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ON SOME 4- AND 5-DESIGNS ON < 49 POINTS

Dragan M. Acketa and Vojislav Mudrinski

ABSTRACT. A search for those (¢ + 1,k A) designs is made, which arise
by action of the gronps PSL(2,q) and PGL(2,4) on the ground-set §}(g) =
{0,1,...,9 — 1} U {o0}. The search is made for (t,k) = (4,5) with prime
powers ¢ < 49 and for (¢, k) € {(4, 6),(5,6)} with prime powers ¢ < 31. The

group PSL(2,¢) is used for ¢ = 3 (mod 4) and the group PGL(2,9) is used
otherwise.

The search uses orbit incidence matrices determined by orbits of t-subsets
and k-subsets (shortly: t-orbits and k-orbits) of the ground-set, obtained by
action of the group used. An element of an orbit incidence matrix is the
‘mumber of those k-sets within a k-orbit, which contain a fixed i-set (repre-
sentative) of a t-orbit. Construction of orbit incidence matrices essentially
uses 3-homogenicity of the groups.

The total number of distinct quadruples (¢, ¢, &k, X) of parameters, for
which (¢ + 1, k, ) designs are constructed is equal to 75. It is guaranteed
that the obtained values of A are the only possible, which can be reached
by action of the groups used, for the considered triples (¢, q,%). It is as-

sumed that most of the obtained quadruples of design parameters are new,
in particular those for ¢ = 19, 25, 27,31 and 37.

1. Introduction

Let n-set denote a set of cardinality n. A t-(v, k, A) design [5] is an inci-
dence structure on v points, which consists of some k-sets of points (called
blocks) without repetitions and which satisfies that each ¢ points are con-
tained in exactly A blocks. /F (¢) is the Galois field associated to a prime
power g = p°.

The group G'L(2,¢) is the group of all non-singular 2 X 2 matrices with
elements in (F(¢) (= non-singular linear transformations over (GF(g))?),
while SL(2,q) is its subgroup cousisting of the matrices with determinant
1. The projective general linear group PGL(2,q) and the projective special
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linear group P.5L(2, q) are obtained from (7 L(2,q) and SL(2, ¢) respectively,
by reduction with the corresponding groups of homoteties.

Both PGL(2,q) and PSL(2,¢) act on the common ground-set Qq) =
{0,1,...,¢ = 1} U {oo}. It is known that P(/L(2,q) acts 3-transitively for
all ¢, while PSL(2,q) acts 3-homogenously for ¢ = 3 (meod 4) and only 2-
transitively for other prime powers ¢. Construction of these two groups is
described in [3] and [2] respectively.

The orbit incidence matrix method for searching designs, which will be
referred to as ”A-technique”. introduced in [2], can be sketched as follows:

e Let be given a 3-homogenous permutation group ¢ acting on Qq)
and a pair (¢, &) of natural numbers satisfying 4 <t < k < q.

e Construct the orbits 7y, ....7,, of those t-subsets of (q), which in-
clude the set {0,1,00}. Similarly, construct the orbits By, ..., B, of
those k-subsets of {)(q), which include the set {0, 1, 00}.

e Construct the orbit incidence matrix A = (Aij), 1 €i<m, 1<
J < m, where A;; denotes the number k-subsets of Q(g) within B;,
which contain a fixed t-subset (representative) of T;; the sum of all
elements in each row of A is equal to

g+1—1
k—t

e Try to find for a proper subset P of the column set of A, which
satisfies that the sum of elements within the columns of P is equal
to the same constant A for all the rows (1 < A < Atrivial/2).

e If the subset P is found, then all the k-subsets of Q(g), which belong
to the orbits B; corresponding to the columns of P, are the blocks
of at-(¢ 4+ 1,k,A) design. The complementary k-subsets of 2(q) are
the blocks of a -(¢ + 1, &, Arivial — A) design.

= A-value of the trivial -(¢ + 1, &, A)-design.

Aiigial =

1.1. A comparision between the use of PSL(2,q) and PGL(2,q)

Statement. If a prime power ¢ is of the form 4k + 3, then the group
PSL(2,q) is more suitable for looking for designs than PGL(2,q).

