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ABSTRACT. The aim of this paper is to give a survey of iterative methods

for bounding the inverse of a point or interval matrix. These methods are
based on the generalized Schulz’s method and developed in interval arith-
metic. The interest in bounding roundoff errors in matrix comput
come {rom the impossibility of exact representation of e
in those cases when numbers are represented in the

ations has
lements of matrices
computer by strings of
bits of finite length or elements were experimentally dete

rmined by mea-
surement which leads to the uncertainty in initial data.

A posed problem
can be usefully solved by interval analysis, a new powerful tool of applied
mathematics. A detailed study of the hasic inclusion method and its modifi-
cations, including the convergence features. conditions for a safe convergence,
the monotonicity property, the choice of initial inclusion matrices and a num-
ber of remarks concerning a practical realization. were presented. A special
attention is devoted to the construction of efficie
of the inverse of a matrix.

nt methods for the inclusion

1. Introduction

The demands of the computer age at the beginning of the sixties years
with its "finite” arithmetic dictate the need for a structure which has come
to be called interval analysis or later interval mathematics - a new, growing,
and fruitful branch of applied mathematics., "4 Ithough interval analysis is in
a sense just a new language for incqualities, it is very powerful language and
is one that has direct applicability to the important problem of significance in
large computations” (R.D. Richtmeyer, Math. Comput. 22 (1968), p. 221).
The starting point for the application of interval analysis, described for the
first time by Moore [21], is the desire in numerical mathematics to be able to
implement algorithms on digital computers capturing all the roundoff errors
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automatically and therefore to calculate strict errors automatically. Interval
arithmetic is powerful tool for bounding a result of some computation or
a solution of an equation so that interval methods are often called self-
validiting algorilthis.

Anyone using a computer, whether in engineering design, physical sci-
ences, technical disciplines. or whatever has surely inquired about the effect
of rounding error and propagated error due to uncertain initial data or un-
certain values of parameters in mathematical models. A standard question
should be "what is the error in the oblained results?”. Numerical algorithms
using interval arithmetic supply techniques for keeping track of errors and
provide the machine computation of rigorous error bounds on approximate
solutions or results.

The application of interval mathematics to compnting has several ob jec-
tives: to provide computer algorithms for finding sets containing unknown
solutions; to make these sets as small as possible; and to do all this as el-
ficiently as possible. Towards these objectives, set-to-set mappings replace
point-to-point mappings, and set inclusions replace approximate equalities.

The purpose of this paper is to present iterative methods for bounding
the inverse of a matrix. The interest in bounding roundoff errors in matrix
computations has come from the impossibility of exact representation of
elements of matrices in some cases since numbers are represented in the
computer by strings of bits of fixed, finite length. Besides, there are elements
which are experimentally determined by measurement which leads to the
uncertainty in initial data and it is only known that their values belong to
some intervals. Finally, nearly all numerical computation is carried out with
"fixed-precision”, approximate arithmetic. In the commonly used approach,
one assumes that the worst possible roundoff error occurs in each numerical
step. One then determines (or bounds) how these errors can accumulate as
the computation proceeds. This procedure is usually called ordinary method
for error bounding and the abbreviation OM is used to refer to it. The
second approach uses interval arithmetic (abbreviated as Z.4) which has the
advantage of an automatic control of rounding errors and, at the same time,
an inclusion of the exact result of computation. For this reason, the main
subject of this paper is concerned with iterative methods which nse ZA for
bounding errors in matrix inversion.

In Section 2 we will give the basic matrix operations needed for the con-
struction and analysis of iterative algorithms for the inclusion of real or
interval matrices. A general approach to the problem of the inversion of
matrices is described in Section 3. The two basic interval iterative meth-
ods, based on the generalized Schulz’s method, are considered in Section 4.
Conditions for the monotonicity of interval sequence of inclusion matrices
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are the subject of Section 5. In Section 6 we study the problem of finding
a suitable initial matrix which insures the convergence of the presented in-
terval algorithms. Efficient iterative methods for bounding the inverse of
a matrix, which combine the efficiency of floating-point arithmetic and the
control of accuracy of results by interval arithmetic. are presented in Section
7. A special attention is devoted to the choice of parameters which define
the most efficient inclusion algorithmn. Finally, in Section 8, we describe an
iterative method for the inclusion of an interval matrix. Throughout this
paper several numerical examples are given to illustrate presented methods
as well as difficulties which appear in solving the studied problem.

The presented study is a two-way bridge between linear algebra and com-
puting. Its aim is to encourage mathematicians to look further to computing
as a source of challenging new problemns, and researchers in computing to
turn more frequently to contemporary mathematics in their day-to-day use
of the digital machine.

2. Interval matrix operations

A subset of the set of real numbers R of the form
A=lay,a) = {a|la) <o <ay, 4,09 € R}

is called a closed real interval. The set of all closed real intervals will be
denoted by I(R). If az = ay then the interval A = [a1, a,] degenerates to the
real number a; and A is called a point interval. The basic operations and
properties in the set /(R) are described in the book [3, Ch. 1 and 2]. Real
intervals will be denoted by capital letters.

