpo1, Bpgrs 0@ € G (k= 1,2,...,n) there exist a
unique z € (¢ such that

(2) f(:z:}{_*,:..r:z'ﬂ) = Zy.

Condition 1" is called associativity, and algebras (G, f) fulfilling 1° are
called n-semigroups. Algebras fulfilling only 2° are called n-quasigroups.

The above definition is a generalization of H. Weber’s formulation of ax-
ioms of a group (from 1896). Similar generalization of L. E. Dickson’s (with
the neutral élement) one leads to some narrower class of n-groups derived
from 2-groups (i.e. classical groups).

It is interesting that there exists no nontrivial (on a non one-element set)
theory of infinitary groups, i.e. w-groups for countable infinite ordinal w,
but there exist infinitary quasigroups of any (finite and infinite) order [19].
Therefore we shall consider n-ary groups (n-ary groupoids) only in the case
when n > 2 is a fixed (but arbitrary) natural number.

It is worthwlhile to note that, under the assumption 1%, it suflices only to
postulate the existence of a solution of (2) at the places k =1 and k= n
or at one place L other than 1 and n. Then one can prove uniqueness of
the solution of (2) for all k = 1,...,n (see [3], p. 213'7). Also the following
Proposition is true (see [4]).

Proposition 1.1. An n-groupoid (G f) is an n-group if and only if (at
least) one of the [ollowing conditions is salisfied:
(a) the (1.2)-associative law holds and the cquation (2) is solvable for
k=mn and uniquely solvable for k=1,
(b) the (n — |, n)-associative law holds and the equation (2) is solvable
for k=1 and uniquely solvable for k = n,
(¢) the(i,i+ L)-associative law holds for some i € {2,...,n—2} and the
equation (2) is uniquely solvable for i and some k > 1.
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2. Varieties of n-ary groups

In an n-quasigroup ((Z; f) for every s € {1,2,...,n} one can define the
s-th inverse n-ary operation f() putting

fEat) =y of and only i f f(:z:i‘l,y,a:;‘_l_l) ==

Obviously, tho'opera.tion f©¢) is the s-th inverse operation for f if and
only if

(3) Fl =, FatYidlii) = 2,

for all z,...,z, € (i. Therefore (as in the binary case) the class of all n-
quasigroups (and in the consequence the class of all n-groups) may be treated
as the variety of equationally definable algebras with n 4+ 1 fundamental n-
ary operations f, f(V) f% ) Gueh variety is defined by (1) and (3).
Obviously (1) and (3) must hold for all L, 7,8 €{1,2,..,n}.

An n-group (n > 2) may be considered also as an algebra with three n-
ary operations. Namiely, as a consequence of Proposition 1.1 we obtain the
following characterization.

Corollary 2.1. Every n-ary group (n > 2) may be considered as an algebra
(G5 £, fD, f®) of the type (n,n,n) with the (3,74 1)-associative operation
[ where

(@) i=j=1and k=mn, or

(b) i=n—1, j=1 and k= n, or

(c) de{2,..,n—2) is fived and k > Ji= o

Corollary 2.2. The class of algebras with three n-ary (n > 2) operations

f59,h is the variety of all n-ary groups (G5 f) if and only if (dt least) one
of the following aviom systems is satisfied:

FUF) a3ty = Fa, f(3th), 22035,
(a) 9(f(y,z%),28) =y,

h(a?=t, flan—, y))=wv.

f(-’f’?_z 3%, Bon—1)= flal™t, ™=y,
(b) g(f(y,:::l_}),:z:{,")_ =y,

R flei ™ y) =y,

— i1y 20— i (Y a2n—1
f('Lzl :,_f(:z:;'*': l)a-”"fﬁrﬁl) = f(-'ff'éaf(-’f'?ff),ubﬁ’lm :
(C) g(mzli Sflay” 331337;'14.1)1 m:'l-i-l_} =¥ .
hi="", fl=s, YsTyp1 o0 ) =y, where 1 <i< s < h are fized.
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Note that axiom systems given by (a) and (b) (also in Corollary 2.1) are
valid for n = 2, too. But the greater part of characterizations of n-ary groups
obtained by several authors are valid only for n > 2. Characterizations
which are valid also for 7 = 2 are given for example in [7], [9] and [8]. Since
in all these characterizations f is an associative operation, then founded
systems of defining identities are not minimal.