Namely, as already mentioned, the group PSL(2, ¢) is 3-homogenous with
the values of ¢ of this form. Although 3-transitivity (possessed by PGL(2,q))
is a stronger property, it is only 3-homogenicity that matters when the ap-
plication of the A-technique is considered. Oun the other hand, the group
P5L(2,q)is asubgroup (normal, of index 2) of P(/L(2, q), which implies that
orbits by action of PSL(2,¢) are included in orbits by action of P¢; L(2,q).
”Building constituents” of the designs are k-orbits. The smaller are the con-
stituents, the larger is the chance for making equilibrium (suitable sums of
Ai;’s), which leads to designs. Therefore we have the following;:
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Consequence. If a prime power q is of the form 4k + 3, then each design
which can be derived by A-technique with application of the group PG/L(2, q),
can be also derived with application of PSL(2,q)

However, the group PG L( 2,q) is more suitable with other prime pow-
ers. It is always 3-transitive (and consequently 3-homogenous), while, when
PS5L(2,q) is considered, only 2-transitivity is guaranteed.

Conclusion. The group PSL(2,q) is used for searching for designs with
prime powers g of the form 4k + 3, while the group PGL(2, q) is used with
other prime powers g,

2. Results

2.1. A global account of the generated designs

The computer search was performed for prime powers ¢ < 31 with & = 6
and for further prime powers g < 49 with &k = 5.

The search was successful with: ‘

PSL(2,q) and (t,k) = (4,5) for ¢ = 47:

PSL(2,q) and (t,k) = (4,6) for g =19;

PS5L(2,q) and (t,k) = (5,6) for ¢ =11,23,27 31;

PGL(2,q) and (1, k) = (4,6) for g = 25;

PGL(2,q) and (¢, k) = (4,5) for ¢ = 17,32, 37.

Note that the reported success with (t,k) = (4,6) means that there was
no success with (¢, k) = (5,6); otherwise, a 4-(¢ + 1,6, ;) design would be a
consequence of a 5-(¢ + 1,6, A;) design, which corresponds to the same set
of columns of the A;; matrix.

More precisely, the constructed t-(q + L, k, X) designs are summarized in
the following table (the numbers of t-orbits and k-orbits by action of the
group cited are denoted by m and n respectively ):

tog k A < Atvivial/2 Atrivial G mon
5 11 61,2 7| PSL(2,11) 2 s
4 17 5|4 14| PGL(2,17T) 3 4
4 19 6|60 120 | PSL(2,19) 5 19
5 23 61,2,3,4,5,6,7,8,9 19| PSL(2,23) 7 34
4 25 6)51,60,81,90,111 231 | PSL(2,25) 5 28
5 27 62,3,4,5,6,7,8,9,10,11 23 | PSL(2,27) 10 54
5 31 66,12 27T | PSL(2,31) 15 83
4 32 5]459 29| PSL(2,32) 5 11
4 37 5|16 34 | PGL(2,37) 7 15
4 47 5]8,12,16,20 44 | PSL(2,47) 10 33
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When the design complementations are taken into account, it turns out
that the total number of generated designs with distinct parameters is equal
to75=2-24+2-14+1-142-942.-54+2-104+2-24+2-34+2-142-4.
(note that A = Ayiviat/2 for ¢ = 19).

A global conclusion concerning the generated designs, obtained after a
thorough examination of the generated A-matrices, is the following:

Statement. The above listed values of A (taking in addition the values com-
plementary w.r.t. Ayivial into account), are the only possible values of A
which can be reached by action of the corresponding listed groups.

However, it is not to say that there may not exist t-(v,k,A) designs,
obtained in another manner, which have some other values of A and the
same values of £, v and & as some of the listed ones.

2.2. Detailed results of application of A-technique

In this section are listed A-matrices corresponding to each one of the ten
above cited groups, together with representatives of the underlying orbits
and with a representative of the generated designs, for each possible quadru-
ple of parameters. The t-orbits and k-orbits corresponding to successive
rows and columns of a A-matrix are listed in front of it.

2.2.1. Denotations.

A-matrices in this section will be denoted as A(G;t, k). A A-matrix is
determined by the corresponding group (7 and by the values of parameters ¢
and k: it establishes relationship between t-orbits and k-orbits by action of
G.