A real interval matriz is a matrix whose elements are real intervals. Since
we deal in this paper only with real intervals and real interval matrices, we
will use the shorter terms interval and interval matriz. The set of m % n
matrices over the real numbers is denoted by M,,,,(R) and the set of m x n
matrices over the real intervals by M,,,(/(R)). An interval matrix whose all
components are point intervals is called a point matriz. Point matrices (el-
ements from M, (R)) will be denoted by capital letters A, B, C',... . while
interval matrices (elements from M (1(R))) by capital letters A, B,C,...
in bold. Interval matrices are represented, as is customary for real or com-
plex matrices, by their components in the form A = ( Aij)

Definition 1. Two m X n interval matrices A = (A;;) and B = (B;;) are
equal if and only if there is equality between. all corresponding components
of the matrices, that is, A =B < Ay = B = Lo ve 08 J= Lyens ,m).

A partial ordering on the set of interval matrices M,,.(1(R))is introduced
by
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Definition 2. Let A = (A;;) and B = (B;;) be two m x n interval matrices.
Then
ACB < /-Lj_-,' L B,jj (3 = by woe 5in G = Ly owa )

In particular, if A = (a;;) is a point matrix, then we write A € B. Each
interval matrix may be regarded as a set of point matrices.

[n the following we give a short review of the basic operations between
interval matrices which formally correspond to the operations on point ma-
trices.

Definition 3. For two m X n matrices A = (A4;;) and B = (B;;) interval
matrix addition and subtraction are defined by

A+B:= (A,,;j + B”)
Definition 4. Let A € M,,..(I(R))and B € M,,(/(R)). An interval matrix
computation is defined by

AB = (i 151“"1:,[‘)’];_';) v

k=1
Definition 5. If A = (A;;) is an interval matrix and X an interval, then
XA =AX:=(XAy)

It is easy to prove that
A+B={At 8Bl A A,BeB},
while
ABD{AB| A€ A.B e B}

In the following theorem the basic properties of the introduced operations

are given (see [3, Ch. 10]):

Theorem 1. If A, B and C are interval matrices, then
A4+B=B+A (conumutativity),
A+(B+C)=(A+B)+C (associativity),
A+0=0+A=A (0O — zero malriz),
Al=TA = A (I— unit matrix),
(A+B)CC AC+ BC
C(A+B)CCA+CB
(A+B)('=AC +B(,
C(A+B)=CA+ (B,
A(BC) C (AB)C.

(subdistributivity),
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Let us note that the associative low is not

matrices. This low is not valid even if t

(the last property in the above theorem ).
I'he inclusion isotonicity property for t

he matrix operations is given in
the following theorem ([3, Ch. 10]):

Theorem 2. Let A, By (k= 1.2)

intervals. If + € {+, —, } a5 one of matriz operations then the conditions

AL CBy (k=1.2) and X cY
mply Ay« Ay C By + B, and XA, CVB,.
In particular, from Theorem 2 we obtain
AeA. BeB = A+ Be A+B,
AeX, AcA = JAe XA (A ER).

Definition 6. Matrix norm of an in terval matrix A is defined by

IA fl:= max || 4,
. AeA

where || - || is an arbitrary monotone norm.

Thus, the norm of an interval matrix is an extension of the norm of a point
matrix and directly depends on the type of this norm.

Most frequently, we
use "maximum row-suin” norm || - ]

Jesen

(2.1) | A o= max || A [|o,= m?xZ |4,
A

and "maximum column-sum” norm -,

22 A lj:=max || A |;= ma,xz Azl
(22) 4 lhi= a1 A lh= max 3
i
Both norms are monotonic and multiplicative, that is (omitting subscript
indices),

BCA = |IBl<[|A| and [AB|<|A|-|B].

In the sequel, we will omit the subscript indices (indicating the type of norm)
and assume that the used matrix norm is monotonic and multiplicative. The
application of some specific norm will he accented.
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. In general, valid for interval
woof three matrices are point matrices

be: interval matrices and X and Y real
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Before introducing the concept of width, absolute value and midpoint for
interval matrices, we recall to the corresponding definitions for a given real
interval X = [a,]:

d(X)=b—a (width);

| X| = max(|a

b)) (absolute value);

o

m{X) = gk

(miidpoint).

Definition 7. For an interval matrix A = (A;;) the following point matrices
are associated:

a) the width matrix d(A) := (d(A;;));
b) the absolute value matrix |Af:= (]Ai;]);
¢) the midpoint matrix m(A) := (m(Az;)).

The matrix d(A) and |A| have nonnegative components. The elements of
the midpoint matrix m(A) are real numbers which are equal to the midpoints
of the corresponding (interval) components of the interval matrix A, so that
m(A) € A.

Definition 8. A sequence of interval matrices {A} is monotonically non-
increasing if Ap 2 Ay 2 Ay 2 -+, and monotonically nondecreasing if
AgCA CAC---.

Definition 9. The intersection of two interval matrices A = (A;;) and
B = (Bi;) of the same type is delined as

ANDB = (40 By;).

It is easy to see that the intersection of interval matrices has the property
ACC,BCD = AnBCCnD (inclusion rsotonicity).