We give such minimal system basing on result obtained in [8].

Corollary 2.3. The class of all n-ary groups (n > 2) may be considered as
the variety of alge bras with one (1,2)-associative (or (n — 1,n)-associative)
n-ary operation f and one (n— 1)-ary operation h satisfying the following
two arioms: '

() F(h(t™2), 007 (2087 0) = 0,
(b)  F(Flys2h% %) 237 hlaf~%, 2)) = 3.

Proof. If an algebra ((/; f,h) satisfies the above conditions, then as in [8]
one can prove that (2) has a unique solution at the place k=1 and &k =n,
which together with our Proposition 1.1 proves that (G f) is an n-group.

Conversely, if (G f) is an n-group then for every zi,...,2,_» € G there
exists a unique clement v € (¢ such that

y= fly. o} %0) = f(2} 7% 0,9) = (g, 0,077 = flo,217%,y)
for each y € (& (see [3]. 214-215). Hence for every z,&1,...,2,_2 € G there
exists only one u € (7 such that

holds for each y € (7. Since u depends on n — 1 elements z,z,...,Tn_2,
it may be treated as the value of an (n — 1)-ary operation k. Obviously h
satisfies (a) and (b). This completes the proof.

As it is well known in an n-group ((; f) the equation

(4) f("2 = |

has a unique solution z € (¢, which is called the skew element to z and is
denoted by Z. Since for every x € (& there exists only one skew element,
then the solution of (4) induces on (¢ a new unary operation z — T .
Thus an n-group ((; f) may be considered as an algebra (G, f; ) with two
fundamental opertations: an n-ary one f and an a unary one x — T . The
variety of such n-groups is defined (see [6]) by three identities: one of the
type (1) and two so-called Dérnte’s identities

(i-=1) _ (n—i=1)

(5) fOx= 7« Ly =y,
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) (n—j—1) _ (j—1)
(6) fly, & &% )=u.

In an n-group the last two identities hold for all t,J €{1,2,...,m—1}, but
one can prove (see for example [6],[4]) that (5) and (6) determine (together
with (1)) an u-group if it hold for some fixed i, 7. The minimal base of such
variety is given by the [ollowing theorem (proved in [7]).

Theorem 2.4. Let ((/5f,7) be an n-ary groupoid (n > 2) with a unary
operation ¥ — T . Then (G f, ") s an n-group if and only if f is
(1,2} or (n — 1,n)-associative and Dérite’s identities hold for some fized
47 € {1,205~ 1}

As a consequence we obtain

Corollary 2.5. The elass of all n-ary groups (n > 2) may be considered as
the variety of algcbras with one (1, 2)-associative (or (n — 1, n)-associative)
n-ary operation [ and one unary operation x — satisfying the following
two axioms:

(11’—2) (1

() 5@ g
(b)  f(f(y," "),

1—1)
oy =y,
T

(n—2)
roLr)=y.

Theorem 2.6. The class of algebras (G5 fog.h) with one (1,2)-associative
(or (n — 1, n)-associative) n-ary (n > 2) operation f and two (n — 2)-ary
operations g and h is the variety of n-ary groups if and only if the following
two identitics

(7) Fay™ g(ad ™), 2072 y) = g,

(8) Py a7 (e} 7%),27 ) = y

hold for some fized i, € {],2., o= 1},

Proof. From [3] (p.215) follows that in every n-group ((; f) there exists
an (m — 2)-ary operation ¢ satisfying (7). Similarly there exists an (n—2)-

ary operation / satisfying (8). Thus (7) and (8) hold in every n-group.
To prove the converse abserve first that puttingin (7) e =2, = ... = &, _,

-2 )

and g((nw J) =T we obtain the identity

L i=1)  (n—i-1)

(9) SO 75 x y)=y.