In order to enable precise identification of s-orbits (for s € {4,5,6}), the
following data will be given in the form (A : B; '), where

A = the ordinal number of the coresponding orbit (= row or column of
" the (Aij) matrix). :
B = s—2 elements of the lexicographically the first "special” representa-
tive, apart from the compulsory elements 0, 1, oo.

C = the number of "special” subsets (supersets of {0,1,00}) within the

orbit.

For example, the denotation (4 : 2,3,7;10) below (that is, A = 4; B =
2.3,7: C' = 10), used for a 6-orbit by action of PSL(2,11), means that this
orbit is the fourth one among the G-orbits (corresponds to the 4th column
of the A;; matrix), has the 6-subset {0,1,2,3,7, oo} as a representative and
contains ten "special” G-subsets.

The design(s) generated from a A-matrix are listed after the word "De-
sign(s)”. A representative design is given in ( )-brackets separately for each
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possible A. Designs are denoted by the ordinal numbers of the columns be-
longing to the set P (cited in the description of A-technique); the blocks of
the designs are exactly the k-sets belonging to the k-orbits corresponding to
the columns of P.

Thus the denotation (A = 2:7,21,22,30) after the matrix
A(PSL(2,23);5,6) means that the 6-sets of the 7th, 21st, 22nd and 30th
orbit of this A-matrix constitute a 5-(24,6,2) design.

2.2.2. PEL2,11)st =58,k =6, dssviml = T +

5-orbits: (1:2,3;30) (2:3,4;6)

6-orbits: (1:2,3,4;30) (2:2,3,512) (3:2,3,6;10) (4: 2,3,7;10) (5 : 2,3, 8;10)
(6:2,3,9;12)

The 2 x 6 matrix A(PSL(2,11);5,6): (2 il 1)

510001
Designs: (A=1:2) (A=2:2,6)

2.2.3. PGL(2,17),t =4, k=5, Meiviar = 14 «
4-orbits: (1:2;3) (2:3;6) (3:4;6)
5-orbits: (1:2,3;30) (2:2,5;15) (3:2,6;30) (4:3,7;30)
The 3 x 4 matrix A(PGL(2,17);4,5): (i g : g)
Designs: (A=4: 3) pad
2.2.4. PSL(2,19), t =4, k = 6, Airivia = 120 .

4-orbits: (1:2;3) (2:3;6) (3:4;6) (4:8;1) (5:12;1) )
6-orbits: (1:2,3,4;30) (2:2,3,5;60) (3:2,3,6;60) (4:2,3,7;30) (5:2,3,8;60)
(6 :2,3,9;60) (7 :2,3,10;30) (8 : 2,3,11;10) (9 : 2,3,12;30) (10 : 2,3,13;60) (11 :
2,3,15;30) (12 : 2,5,6;30) (13 : 2,5,8;10) (14 : 2,5,12;60) (15 : 2,5,15;30) (16 :
- 2,5,16;30)(17 : 2,6,12; 10) (18 :2,6,16;30) (19 : 3,4, 9; 20)
The 5 x 19 matrix A(PSL(2,19);4,6):

111111 1111
1 2 34 5 6 78 9 0123 4 5 67 89
81216612 8 84 8 8642 8 2 42 20
T12 861210 42 41062110 7 51 76
4 8105 814 51 51459212 4 42 4 4
0121201212120 0 06661212120 6 0
01212612 0 00121206012 6126120

Design: (A =60:4,5,7,9,10,11,13,14,15).
2.2.5. PSL(2,23), t =5, k = 6, Atgiviar = 19

5-orbits: (1:2,3;30) (2:2,5;30) (3:2,6;30) (4:2,8;30) (5:3,4;30) (6:3,7;30)
(7 : 3,14; 30)