Definition 10. Let X = (x;;) and Y = (9;;) be point mattices from
A/I’HL'H.(R)- TI]F‘-I'I

X<Y & z <y i=1...,m jg=1,... , 1)

defines the relation of partial ordering " <" in M, (R).

Using Definition 10 the following properties for real matrices, introduced
in Definition 7, can be proved ([3, Ch. 10]):
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Theorem 3. IfA = (A;;) and B = (Bij) are interval matrices of the same
type, then '

(1) ACB = d(A) < d(B),

(2) ACB = |A|< B,

(3) d(A£B)=d(A)+ dB),

(4) |A+B| <|Al+(B],

(5) [AA|=|AX = IAl[A] (A e R).

(6} |AB| < |A[|B],

(7) d(AB) < d(A)[B|+ |Ald(B),

(8) d(AB) > |A|d(B), d(AB)> d(A)B|,
(9) d(AB) = |A|d(B), d(BA) = d(B)|A],

(10) O€A = |A|<d(A)<2A|,

(11) m(A+B) = m(A) £+ m(B),

(12) m(C'A) = C'm(A), m(AC) = m(A)C.
(13) m(C)=C.

3. Problems of bounding the inverse of a matrix

In this section we will consider the problem of bounding the inverse of a
matrix in the presence of rounding errors applying digital computers with
the arithmetic of limited precision as well as uncertain data in elements of
a given matrix.

First, we point out some more general problews in matrix inversion. Let B
be an exact matrix whose elements can he exactly represented in arithmetic
of finite (say, double) precision in a computer. Let A = (a;;) be a matrix
whose elements are subject to error. Suppose we know ouly that &y (1 5=

L,2,...,n)lies in the real interval [a;;.7i;], where a;; and @;; can be exactly
represented in double precision.

Problem 1. Compute B~! ( approximately) and bound the errors resulting
from roundoff.

Problem 2. For a given matrix A = (ai;) with a;; € la;;,@i;] for 4,5 =
1,2,...,n, compute 41 (approximately) and hound both the errors result-
ing from roundoff and the errors from possible errors in A itself.
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Problem 3. Define the set
-1
(AI) — {A_ll i € [Qij,(_f.,j_,'], A4 = I}

-1 . .
Compute (AT)™ approximately and bound the errors due to roundoff.
Problem 4. Find (A")"] exactly.

Problem 1 can be easily solved by QM or by inverting B using Z.A. More-
over, by use of arithmetic of sufliciently high precision, arbitrary accuracy
with arbitrary sharp bounds can be obtained.

Using ZA, Problem 2 can be solved as easily as Problem 1. Using OM,
only slightly more effort is required to solve Problem 2 than Problem I.

OM obviously cannot solve Problem 4 and cannol solve Problem 3 except
in a very crude sense. It can be shown (see [6]) that Problem 4 cannot be
solved using Z.A, even if infinite precision arithmetic is used. An approximate
solution of arbitrary high accuracy can be obtained but the amount of work
quickly becomes prohibitive.

Hence, we direct our attention to Problem 3 which can be solved using ZA.
Two approaches for solving this problem by Z.A have been developed in the
literature: hyperpower method [4], [6] and Alefeld-Herzberger’s modification
of generalized Schulz’ method [1].

The hyperpower method is defined by a matrix-valued fuction ®(A, X)
for real n x n matrix X in the range ol the real n x n matrices, where A is a
given matrix whose inverse A™! has to be found. By means of the iteration

XD = ¢4, XM, given X0 k>0,

we get an iterative method which generates a sequence { X)) of matrices.
Following Altman [4] we call this iterative method a hyperpower method for
A1 of order p > L il and only if the equation

[ AXHHY (- AXUNP k>0

is filfilled. If the initial matrix X(® is chosen so that p(/ — AX©@) < 1 (p
denotes the spectral radius), then the sequence of matrices { X} converges
to the inverse A~! of the matrix A with the order of convergence p. Using
suitable error-bounds for the hyperpower method it is possible to derive
inclusion set for A~1. Further improvements can be attained using interval
Schulz-Herzberger’s method in the final step, as it was proposed in [16]
and [17]. Let us note that Herzberger presented in [10] a class of iterative
methods for inverting a linear bounded operator in a Banach space, which
can be considered as a kind of hyperpower method.
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The second method uses an iterative procedure to hound the inverse not
only for a point matrix but also for an interval matrix. As mentioned above,
this method was introduced by Alefeld and Herzberger [1] and analysed later

ol their books [2] and [3]. It is based on the generalized Schulz’s method for
point matrices and realized in real interval arithmetic. Since a number of out-
standing results concerning improvements and modifications of this methods,
including detailed studies of many convergence properties and behaviours,
and a practical realization, were given by Prof. J. Herzberger throughout
about twenty papers, it is quite natural that the mentioned methods and
their modifications are referred to as Schulz-Herzberger’s methods, or the
S-H methods, for brevity. A survey of these interval methods will be given
in the following sections.

Before we present iterative methods of Schulz-Herzherger’s type, we give
an example to illustrate difficulties appearing in bounding inverse matrices.

Example 1. Let us cousider the interval matrix

[ L [0.999995, 1.000005]
A= g 1

and the point matrix

(f(:z:):[; ‘J v € X = [0.999995, 1.000005].