Similarly, for "?‘((H‘E“) =& from (8) follows
G=1) . {'n.—";il_j‘)

(10) f(yﬂ L ol 2 ) = y'
If fis (1,2)-associative, then (10) implies
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i In— n n (=1) . (n—j—1)
f(:l:lai(l)+l)1' u+’l = f(f(a‘laf(l +1) fl.-i-zl)'.- & 3y x ):
; n Un— (i-2) {"—?—1)
f(ﬂ:l,f()‘(r,""l) ;r:HHI,:B), T ] =

(J A) . (n—j-1)

(@ fids el a5 n), @ ,a:, A
By (G=1) . (n—j— _
f(f(zl‘, ”“),;r:;;’_';_,,]), %8, ® = flz?. fl=Z™), :ni’_‘,_sl )

This proves (1,3)-associativity of f. Now, using (1,2) and (1,3)-associ-
ativity we prove (1. )-associativity. Similarly we can prove (1, k)-associati-
vity for all £ =5.6,....n. Thus ((; f) is an n-semigroup.

In the case of (n — |, n)-associativity the proof is analogous.

To prove that ((; f) is an n-group it is sufficient to solve (2) for k = 1
and k& = n. In the same manner as in the proof of Theorem 2 in [4] one can
verify that if (9) holds for 2 <4 < n — 1 then the element

{(i—2) (n—i—1) (i=2) _ (n—i—1) (:=2) - (n—i—-1)
z = f( )(?H—i =1y Tp—1 + T2y ¥p_noy Lp_2 5.0 L1 T, Ty smU)

is a solution of the equation f(x}™', z) = xq.
Similarly, under the assumption 1 < 7 < n—2 in (10), the element

-1 . (n=j=2) (j-1) . (n—j—2) (G-1) ~ (n—j-2)
Z—f()( Y0y n s ding, by 13'?1—11:'1%—11 Tyl 5eeey L2 L2, Ty )

is a solution of the equation f(z,a%) = .

Thus (G5 f) is"an n-group if (9) and (10) hold with the restriction:

(11) 2<i<n—1 and 1<j<n—-2
We have still to consider _the following cases:

(12) # = 1 j=n-—1,

(13) i=1, 2<j<n-2,

(14) j=n—-1, 2<i<n—12,

(15) it=n—1, j=n-1,

16 1= 1, =

( J

Let (9) and (10) hold for ¢ =1 and j = n — 1. Then

(n—2) (n—2) .

& y)=fly, = %)=y,
which gives

1 (n

[, * )— f ,?) =g and T=f(7T

As a consequence we obtain
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(-2 (n—1) (n—3)

y=fF v )= fEL = E), & ,y)=
@7 " ) = S35,
By a similar calcnlation we get
v=110."5"7,0) = fl5,"%”, 3,2).

Thus the case (12) is reduced to (11) and ((7; f) is an n-group.
If (9) and (10) hold with the restriction (13), then

__(n-=1) () . (n—j—1)
e=f& = )= f(r, &, & |
which implies
- _ (n=12) (n— }—-l) (1) " (n =1 (ij—-2)
y:f(ﬂ:e L ».";'):f('!‘ & 9f( € )a €T ’y)z
o (n=1) _ (n=3) . (n=3)
JUfaE, Yy v ) = fle.g, & )
Hence
(n_;) (n 3) (n 3)
("La & = /r( & af( € ,U))z
o (n=12) {n .j) ~ (n=3)
Flas JE," ® &), W) = fle:d © 54 =4

This pIOVEH that (9) holds also for ¢ = 2. Therefore (13) may be reduced
to (11) and ((;f) is an n-group. By a similar argumentation the case (14)
may be 1'e(111r,.ed to {11).