584 D). Acketa and V. Mudrinski

6-orbits: (1:2,3,4;30) (2:2,3,5;60) (3:2,3,6;60) (4:2,3,7;60) (5: 2,3,8;60)
(6 :2,3,9;60) (7 : 2,3,10;60) (8 : 2,3,11;60) (9 : 2,3,12;30) (10 : 2,3,13;10) (11 :
2,3,14;30) (12 : 2,3,15;60) (13 : 2,3,18;60) (14 : 2,3,19;60) (15 : 2,5,6;30) (16 :
2,5,7;30) (17 : 2,5,8;30) (18 : 2,5,10;30) (19 : 2,5,11;60) (20 : 2,5,14;30) (21 :
2,5,15;30) (22 : 2,5,17;30) (23 : 2,._,13,30) (24 : 2,5,19;60) (25 : 2,6,8;60) (26 :
2,6,10;10) (27 : 2,6,14;60) (28 : 2,6,19;30) (29 : 2,8,14;10) (30 : 3,4,9;20) (31 :
3,4,11;30) (32 : 3,4,16;30) (33 :3,7,10;10) (34 : 3,7, 21;10)

The 7 x 34 matrix A(PSL(2,23);5,6):

111111111122222222223333 3
123456789012345678901234567890123 4
2221122111111100000000000000D00000 0
0121110000001 11211111111000000000 0
011300121000101001100110131100000 0
0010111000120300100110111011100000
1100210100012000011100012000021100
0101012100010 10000d200002002100111 1
0000100110111011101011012020001100

Designs: (A =1:9,20,32) (A =2:7,21,22,30) (A =3:2,11,18,20,27) (A = 4:

5,7,10,18,20,22,27) (A= 5:3,5,10, 13, 24, 26,27, 28) (A=6:1,5,7, 11,18, 19, 20, 21, 23,

27) (A=7:1,7,10,12,13,18,19,20,21,22,23,27) (A = 8 : 1,6,7,10,13,16,18,21, 23, 24,

25,26,27,28) (A=19:1,57,8,12,13, 14, 16,18, 19, 22, 23, 27)
2&2.6. PGL(Q,QS), t= 4, Jlu - (), ’\'tri'vial = 231 .

4-orbits: (1:2:3) (2:5:6) (3:6;6) (4:7;6) (5: 8;2)
6-orbits: (1:2,3,4;1)(2:2,3,5;120) (3:2,5,6;120) (4 2,5,7,120) (5 : 2,5, 8; 60)

(6 : 2,5,9:120) (7 : 2,5,10;80) (s 1 2,5,11;60) (9 : 2, 5‘,13; 20) (10 : 2,5;15;60) (11 :
2,5,16;60) (12 : 2,5,17;120) (13 : 2,5,18;60) (14 : 2,5,19;30) (15 : 2,5,20;60) (16 :
2,5,21;120) (17 : 2,5,22;30) (18 : z, 5, 23.313) (19 : 2 5,24;120) (20 : 2,6,8;60) (21 :
2,6,9;60) (22 : 2,6,10;60) (23 : 2,6,11;30) (24 : 2,6,12;860) (25 : 2,6,21;30) (26 :

2,10,12;30) (27 :5,7,12;20) (28 : 6,7, 15;20)
The 5 x 28 mattrix A(PGL(.Z 2)) 4, ()) the first patt:

T 1111
1 2 3456 789012 34
1401616 8 8 & 84 8 8 812 4
0121616 820 6 82121020 6 5
0121616.8 812 82 6 420 6 2
0121620 620 8 64 81012 8 6
01212 01224 0120 0 612120

The 5 x 28 matrix A(PGL(2,25);4,6) the second part:
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11 11 2 2 22 2 2222
67 8 9 01 23 4 5678
84 816 4 4 86 8 4400
4 82 41612 610410 2660
42051016 61210410 2606
122061016 6 6 22 2 5044
18240 61212121261212300

0| U =

Designs: (A = 51 : 1,3,14,17,18,20, 3,25, 26) (A = 60 : 3,9, 11,13, 18, 21, 22,27)
(A=81:1,3,7,10,13,14,15,17, 21,22, 25,26, 27) (A = 90 : 3,4, 10,13, 15, 18, 20, 21, 22, 23)
(A=111:1,3,5,7,9,11,12,13, 14, 15,17, 18, 22, 23, 25, 26, 27)

2.2.%. PSTL(Z 27) t =05, k=06, Aiviai = 23.