Let A=t = (A}) and C(z)"! = (¢i;(x)) be the inverse matrices of A and
C'(x), respectively. Then Al = {ei;j(x)]x € X}. Let us determine, for
instance, the component A}, of the inverse matrix A-!. First, we have
¢y = af(2z — 1). For 2 € X = [0.999995,1.000005] the component &g ()
is a monotone function so that the endpoints of the interval X yield the
extreme values (minimum and maximum) of ¢},(2). According to this, using
10 significant digits, we obtain A}, = [0.9999950000, 1.0000050000].

On the other hand, using interval arithmetic of infinite precision and the
rounding of results to 10 digits to find Af,, we calculate

X

5% T = (09999850001, 1.0000150001],

which differs from the exact result given above by Al,.

4. Interval versions of Schulz’s method

Let p > 1 be a fixed natural number and 7 the unit matrix. If A is
a given nonsingular point matrix and X(° is an initial matrix such that
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| £ — AX(®) ||< 1, then for finding the inverse of A the generalized iterative
method of Schulz of the order p

p—1
(4.1) X040 = x () Y (I-AXWYy (k=o0,1,...)

r=0

can be applied (see [4], [26], [27], [32]). In particular, for p = 2, one obtains
Schulz’s method of the second order for calculating the inverse matrix [31]

(4.2) X0 = xWB (o _ Axy (E=0,1,...).
Let X be an interval matrix containing the inverse matrix A=1 of a given

nonsingular matrix A, and let X € X (for example, X = m(X)). For
B =1- AX we have the identity

p—2
P71 BP ' = (I-BYI+B+B*+---4+ B" %)= AX > B,
=0
that is, after multiplying by A~',
p—2
ATV AT - AXPTT =X ) (T - AX)
=0
Hence, since A~ € X,
p—2
(43) AT'=X) (J- AX) + A1 - AX )P
r=0
p—2
€X ) (I-AX) +X(I - AX)P",
r=0

The last relation suggests the following iterative interval version of (4.1) for
the inclusion of the matrix A :

p—2 . 4
(4.4) X(kt1) = m(X“‘)) Z(I = Am(X(k))) 41K ([ _ A?}L(X(k)))p :

=0

(k=0,1,...), assuming that the initial matrix X(® contains A~71.
The properties of the inclusion iterative method (4.4) are given in the
following theorem ([3, Ch. 18]):
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Theorem 4. Let A be « nonsingular nxn matriz and X© an nxn interval
matriz such that A=' € X0, A sequence (XY of interval matrices is
calculated according to (4.4). Then
(4a) each matriz X¥) (k> 0) contains A=
(4b) the sequence {XMY converges to A=" if and only if the spectral radius
p(I — Am( XN is smaller than 1;
(4¢) using a matriz norm. || - || the sequence {d(X9))} satisfies

HXED <y ) XDy (7, 5 20,
that is, the order of convergence of the method (4.4) is at least P.

Proof. Of (4a): Setting X(¥) = X and m(X¥)) = X in (4.3) and taking
into account the iterative formula (4.4), we obtain

p—2

r p—1
A7 € m(XM) Z([ — Am(X”"))) + X*) (1 - A?M(X("")))I = X(k+1)

r=0

Since, in addition, A~ € X the proof of (4a) follows by complete induc-
tion.

Of (4h): Using the rules from Theorem 3 for the midpoint matrices,
the midpoint mapping in the iterative procedure (4.4) gives the following
iterative formula for the sequence {m(X(*))}:

p—l 5
?7;',(X““+U) = m(X-(‘l")) Z(I — ATH(XU"))) .

=

This is a generalization of Schulz’s iterative procedure given also by (4.1).
Multiplying both sides of this equation by A one obtains

' p—1 -
Am(XU4D) = (1= (1= Am(X9))) 37 (1~ Am(x#))
' ' ‘ r=0
=1—(I—Am(XW))",
or

k41
p+

I — Am(X(R-H)) = ([ - A?I?.(X(k)_)):n = (/- A’JJL(X(D)))

Hence, there follows

lim m(X*)= A1 & lim (I=Am(XO)N' =0 & p(I - Am(X)) < 1.

k——?()() Ilm'—"'X'J
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Let us show that the sequence {X(*)1 converges to A~! if and only if the
sequence of midpoint matrices {m(X(*))} converges to A=!. This follows
from the consideration of the sequence {d(X*))} of the width matrices which
satisly

(X = ”)|( A?H(X(“))p_l \

(see the properties (3) and (9) of Theorem 3). If limy_ o m(X8) = A1,
then the last relation implies that limj_ ., d(X¥)) = 0. Conversely, ns-
ing the continuity of m and (13) of Theorem 3 it follows trivially that
lim oo X5 = A= implies limj_ o, 2e(X*®)) = A~1. Since it was shown
above that the condition p(J — Am(X™)) < | was necessary and sufficient
for the convergence of {m(X* N}, it follows that (4b) is valid.