Now we consider the case (15). In this case the identity (9) has the form
f( n'::;2) Z,y) = y. which in particular implies

(n—‘) ("_')

f al l)—f( ):.’L‘,

where T = q( ) Using these identities it is not difficult to verify that
the solution =z of the equation

(n—3)

2 \maz)=y

has the form
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(n—3) _ (n=3) _ (n-3) _ (n—3) _
= fo-ny(" 2 LB T B # Fyen & EY) =

(n—23) times

(n—3) (”:'3) = (rn—4) (n—3) _ (n—3)
Jo-ai( & L & ,Fx), €, @ By & 5Y)=
(n '3) [n 3) __ (n—3) __
Jn-m( 2 £ LWy, X LTL,Y) =
(u 4 _('Hf'?) _ (n—4) _ (n—3) _
Jin—ay( 2 B STult), B E, e B EBY) =

(n—4) (n—=3) _ (n=3) _
Foicafl 2 0 & % e X Tl = =

('ﬂ 2 (=) (n—')

.f( .f( T )\ € ,T,ifl):f( T T Y) =

1—3)

Hence in this case holds also f( " , T, 2,y) =y, which reduces (15) to
(14). Analogously (16) may be reduced to (13). This completes our proof.

Note that in general g(277%) # h(x}™%), but as it easy to show g(2,...,2) =
hz,...,z) for all @ € (. I\[meovm, 115111g the Post’s Coset Theorem (see [3]),
one can prove that in the case i = j we have g(277?) = h(z}~?). Hence as
a simple consequence of Theorem 2.6 we obtain

Corollary 2.7. The class of algebras (G; f,g) with one (1,2)-associative
(or (n— 1, n)-associative) n-ary (n > 2) operation f and one (n — 2)-ary
operation ¢ is the variety of n-ary groups if and only if the following two
identitics

(a) flai r,'(r”*’)‘.r_?r-zﬁu)g "
(b) f(y,-bl I_.( I'T 3 ’ i H)_ y
hold for some fived i = 1.2,...,m — 1.

Corollary 2.8. The varicty of n-ary groups (n > 2) is the class of algebras
(G5 f,g9,h) with one assoctiative n-ary operation f and two (n — 2)-ary op-
erations g and h .5-rttz'£j'yinr; Jor some fized i,j € {1,2,...,n—1} the identity

(17) el 0% a7 W)l %) = w

Proof. In every n-group ((+; f) there exist (by Theorem 2.6) two (n — 2)-
ary operations ¢ and h satisfying (7) and (8). Hence (17) is satisfied, too.
Conversely, if the identity (17) holds in an n-semigroup (G;f), then

(n=3) (n=2)

pubting @ = @y = w = gy gl ® ) =& and Al =) = & W (17)
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we obtain
o =) (n—i=1)  (j—=1) . (n—j—1)
S 8 oz Ly, 3, T )=9.
Using the same method as in the proof of Theorem 4 from [7] one can
prove that ((7;f) is an n-group, which completes the proof.

Analogously as in Theorem 2.6, using the Post’s Coset Theorem, one can
prove that & = & for every x € (7. Thus as a simple consequence we obtain

Corollary 2.9. The varicty of n-ary groups (n > 2) may be considered
as the class of n-ary semagroups (G f) with one unary operation x — I
satisfying for some fived i, € {2,3,...,n} the identity

(i—IE) = (n{—‘i) (n;j)

; . =2
'/f‘?)( EoE, XY, &, & )-_-Tf

Observe that from Corollary 2.1 (a) follows that the class of n-ary groups
(n > 2) may be considered as the subvariety of the variety of n-ary quasi-
groups. For n > 3 this class may be considered also as the subvariety of the
class of inversive n-ary semigroups described in [20] and may be defined by
a system of identities containing some identities which are characteristic for
inversive n-semigroups.

Proposition 2.10. The class of all n-ary groups (n > 2) may be considered
as the varicty of algebras (G f,g,h) of the type (n,n —2,3) defined by
(a) f(al) = h(w, g(x3 ), 2,),
(b)  A(y,x,x)=hlz,x,y)=y,
(c) R(h(z}),25) = b2y, (@4, ts, £5), 5) = h(&I, h(25)),
(d)  g(=T7% g(«}7*)) = @aes,
where the operation f is (1,2) or (n — 1, n)-associative.