5-orbits: (1:2,3;30) (2:2,6;30) (3:3,4;30) (4: 3,5 30) (5: 3,7;30) (6 : 3,10;30)
(7:3,12;30) (8:3,15;30) (9:4,6;30) (10 : 4, 11; 30)

6-orbits: (1:2;3,4;60) (2 :2,3,6;30) (3 : 2,3,7;30) (4:2,3,8;30) (5:2,3,9;60)
(6 :2,3,10;30) (7 : 2,3,11;60) (8 : 2,3,12;60) (9 : 2,3,13; 30) (10 : 2,3,14;60) (11 :

2,3,15;30) (12
2,3,21;30) (17
2,6, 12; 30) (22

2,8,21;30) (27 :
3,4,15;60) (32 :
3,4, 26; 30) (37 :
3,5,18;30) (42

2 2,4,17;60) (13
: 2,3,22;60) (18 ;
1 2,6,13;60) (23 :
3,4;9;20) (28 :
3,4,16;60) (33 :

3,5,12; 30) (38

3,5,19;30) (43 :

:2,3,18;60) (14 :
2,3,23;860) (19 :
2,6,14;60) (24 :
3,4,10;60) (29 :
3,4,17; 30) (34 .
: 3,5, 145 30) (39

3,7, 10; 80) M4:

2,3,19;30) (i5 :

2,3,24;30) (20 :

2,6,18;60) (25 :
3,4,11;60) (30 :
3,4,19;30) (35

3,5,15;60) (40 :
3,7,11;30) (45 :

2,3,20;60) (16 :
2,6,7;60) (21 :
2,6,20;30) (26 :
3,4,12;30) (31 :
3,4, 23;60) (36 :

3,5,17;60) (41
3,7,17;20) (46

3,7,18;60) (47 : 3,7,20;30) (48 : 3,10, 12; 60) (49 : 3, 10, 14; 20) (50 : 3,10, 15;30) (51
3,10,18;30) (52 : 3,19, 15; 30)(53 3,12, 18; 30)(54 4,6,13;20)
'The 10 X o4inatHX'A(fﬁ9L(2 27); 5, 6)

1111111111zz222222223333333333444444444455555
123456789012345678901234567890123456789012345678901234
211121211112111111100000000000000000000000000000000000
011100011100111111021222110000000000000000000000000000
1000101000001001160101010092112211110000000000006000000
100000000101010001111010000011110110112211000000000000
1016001001010006b01010110000020001021000200112110000000
B00001100010202002100000000110010100000111100011111000
ﬁﬁﬂb00020206000020001100110101100010110100010101100110
1ﬁd01nﬂuiﬁin1n0b10U1nonld1nznn110000102010100100011110
000110110001001000060111000000111001000000200202001012
010011010001001000000011100010000010012001110112010100

jjésigﬂ‘si (A=2:7,22,39,49) (A =3:209,14,28, 33, 40,48) (A =4 :6,7,11, 22, 25,
26,.30,34,39,45,54) (A= 5 :2,7,9,14,22,28, 33, 39, 40, 48,49) (A = 6 : 3,4,6,11, 16,19,
21, 25, 26; 27, 30, 33, 34, 39, 44, 45,47, 51,53,54) (A = 7 : 2,6,7,9,11, 14, 22, 25, 26, 28, 30,

*
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33,34,39,40, 45,48, 54) (A = 8 : 3,4,6,7,11,18, 19, 21, 22, 25, 26, 27, 29, 32, 37, 38,39, 43,
45,49,52,54) (A=19:2,3,4,6,9,11,14, 16, 19, 21, 25, 26, 27, 28, 30, 33, 34, 36, 39, 40, 44, 45,
47,48,51,53,54) (A =10 :1,5,8,10,13, 15, 17, 18, 20, 24, 30, 33, 34, 36, 38, 39, 42, 44, 45, 47,
51,53,54) (A = 11:2,3,4,6,7,9,11,14, 16, 19, 21, 22, 25, 26, 28, 29, 31, 32, 35, 39, 40, 43, 46,
48, 49).