Of (4¢): First we estimate

d(XH*H = (XN (1 — Am(X*))r—1
:d(X EN(AA™T = Am(X R )y
d(XEN (| A AT = nu(X Y)Y
< (XM= Aldx )P
Using a monotonic and multiplicative matrix norm || - || and the last relation,
we gef ;
XDy < 27D A Y| ax ) |

Since the inequality
Bl <l Byl BIl, 7 >0, 7 >0,
is valid for every matrix norm || - ||, from this inequality we get
[ d(XEHDY || gy < 2= =04 P (X9 |,
which proves (4c). O

Remark 1. From the proof given above we see that the assertion of the the-
orem is also valid even if X{?) is an arbitrary interval matrix not necessarily
containing A~!. In that case we will not have the inclusion A=! € X® in
general. We observe that the criterion (4b) depended only on the midpoint
matrix m(X(®) of the given inclusion matrix X(©), while the width d(X(®)
can be arbitrary. For this reason, taking m (X)) to be an approximation

to A7! (but so that the condition (4h) holds) and choosing the elements of

the matrix X(® to be large enough so that the enclosure of A=! by X(® be
ensured, we can provide not ouly the convergence of the method (4.4) but
also the inclusion A=' € X% (kb =1,2,...).
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Example 2. The S-H method (4.4) for P = 2 was applied for the inclusion
of the inverse of the point matrix

11
5 5
A=
a9
10 10

The initial inclusion matrix was constructed accordin g to the procedure (6.2)
given in Section 6. Thus, with « = 1/(1- | I —Al) =32, for the initial
matrix X(® we choose

) [—a,2 4+ a] [~a. a] 351 [-5.3]
[~a.a]  [~a,244q] [-%3.3] [-%,4

In this way we ensure that A~1 ¢ X(0 pLolds. Besides, we have p(I —
Am(X(0)Y)) = p(I — A) = 0.8 < 1, which provides the convergence of the
iterative procedure (Theorem 4). The first four iterations give the following

inclusion interval matrices (using arithmetic with 7 significant digits):

x(1) _ [ [0-1666666,2.2333316]  [—0.8999999, 0.4999999]
© L[-1.4333324,0.8833329]  [0.5000000. 1.6999988] | °
x@ _ [ [L1716651,1.5043325]  [-0.3969995, —0.1749999]
- [[-0.5963338, —0.2616657]  [1.0849990, 1.3049983] |~

x3) _ [1.3587207, 1.3672409] —0.3054331, —0.2997532]
~ | [-0.4581502, —0.4496299]  [1.2088432, 1.2145233] |

x(4) — [1.3636322, 1.3636379] [—0.3030319, —0.3030281]
- [—0.4545477.—(].4545422] [1.‘21211H1.1.2121219]

The applied iterative methods converges (uadratically starting from the
third iteration. Besides, in each iteration step we have

5 _ 10

= X 1.36363636...  —0.30303030. ..
-1 _ (k)
A = = € X\&),
-1 2 —0.45454545 ... 1.21212121. ..

The sequence of the matrices produced by (4.4) always contains A~!
according to (4a) and, thus, it seems natural to form the intersection of the
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new inclusion matrix X*+1) and the former matrix X* in order to decrease
the resulting matrix, which leads to the iterative method

(4.5)
p—2
ylk+1) — m(X*)) Z(I _ Am(X(k)))r + X(R)U _ AJ‘I‘L(X(M))T]_],
=0

Xktl) = YD) A X (B =0,1,...).
Using this iteration procedure one obtains a monotonic sequence
X0 5 x5 x2) 5 .,

of inclusions for A=1. The following nnmerical example does show, however,
that the convergence criterion (4b) is not sufficient for convergence in general.

Example 3. ([3, Ch. 18]) We choose p = 2 and the matrices

a= (56 o] xo-[2d B2a).

which implies that m (X)) = /. We obtain

I - Am(X(U)) = [83 ﬁ(]n('_jﬁ]

and calculate p(f — Am(X(9)) = 0.6v/2 = 0.85 < |. Therefore, the proce-
dure (4.4) converges to A~ using this interval matrix. Applying (4.5) we
find
(1) _ (0) O (7 _ A (0)yy [-2,5.2] [-4.2,3]
g m(XY) + X7 — An(XP)) = [[_3_4_2] —2.59]| "
which implies that X = X©)_ The sequence of matrices generated by (4.5)

therefore does not converge to A= in contrast to the sequence computed by
(4.4).
A convergence statement for the iteration (4.5) is contained in the follow-

ing theorem.

Theorem 5. Let A be a nonsingular n x n matriz and X% an nxn interval
matriz for which A=' € X, [f the sequence of matrices { X8} is produced
by (4.5), then

(ha) each matriz XK k>0, contains A7
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(5b) if the inequality p(l] — AX|) < 1 is satisfied for all X € X then
the sequence {X™Y converges toward A=1:
(5c) the sequence {d(X)} is bounded as jollmn.s.

[ ’E(X(JHU) I<2"l d(X“‘:)) I”, +' >0,

that is, the order of convergence of the iterative process (4.5) is at
least p.