Proof. Any n-group (n > 3) is an inversive n-semigroup in which there
exist two operations g and h satisfying the above identities (see [20]).
Conversely, if an algebra ((; f,g,h) satisfies the above conditions, then,

. -2 3
forall z,ye G and 7 = g((n:t: )) , we obtain

(n=2) (n—2)

fly, =7, 8) = h(y,g( 2 ), %) = My,2,8) =y

and

o (n=2) e
f(:l:,( v, y)=WME,Z,y) =Y,

which together with the (1,2)-associativity of f implies the (1,3)-associa-
tivity. Indeed, ;
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(r=2)

=1, flanth), 2 bt ) = JU f('uh_f(:z:g’"'l),:t:i’_’g]), ¥ ,E)=

(n—=3)

Flan FOR@ET) aintyw), a7 &)= fla, fus, f(3%), 205" 2), @ ,8)=

(n=2) _

FOf(ad, fla5™?),ai5t), w7, &) = f(ad, fa5¥?), 205"

Now, using (1.2) and ([, 3)-associativity we prove the (1,4)-associativity.
Similarly we can prove (1, j)-associativity for j = 5,6,...,n. Thus (G; f) is
an n-semigroup. By Theorem 13 from [20] it is an n-group.

In the case of the (n — 1, n)-associativity the proof is analogous.

Moreover, the above proof suggest the following characterization of n-
groups.

Corollary 2.11. The class of all n-ary groups (n > 2) may be considered
as the varicty of algcbras (G5 f, g, h) of the type (n,n —2,3) defined by

(a)  f(a?) = hlaq, glay™ l),.1-:,,‘),
(b)  h(y,w,x) = ha,z,y) =1,
(6} SOl i Y= Flay, [T, 2225N).

Proof. Asin the previous proof we can prove that ((7; f) is an n-semigroup

with a unary operation © — T = g(‘”iz’) and satisfies the assumption of
Theorem 2.4. Hence it is an n-group.

Conversely, if ((/; f) is an n-group, then by Post’s Coset Theorem (see
[3]) there exists a binary group ((*,-) such that f(z}) = 2y -2y« ...- z,
for all zy,z5,....2, € (. Hence g(z277?%) = (21 - 29+ ... - To_y)~! and
h(z,y,2z) =« -y~' -z are operations fulfilling (a) and (b), which completes
the proof.

. Remark that in general the operations ¢ from Proposition 2.10 and Corol-
lary 2.11 are not identical hecause the second not satisfies (d), in general.

It is worth remaining that the operation h satisfying (b) is so-called
Mal’cev operation. The existence of such operation in the set of all polyno-
mials of some variety of general algebras is equivalent to the commutativity
of congruence on each algebra from this variety. Moreover, the lattice of all
congruences of a fixed algebra from such variety is modular (see for example
[21]). Thus for every fixed n > 2 the class of all n-groups is a Mal’cev
variety and the lattice of all congruences of a fixed n-groups is modular. For
n =2 this fact is known, for n> 2 it was proved in [22].
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Theorem 2.12. The class of algebras (G5 f,9.h) with one associative n-
ary (n > 2) operation [ and two binary operations g and h is the variety
of all n-ary groups if and only if for some fized 4,5 € {1,2,....,n — 1} the
following two identitics hold:

Y g(e.y)) =y,

(18) 1
{n—1—j) (j')

(19) flhiz,y)., v " La)=y.

Proof. It is well known that in every n-group (n > 2) the solution z of
the equation ,f'({.::J\(”_Z;l'ﬂ).::) = y there exists and depends only on z and
y. Thus z may be treated as the value of a binary operation ¢ satisfying
(18). The similar argumentation shows that there exists a binary operation
h satisfying (19). (In general g(x,y) # h(x,y), but g(x,2) = h(z,z) for all
redG.)