2.2.8. PSL(:Z,gl), b=y k=04 Nessvial = 27

5-orbits: (1 : 2,3;30) (2 : 2,5:30) (3 : 2,6;30) (4 : 2,8;30) (5 : 2,9;30) (6 :
2,18;30) (7 : 3,4;30) (8 :3,7:30) (9 :3,8;30) (10 : 3,10;30) (11 : 4,6;30) (12 : 4,9;30)
(13 :5,6;10) (14 : 5,7;30) (15:12,13;86)

6-orbits: (1:2,3,4;30) (2:2,3,5;60) (3:2,3,6;30) (4:2,3,7;60) (5:2,3,8;60)
(6 : 2,3,9,60) (7 :2,3,10;60) (8 : 2,3,11;60) (9 : 2,3,13;60) (10 : 2,3,14;60) (11 :
2,3,15;60) (12 : 2,3,16;30) (13 : 2,3,17;10) (14 : 2,3,18;30) (15 : 2,3,19;60) (16 :
2,3,20;60) (17 : 2,3,21;60) (18 : 2,3,22;60) (19 : 2,3,24;60) (20 : 2,3,25;60) (21 :
2,3,26;60) (22 : 2,3,27;60) (23 : 2,3,28;30) (24 : 2,5,6;60) (25 : 2,5,7;60) (26 :

2,5,8;60) (27 : 2,5,9;30) (28 : 2,5, 10;60) (29 : 2,5,12;60) (30 : 2,5,13;60) (31 :
2,5,14;60) (32 : 2,5,15;30) (33 : 2,5,18;60) (34 : 2,5,19;20) (35 : 2,5,21;60) (36 :
2,5,23;60) (37 : 2,5,24;30) (38 : 2,5,25;60) (3q : 2,5,27;60) (40 : 2,5,28;30) (41 :

2,6, 7;30) (42 :2,6,8;60) (43 : 2,6,9: 60) (44 :2, 6,10; su)(45 2,6,12; 30) (46 :2, 6, 18; 60)
(47 : 2,6,21;60) (48 : 2,6,23;60) (49 : 2,6,26;30) (50 : 2,6,27;30) (51 : 2,6,28;60)
(52 : 2,8,10;30) (53 : 2,8,13;60) (54 : 2,8,18;60) (55 : 2,8,21;60) (56 : 2,8, 26;30)
(57 : 2,9,13;60) (58 : 2,9,21;30) (59 : 2,9,27;60) (60 : 2,9,28;30) (61 : 2,18, 21;30)
(62 : 2,18,26;30) (63 : 3,4,9;30) (64 : 3,4,10;60) (65 : 3,4,11;30) (66 : 3,4,12;30)
(67 : 3,4,15;60) (68 : 3,4,23;30) (69 : 3,4,24;30) (70 : 3,4,25;60) (71 : 3,4, 26;30)
(T2 : 3,7,8;30) (73 : 3,7,15;12) (74 : 3,7,20;10) (75 : 3,7,23:20) (76 : 3,8,12;30)
(77 : 3,8,14;30) (78 : 3,8,18;60) (79 : 3,8,22;30) (80 : 3,10,18;10) (81 : 4,86, 17;10)
(82:5,7,23;10) (83 :5,7,29;12) : '
The 15 x 83 matrix A(PSL(2,31);5,6):

1111111111222222222233333333334444444444555555555566666666667777777T778888
12345678901234567890123456789012345678901234567890123456789012345678901234567890123

22111112111111111211111000000000000000000000000000000000000000000000000000000000000
01100000011000011011000111111121112111110000000000000000000000000000000000000000000
01121000201100000000000110001001100000001121211111100000000000000000000000000000000
00001112100000001011100102120000000101000101000100021111000000000000000000000000000
00000110110000110100001101111100110001010020000000101000211100000000000000000000000
00000000000001102100121000001000102001100000011011000111011012000000000000000000000
10001110100000001011100000000000000110000100020000001010000100111121111000000000000
00010001001000110001010000000111000000001010100100002020001000001011010111100000000
01011000010000010100110010000200000110100000000001101000001100000101000100011210000
00000020000001100100100100001020100000100000011100000011001000011000011000000221000
01001000001100000020000010001000100001000101011000100100200000110000110000020200100
00000100010000010001000002020010001000100010002100110100100000110020011100001000000
000000000000000000600000300000000000003003000000330000300000030030000030000000000000
00010101011000100000010010000100001200000200000000000100110011010110100000101000011
00000000000000000000000050000000000000550000000000500000005000000000000010000000001
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- = 1