Proof. Of (5a): As in the proof of (4a) of Theorem 4 we first show that

A7 € YD | from which follows immediately that A=1 € X+ gince
A1 e X&),

Of (5b): We shal] use the fact that every sequence {X(¥}, for which

X (0 Z) XM o x( - holds, converges to an interval matrix X = (Xij),
where
+ o
Xy= ﬂ X}_:-“) (i=1,c...m; 5=1,...,n)
A=0

(see [3, Corollary 8 in Ch. 10]). Therefore, the sequence {X(*)} obtained by
(4.5) always converges to an interval matrix X. We now show that under the
assumptions of the theorem we must necessarily have d(X) = 0. We define

p—2

Y = m(X)Z(I - .4m(X})r + X (I - /lm(X))p_]

r=0

and obtain X = (X;; N Y;;) CY from (4.5). By (1) of Theorem 3 we get
d(X) < d(Y). For d(X) we obtaiu from (4.5)

d(X) T = Am(X)|P~ > d(X)(T — Am(X))P~1) = d(Y) > d(X),
which implies that
AX)(I = |1 = Am(X)|"7") < 0.

The assumption p(|l — Am(X)]) < 1 implies the existence of (I —|I -

Am(X)|P=1) 7. Tt can be shown that this inverse is also nonuegative. From
this it follows that d(X) < O, and hence d(X) = . Taking into account
(5a) we obtain X = AL,

Of (5¢): As in the proof of (4¢) one first derives the inequality

| dOY DY (1< ) d(XB) ||
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for a monotonic and multiplicative matrix norm || - ||. From this it follows
that the inequality

(| dXEED) ||| dOYEED) 1< )| @(X ) ||

is valid since X(*+1D C Y1) a5 well as using (1) of Theorem 3 and the
monotonicity of the norm || - ||. Analogous to the proof of (4¢) we use the
norm equivalence theorem to prove the final statement. O

5. Monotonicity of Schulz-Herzberger’s method

J.W. Schmidt has proved in [28] that tlie inclusion X(1) € X(®) is a nec-
essary and sufficient condition for the monotonicity of the interval Schulz’s
method

(5.1) XU = m(X“")) + X(M(I — An;',(_X“"))).

Starting from the above inclusion J. Herzberger has derived in [7] the nec-
essary and sufficient condition which is of practical importance. Further-
more, using Schmidt’s remark (given without a proof) that the inclusion
XM ¢ X is also necessary and sufficient for the monotonicity of the
higher-order method (4.4) (see [28]), J. Herzberger has considered in [9] the
monotonicity of (4.4).

The aim of this section is to give a useful suflicient condition for the mono-
tonicity of the S-H method (4.4). Our consideration reduces to Herzberger’s
results [7] concerning the iterative method (5.1), which can be generalized
for the method (4.4).

Lemma 1. Let X X . be the sequence of interval matrices produced
by the iterative formula (4.4) and let p(|] - Am(X(O)) |) < 1. If the inequality

(5:2)  2Am(X) (1= am(XD))| < dX DT - 1= Am(XD)))
is valid for k = 0, then ¢ holds for cach E=0,1,2,... .
Proaf. For brevity, let us introduce the notations

Ci =1 - An(XW®), By =|Cyl

From (4.4) we find the midpoint matrix m(X#+") and the width matrix
d(x(k-}-l))

p—1

(5.3) - m(X“"‘H) = m(X® Z C,

(5.4) d(XFH1)y = g( X+ |c" .
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Using inequalities
IXY] < [X|[Y], [X+Y]|<[X|+]Y]

for the absolute value matrices, in the special case of the point matrices we
obtain

(5.5) G}l < [C4f” = B,

p—1 p—1 p—1
(5.6) PBLHEDPIALED I - 14

r=0 r=0 r=0
Starting from (5.3), we find

! p—1
Am(X4+0) = (1~ (1 - Am(XO NS cp=1-¢,
=0

wherefrom
. - (XY — o _ !
(8.7 Ciyr=1T—Am(X j=0C =0t ",

Since p(|f — A?H.(X(O))I) = p(Bg) < 1 implies p(BY) < 1 (v > 1), we have

& K
p(ICu) = p(ICT |) < p(BY ) < 1,
that is

(5.8) p(Bo) < 1 implies p(B)<1, k=0,1

Furthermore, because of p(By) < | there exists the inverse matrix (f —
B;)~! > O and the following identity is valid

p—]

>_Bi=(/-By)'(I-B}).
r=0
We shall now prove that the inequality (5.2), where X(*) is given by (4.4),
is valid for each & = 1.2,... if
(5.9) 2lm(X@)Cy| < d(X)(1 - By)

(the imequality (5.2) for & = 0) lolds.
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Let us rewrite (5.2) in a (shorter) form
(5.10) 2m(XEN)Cy| < dXM)T = By)

and assume that this inequality holds for some index & > 0. Multiplying
both sides of (5.10) by ({ — By)~'(/ — B?)|CY™"|, one obtains

2lm (XN Cy|(1 = By) Y = BY)|CP| < d(XF)(1 - BY)|CL7|

or
p—1
(5.11) 2m(XN)Cy| Y BLICET < AXW) (1 - BHICET.
. r=0

Using inequalities
ya t ‘i_] 3
B = [Cil" 2 [C}TlICkl = |CLI,
we find
(7T =BG, < (1 = ICi e ey
p—1 n—1 ) =17 7
<Gy =G TICh = ey I = [CR)
= |CL7 (] = Bry1)-
According to (5.6) and the last inequality, from (5.11) we obtain
p—1

(5.12) 2‘711()(“”)(2 cp)c?