Conversely, let ((7; f) be an n-semigroup with two binary operation sat-
isfying (18) and (19). Then in a similar way as in the proof of Theorem 2 in
[4] one can verify that for 2 <i < n—1 the element

(1) (_'Hfl—ii)
Wi

(i=1) (n—1-=1) (i=2) (n—1-={) ;
2= fo(®aots 2uss  g(Hy_ 1,80 a), &y o, Tn-3 s Y (Zn_z, Tpn_3), ..

(i=2) (n—1-1) (i-2) (n—1-i)
sty wy glag, ), @, wg ,g(2,m))

is a solution of the equation f(a?~! 2} = 1y

9 =~

For ¢« = I this solution has the form

(=2 (rn—3) (n—23)
z= foy( ®a cy(@yoy,2n), 2o 292, @0 )y ey o, g1, @0))-
)

similarly, the solution of f(z,28) = &4 has the form

(h=1-=j) (j—2) (n=1-j} (5-1)
z= fll{wyomy), =y, 24 il Bty Bt Yy By B s

(n—1—j) (j—2) (n=1-j) (j—1)
e g, wa), w7 s Mas, wy), ws @)

for j€{2,...,n— 1}, and

(n—23) (n—3) (1172)
z = f(h(2aan)y g o h(Ray 20), Tp Jh@s, xp), @)

for 7 = 1.
This proves (by Proposition 1.1) that ((/; f ) is an n-group.
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As a simple consequence of Theorem 2.12 we obtain

Corollary 2.13. The class of algebras (G f,g,h) with one associative n-
ary (n > 2) operation [ and two binary operations g and h is the variety
of all n-ary groups if and only if the following two identities hold:

(i) f((”-zu-ﬂ(:fay)) =8,
(n—1}

(i) flh(a,y), ¢ )=y.

Corollary 2.14. An n-semigroup (G f) is an n-group (n > 2) if and only
if for every x,y € (G and some fived 1,5 € {1,2,...,n—1} there exists z € GG
such that

In particular, for + = 7 = n — 1 we obtain the following result proved in
[10].

Corollary 2.15. An n-semigroup (G f) is an n-group (n > 2) if and only
if for every v,y € (! there exists z € (¢ such that

@ =y,
{n—1)

(@) Flz 2 )=y

3. Subvarieties

In this part basing on the results of previous section we describe some
subvarieties of the variety of all n-groups.

In the first place we consider the class of idempotent n-groups. This
class is the variety selected from the variety of n-groups by the identity
flz,...,2) = x. Since in idempotent n-groups (G f) the operation & — T
is the identity mapping, i.e. @ = T for all x € (¢, then by Theorem 2.4
this class has the following description, which for n = 2 trivially yields one-
element groups.

Proposition 3.1. The class of all idempotent n-ary groups (n > 2) is the
variety of algebras (G5 f) with one (1,2) or (n — 1,n)-associative n-ary
operation [ such that the equalities

(n—1) n—1)

[ -,:u):.f(y,(-l )=y
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holds for every 2,y € (.
As a consequence of Theorem 2.6 we obtain

Corollary 3.2. The cluss of algebras ((1; f, g) with one (1,2)-associative
(or (n — L, n)-associative) n-ary (n > 2) operation f and two idempotent
(n—2)-ary operations g and h is the variety of idempotent n-ary groups if

and only if for some fived i j € {1,2,...,n — 1} the following two identities

hold

() S gy = g,
(b)  fly, a3~ @ TT), 0T =y

In a similar way as Theorem 2.12 we can prove

Proposition 3.3. The class of algebras ((i: fig,h) with one associative
n-ary (n > 2) operation [ and two idempotent binary operations g and
" his the varicty of all idempotent n-ary groups if and only if for some fized
4,J €{1,2,....n— L} the following two identities hold:
@ AT g =,
(n—=1—7) (;;‘)

(ii)  f(h(e,y). ¥ ", 2)=y.