Designs: (A = 6 : 8,13,15, 16, 21, 25, 26, 29, 30, 38, 45, 46, 49, 67,71,76, 80, 83) (A =
121 1,2,5,6,9,10,13,15, 16, 22, 25, 26, 28, 29, 31, 33, 36, 37, 41, 42, 46, 47, 49, 53, 54, 55, 58,
59,70, 73,78, 83). '

2.2.9. PGL(2,32), t=4, k=05, Ayivial = 29.
4-orbits: (1:2;6) (2:4;6) (3:6;6) (4: 14: 6) (5 :16;6)
5-orbits:- (1:2,3;15) (2: 2,5 60) (3:2,6;60) (4:2,8;60) (5:2,9; 60) (6 : 2,11;60)

(7:2,12;15) (8:4,5;15) (9 : 4,17, 60) (10 : 6,14;15) (11 : 14, 22; 15)

44410

148

140

The 5 x 11 matrix A(P(/L(2,32);4,5): | 004
084

044

1

Designs: (A=4:5) (A=5:1,7,8,10,11) (A=19 :

-
ER )

2.2.10. PGL(2,37),t =4, k = By Mrivial = 34,
4-orbits: H1:2:3) (2:3;6) (3:4;6) (4:5; 6) (5:6;6) (6:8;6) (7:11;2)
5-orbits: (1:2,3; 30) (2:2,5/60) (3:2,6;60) (4:2,7;15) (5:2,8;60) (6:3,4;30)
(7 :3,7,60) (8 : 3,12;60) (9 : 3,14;30) (10 : 3,15;30) (11 : 3,26;60) (12 : 4,5;30)
(13 :4,11;10) (14 : 4,17; 30) (15 : 5,8;30) ’
The 7 x 15 matrix A(PGL(2,37);4,5):

8 8 B 2 8 0 0 000000 0 0
(4 0 4 0 0 4 8 4 4 2 4 00 0 0
2 4 00 4 4 0 8 0 0 4 2 2 0
0 8 4 0 0 2 4 0 0 4 4 4 0 0 4
0 0 4 4 4 0 4 4 0 4 4 0 4 0
0 4 4 0 4 0 0 4 6 0 4 0 0 4 4
00 0 012 0 12 0° 0 0 0 0 4 0 §

Design: (A = 16:2,3,7,8,13, 14)

2.2.11. PSL(2,47), 1 =4, k = 5, Ayivia = 44.

4-orbits: (1:2;3) (2:3;6) (3:4:6) (4 5:3) (5:6;6) (6:7;6) (7:10;3) (8:11;6)
(9:13;3) (10 : 22;3)

5-orbits: (1:2,3;30) (2:2,530) (3: 2,6;30) (4:2,7;30) (5 : 2,8;30) (6 : 2,10;30)
(7 :2,12;30) (8 : 2,13;30) (9 : 2,14;30) (10 : 2,16;30) (11 : 3,4;30) (12 : 3,7;30)
(13 : 3,8;30) (14 : 3,11530) (15 : 3,12;30) (16 : 3,13;30) (17 : 3, 14; 30) (18 : 3,15;30)
(19 : 3,17;30) (20 : 3,19:30) (21 : 3,20;30) (22 : 3,22;30) (23 : 3,26;30) (24 : 3, 39; 30)
(25 : 4,9;30) (26 : 4,13;30) (27 : 4,19;30) (28 : 4,20;30) (29 : 4,21;30) (30 : 4,27;30)
(31:5,8;30) (32 :6,10;30) (33 : 7,11; 30)

The 10 x 33 matrix A(PSL(2,47); 5,6):
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111111111122222222223333
123456789012345678901234567890123
844484444400000000000000000000000
402000000248822242222422000000000
220040020040004040002020442242000
044004400000084404400000000440400
002440000204400440002020004404220
000442202024420004440002220024004
040004400400000004400480044000044
020042222004420080000202400000442
00000004440000440004000R8044000400
004000044000000000048400000440044

Designs: (A = 8 : 5,14,21,23,24) (A = 12 : 2,4,10,14,17,20,21,26) (A = 16 :
3,6,8,9,11, 14, 17, 20, 23, 27, 30) (A = 20 : 3,4,5,8,11, 14, 18, 21, 22, 23, 24, 25, 27, 31)

2.3. Some observations on the constructed designs

In this section we give some miscalleneous data concerning the constructed
designs and the construction itself.