=0

< AXUNCETN(T = Byga).

Taking into account formulas (5.3), (5.4) and (5.7), the inequality (5.12)

becomes
2m(XFHNC | < dXEHN T = Byy)-

This proves (5.10) (that is, (5.2)) by complete induction since (5.9) holds as
the assumption of Lemma 1. O

Theorem 6. Let A~' € X© and p(|1 — Am(XM)|) < 1. Then the gen-
eralized interval method (4.4) converges to A=Y, where A71 € XM (k=
0,1,...), and if

(5.13) 2m(XO) (I = Am (X)) < d(XO) (I — [T — Am(XD)])
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holds, then the method (4.4) is monotone.

Proof. First, we observe that under the given assumption, there follows that
(4.4) converges because

p(II — Am(X)|) < 1 implies p(I = Am (X)) < 1.

The inclision A=1 € X for each & > 0 has been proved in Theorem 4.
Under the condition (5.13) of Theorem 6 (and Lemma 1. too) the inequal-
ity
2lm (X" ¢yl < d(XMY(T - By)

holds for each £ > 0. Multiplying both sides of the last inequality by
p—2

> Bi=(/-By)'U-B) 20,
r=0

we obtain

p—2
(5.14) 2m (X", Y B < dXMy 1 - BT,
=0
Since
p=l p—2
}m(XU‘}) Z C}l < (X oy ZBL
ezl =0
and
p—1 p—1
from (5.14) we obtain
p—1
2m(XM) ¥ " op| < d(x®y1 - e
r=1
or
1 pl |
m (X)) Y Ch- m(x”f))| & E(r_l(X”‘") — d(xXhcr1)).
=0 .

Finally, according to the formulas (5.3) and (5.4) for the matrices m(X (k1))
and d(X(*+1)) the last inequality hecowmes

1

(5.15) m(XEFD) — o (XN | <~ (d(X Py — (DY)

r |
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But, the inequality (5.15) is necessary and sufficient for the inclusion
(5.16) XU xR,

Therefore, if the condition (5.13) is satisfied, then the inclusion (5.16) holds
for each k& > 0, which means that the generalized iterative method (4.4) is
monotone. This completes the proof of the theorem. O

Remark 2. The coundition (5.13) can be rewritten in the form
(5.17)  2pm(XOY(T — Am (X)) (1 = |7 — Am (X))~ < d(X ).

bince this condition depends only on the given matrix A and the initial
approximation m(X(®) for A~', the matrix (X®) > O can always be
chosen so that (5.17) is satisfied. Since the convergence condition p(|f —
Am(X®)]) < 1 does not depend on the width matrix d(X(®)), this matrix
can be taken so that

(i) an initial interval matrix X gafely includes A~! and
(ii) the monotonicity of the iterative method (4.4) is provided.

We observe that (5.13) coincides with the corresponding condition obh-
tained for the interval Schulz’s method (5.1). Since the construction of the
proof of the assertion which gives a sullicient condition for the monotonicity
of (5.1) is directly based on the relation (5.13) (see [7, Theorem 2]), for the
higher-order interval method (4.4) (p > 1) we innnediately have the following
theorem:

Theorem 7. Let || — Am(XO)|| < 1 (|| - || the column-sum norm), then
the method (4.4) converges to A=Y, In addition, this method is monotone if
the following is valid

o 2. K |7::,(X§_?))1
(5.18)  d(X;;)=h2>

ori#j, dXP)>h.
= 1_ “I _ _r’l]’]l(X(n))” .’”’ ! '-lé J ( 71 ) £,

Theorem 7 gives a sufficient condition for the monotonicity of the gener-
alized interval method (4.4). Under the given assnmptions of this theorem
it is always possible to choose the width matrix d(X®) in such a way that
the method (4.4) is monotone. A detailed description of the construction of
the initial including matrix X which gnarantees for A=' € X(©) is given
in the next section.
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6. Construction of the initial inclusion matrix

The convergence criterion (3b) in Theorem 5 depends on the width of the
inclusion matrix X for A=' which is not a case with the criterion (4b)
in Theorem 4. Nevertheless, it is not difficult to find a relation between
these criteria. For instance, if an interval matrix X(©) satisfies the inequality

| £ = Am(X(®) ||< 1, for a monotonic and multiplicative norm || - ||, then
we have that

(6.1) | d(X) ||< a=2(1—| 1= Am (XY N/ A

is a sufficient criterion for the statement that || /— AX |< 1forall X € X(0),
To construct a suitable interval matrix X et us assume that A may be
represented as A = [ — B with || B ||< 1. The choice m (X)) := I gives

| 7= Am(X 1= B ||< 1,

and, according to the criterion (4h), the inclusion method (4.4) is convergent
for every interval matrix X(® for which m.(X(O)) = I. In order to insure the
inclusion A1 € X we consider the equation AX = (I - BYX = I or
X = BX + 1. In regard to tlLis there follows (using a multiplicative matrix
norm) that

1
=B’

wherefrom (using the row-sum or the column-sum norm)

X |€a:=

—a i <a (1<4,5<n)
for all the elements of X = ( xi;). For the matrix X(0) = (X;;) defined by

(6.2) 0 _ { . for i # j
- Y [, 2+ d] for ¢ = j,

we have A~! € X and also m(X®) = I. By virtue of Theorem 4 the
iterative method converges to A~1.