Corollary 3.4. The class of algebras (G5 f,g,h) with one associative n-ary
(n > 2) operation [ and two idempotent binary operations g and h is the
variety of all idempotent n-ary groups if and only if the following identities
haold:

; (n—1)

@) fC = glry) =y,

(n—=1)

(ii)  f(hax,y), = ) =1y.

The variety of idempoteut n-ary groups may be considered also as the vari-
ety of n-groups in which all inverse operations are idempotent. The minimal
system of identities defining such variety is given (for example) by Corollary
2.1 and Corollary 2.2, where all operations f), g, h are idempotent.

On the other hand, it is easy to see that if in Corollary 2.3 an operation f
is idempotent, then also g and h are idempotent. The converse is not true.
For example, in an algebra (Zy; f, g, h), where f(x,y,2) = (z+y+2)(mod 4)
and g(x,y) = I, y) = (22 + 3y)(mod4), the conditions (a) and (b) are
satisfied. Moreover, g and I are idempotent, but a 3-group (Z4, f) is not
idempotent.
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We say that an n-group (G5 f) is o-commutative if f(2,01),...r Topny) 8
invariant under a permutation @ € 5,. An n-group which is o-commutative
for every o € 5, is called commutative. 1t is not difficult to prove (see
[7]) that an n-group is commutative iff it is o-commutative for some fixed
o = (i, 4 1). Moreover, this fact together with Hosszi Theorem [11] gives

Lemma 3.5. An n-group (G5 f) is commutative if and only if there exists
an element a € (¢ such that for all x,y € (¢ and some 2 < i < n holds

(i—2) (n—z).

_ (i=2) (n—1)
fCa ey, a’)=f(a ,yz, a’).

Theorem 3.6. The class of all n-ary commutative groups (n > 2) may be
considered as the variely of algebras with one (1, 2)-associative n-ary opera-
tion [ and one unary operation @ — & salisfying for some fized 2 <1 < n
and 3 < 57 < n the following two identities:

—21) (n—i)

(% -
(a') f(U~ F A A it ]: (3
(=3 .. (n=j)

(b)  flz,y. = 2, & )=y.

Proof. Since every commutative n-group satisfies these conditions we prove
the converse. Let ((4; f) be an (1,2)-associative n-groupoid satisfying (a)

and (b). Since (a) implies ,)'"(“;:l).,:f:,(”&ﬁ:“) = x, then (b) together with the

(1,2)-associativity gives

(5=23) (n 7 (a-l) . (n=1) (j=3) . (n—=j)
y= floy o 8, Y= FfU 238 2 ) & (B, & )=
(i=2) - (n=d) (j=3) _ (n—j) (i-=2) . (n—i)
flas FO w8 & yy)y ® 5%, o )= Ff 28, 2 ,y)

Thus by Theorem 2.4 an algebra (G5 f, 7 ) is an n-group and % is the skew
element. Therefore (a) and (b) are valid for all 2<:i<n and 3 <7< n.
Moreover,

{(n—2) ) (i—=13) (n—j) (n—12) |

f(_"l"ayv L ):f(f(’ynfh vy .y, ¥ )-:y-: a )=

(=3 {“-—j'i'[] [nf') (n— 2)

Fy, f, v g 9 ) e )= fly,z, @

for all @,z,y € (', which by Lemma 3.5 completes the proof.
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As a consequence of the above Theorem and Theorem 2.6 we obtain the
following characterization of commutative n-groups.

Corollary 3.7. The class of algebras (G5 fo9) with one (1,2)-associative
n-ary (n > 2) operation [ and one (1 — 2)-ary operation ¢ is the variety
of commutative n-ary groups if wnd only if for some fized j € 11,2,..,n~1}
the following two identitios hold

() fly. e glad™), 007 = y,

() fGanyad™ gl ), a2 = 5

In the theory of n-semigronps the following identities

flaah= e = Flwy, 5 )

and

FOPG Y @3] ),y Fai)) = FOF(a2L), f(02), SEAC))
play a very important role.