The designs for ¢ € {17,32} were considered in more detail in [2]; just
a few data are mentioned here. The construction for ¢ = 17 is due to
Alltop and was described in [5], Example 8.5, pp. 186-187; A-technique
is an improvement of the Alltop’s construction. The design constructed for
g = 32 and A = 5 is the first member of an Alltop’s infinite class of 4-designs.
It is likely that all the constructed designs for ¢ = 32 can arise ([8]) by action
of the 4-homogeneous group PGamalL(2,32).

The designs with ¢ = 11 and ¢ = 23 are related to the well-known ([5])
Steiner systems S(5,6;12) and 5(5,6;24) (that is, to the 5-(12,6, 1) design
and to the 5-(24,6,1) design). The first one of these Steiner systems is,
as stated in [7], Theorem 2.26., the uniquely determined Steiner system
S(5,6512), with the automorphism group isomorphic to the famous Mathieu
5-transitive group M;s of cardinality 8-9-10-11-12.

The brute-force search over the colums of A-matrices was applicable on a
P(C-386 computer in the cases when the number » of columns was restricted
to 30 (n = 30 required one week of computing time and each added unit
to n would double the time required). The following shortcut was used for
g = 23 and ¢ = 47, where n is equal to 34 and 33 respectively:

It is observed that there exist in both cases several pairs of duplicate
columns within the A-matrix (exactly four pairs with ¢ = 23,n = 34 and
three pairs with ¢ = 47,n = 33). The search is performed over the reduced
30-column matrices, which are obtained from the A-matrices by discarding
one of the columns from each duplicate pair. Such a reduction does not guar-
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antee completeness of the search; it might happen that some of the existing
designs require combinations of columns which inelude both columns in a
duplicate pair. However, the arguments related to the specific coefficients of
the two A-matrices show that no set of design parameters is missed in this
way.

For example, the set of A values with ¢ = 23 is complete (all the values
in the interval [1,...,18 = Aijivial — 1] are present). Similarly, all the elements
in the first row of the A-matrix for ¢ = 47 are divisible by 4, which implies
that all the corresponding values of A must be divisible by 4; an additional
argument shows that A = 4 is impossible.

The A-matrices with ¢ = 27 and ¢ = 31 have very large numbers of
columns (54 and 83 respectively), so there is no chance for a full search.
However, ad hoc designed heuristic approaches ([3]) have given designs with
all the possible values of A in these cases.

The number of successful (that is, design-corresponding) combinations of
columns is very large with some of the A-matrices (several hundreds with
g = 19 and ¢ = 47 and several thousands with ¢ = 23).

Some of the obtained parameters seem to be particularly interesting. For
example, the designs constructed for ¢ = 37 seem ([8]) to be the first 4-
designs known on 38 points.

A design isomorphism search was performed ([6]) among the constructed
560 4-designs on 48 points for A € {8, 12,16,20}. Auxiliary graphs were at-
tached to the designs so that non-isomorphism of some two attached graphs
implies non-isomorphism of the corresponding designs. Global results of this
search seem to be very interesting. All the equivalence classes of isomorphic
attached graphs are of cardinality 2; this implies that at least one half of
the total number of the constructed designs are pairwise non-isomorphic.
Moreover, the unique and involutory (a product of transpositions) isomor-
phism maps onto each other the two graphs of each one of the equivalence
classes; this means that the recognized isomorphism is a global symmetry of
the whole found class of 4-designs.

Finally, it seems worth-while to try an isomorphism search for ¢ = 19.
It is only in this case that there exists a unique (and self-complementary)
value A = 60. Is the 4-(20,6,60) design unique up to an isomorphism within
the class of designs with these parameters generated by PSL(2,19) ? The
isomorhism search in this case might use attached hypergraphs with edges

containing three vertices each. )
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