The first of them is called semi-commutativity (an n-group with this
identity is called. by Déarute (1], semiabelian.) The second of them is a
natural generalization of the medial (entropic) law for groupoids. An n-
semigroup satisfying this identity is called medial or Abelian (see [12]) since
an n-semigroup ((7: f) treated as an algebra ((7; [y f) of the type (n,n) is
Abelian in the sense of [13] (p. 87).

Each semi-commutative n-semigroup is medial [1 2], but for every n > 2
there exist medial n-semigroups which are not semi-commutative [5]. An
n-ary group is medial iff it is semi-commutative [12], or equivalently (see [5]

%) (n=2)

and [14]), iff for some fixed @ € (¢ the identity f(.q:,(na )= fly, a ', x)
is true. Hence the class of all medial n-groups is the variety defined by the
last identity, the | L, 2)-associativity and (6) (or by the (n—1, n)-associativity
and (5)).

4. Open problems

From the prool of Theorem 3 in [12] follows that any inedial n-group
satisfies the identity
(20) TOA) = (B T 7).

Hence an n-group (;f) is Abelian as an algebra ((7; f,7). Note that
(20) holds also in some non-medial n-groups. It holds for example in all
idempotent n-groups. Therefore the following problems (announced in [5])
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seems (o be interesting:
Problem 1. Deseribe the varicty of all n-groups satisfying (20).

Let (G5 f, ) be an n-group and let T be the skew element to . More-
over, let " = & and let. T¢T1 be the skew element to ') for s> 0. In

the other words: 7" =7. ¥ =7, 7% =7, etc.

Problem 2. Describe the class of n-groups in which there exists s such that
7 =7 for all elements and all t > s.

Some results connected with this problem are obtained in [15] and [16].

Problem 3. Describe the class of n-groups in which ) £ 7 for all
s#1t and v € (.

Problem 4. Deseribe the variety V, of n-groups in which ) =2 for all
z € (.

The class V, is the variety of idempotent n-groups. Obviously V,; C V;
for every natural s. Morcover, V. NV =V, and V, CV, for any
natural s.t. Any  V, coutains the variety of medial n-groups (and in the
consequence - the varierty of commutative n-groups). Since T = a for all
3-groups [1], the variety Vo, contains the variety of all 3-groups.

As it is known (see [18]) in some n-ary algebras there exist so-called split-
ting automorphisms. i.e. automorphism ¢ satisfying for every + = 1,2,..m
the condition ( f(+])) = Fflatt, (), 2f,) . Such automorphisms there
exist also in some n-ary eroups (n > 2). For example, it is easy to see
that 1,(2) = (o4 a)(mod n) is a splitting automorphism of an (n+1)-group
(Z,.; f) defined by fla"T) = (&4 ...+ @pyy +D)(mod n). Moreover, in some
n-groups the wuary operation @ — ¥ is a splitting automorphism. Such
n-groups are called distributive. The class of distributive n-groups forms a
variety selected [rom the variety of all n-groups by the identity

(21) Flat) = fa " . Tdllie)s
where ¢ = 1.2.....n.

Every distributive n-group satisfies (20) and it is a set-theoretic union of
disjoint and isomorphic subgroups of the form {z, 7, wn B Y where ¢ is
fixed. Hence a distributive n-group is idempotent or has no any idempotents
[17). Moreover, {d, ¢, ¢*. ...,d'} , where ¢(x) = F is an invariant subgroup
of the group of all splitting automorphisms.
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In every medial distributive n-group ((+; f) an operation f is distributive
with respect to itsell, i.e. the identity

FE IO 22) = FUET g2l oo F@50 g 2740))

holds for all i = 1,2,....,n. Such n-groups, called autodistributive, are de-
scribed in [16] and [5]. The class of autodistributive n-groups (n > 3) is a
proper subvariety of the variety of distributive n-groups. For n = 3 these
varieties are equal; for # = 2 are trivial.

Problem 5. Desceribe the variety of all n-groups satisfying (20) and (21).

Problem 6. Deseribe the class of all n-groups in which there ezists at least
one non-trivial splitting automorphism.
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