From the above consideration, we see that the iterative method (4.4)
requires weaker convergence conditions compared to (4.5). For this reason, it
is convenient to start with the method (4.4) as soon as the sufficient condition
(6.1) is fulfilled provided || I — Am (X)) ||< 1 and then to continue with
the method (4.5). Such a combined process has been described in details by
Alefeld and Herzberger [1].

The sufficient condition (6.1) can be weakened, which is the subject of
the following assertion:
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Theorem 8. [f XX is an inclusion matriz for A~ then

(6.3) | d(X¥) ||< B = TAT

is a sufficient condition for the convergenee of (4.5) to A=

5
Al

Proof. Applying the width operator d to the iterative formula (4.5), we
obtain

p—2 p—1
dXF) < dm(xX® [ — Am(XWY)) £ X0 (1= Am(xP))’
d(m )g( m(X")) (1— Am(x®))")
< d(X Ky (lAlaﬂ(X“”))PuI

Using a monotonic and multiplicative matrix norm, we get

A

p=1
uﬂwWUM(Qﬁ) x|,

which proves that (6.3) is sufficient for || d(X*+1)y || — 0, and whence,
X+ . AL O

Remark 3. Comparing the numbers « and 3 appearing in (6.1) and (6.3) we
infer that & < . which means that the condition (6.3) is weaker than (6.1).
Furthermore, 3 is considerably simpler to calculate and has the same value
for all the matrices X(*), Finally, the criterion (6.3) from Theorem 6 is even
considerably less restrictive than that of Theorem 5, as it was shown in [8].

The result given in the following theorem provides a better inclusion for
A1 compared with (6.2).

Theorem 9. For the initial inclusion matrix X () defined by

|8 1]

X0 =74 ([—ese]) wWith ===
I- |l B

we have A=L € X© and the iterative process (4.4) converges to A™4 (|| - ||
row-sum or colomn-sum norm).

Proof. Starting from the obvious equalities

AV I=(I-B)'-I=(-B)'B
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and using a multiplicative matrix norm I| -

and the well-known inequality

|

= 8" e —
5]

we obtain
B

e L e

In this way the inclusion A—! € X(9) ig proved. Iurther, since

1= Am(X) ||=|| B ||< 1,
the iterative method (4.4) converges to A~ (see Theorem 4). O

Remark 4. The computation of X(0) and X(© requires the same amount of
work but we have X(©) = x(0)

For nonsingular matrices A wlhich do not have the same property as in the
previous, some other approach which uses Theorem 7 has to be applied for
constructing a starting matrix for (4.4) with A=1 € X(0) Namely, according
to Remark 1, the iterative method (4.4) converges to A1 even if X9 does

not include A=, But the construction (5.18) guarantees the monotonicity
of the interval matrices produced by (4.4),

x(0) ) x (1) ) X (2) e N

.

and thus we necessarily have A=1 € X(0),

7. Combined Schulz-type methods

In this section we describe a general approach to the construction of new
methods of Schulz’s type for improving bounds for the inverse A=1 of a given
n X 1 nonsingular matrix A. These methods, proposed by J. Herzberger and
Lj. Petkovié [18], [19], possess a great computational efficiency.

It is well known that interval evaluations are more costly than ordinary
floating-point computations. For this reason, it would he advisable to apply
the necessary interval computations only in a part of the algorithm. The
aim of this section is to present an approach for solving this problem, which
combines iterative methods in floating-point arithmetic as well as in interval
arithmetic. In this way, we take advantage of comparatively small compu-
tational costs of floating-point arithmetic and the very important inclusion
property of interval arithmetic (the enclosure of the exact result).
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Definition 11. The mapping ® from the set of n x n-matrices onto itself
is called a Schulz-type method of order p > 2 for A= if and ounly if for
Y = ®(X, A) the equation

(7.1) I—AY = (I - AX)"

holds true.

Remark 5. For practical computations @ should only consist of matrix mul-
tiplications and additions.
Two the most [requently used examples of the mapping @ are given helow:

Example 4. Let p > 2, then

p—1
(7.2) ®,(X,A) =X (- AX)’

i=0
defines a Schulz-type method for A= of order p.

Example 5. We can use Ostrowski’s identity (see [22])

" ﬁ;l

5(X,A)=X - (1

(7.3) x_(l—\/_+l(I—AX)+ I—AX))

(I — AX)+ (I - AX)Q)

4
=X-) (I- AX)"
=0

which also gives a Schulz’s type method of order 5.

By means of a Schulz-type method for A=! we can construct an iteration
method in ordinary floating-point arithimetic as follows:

(7.4) XED = ¢(x* 4), XO given, k> 0.

The following assertion has been proved in [18]:
Theorem 10. Let @ be a Schulz-type method for A= of order p. Then the
sequences of matrices { X F)} produced by (7.4) have the following properties:
() X®) — A1 & p(I - AXO) <1,
(b) f the method (7.4) is convergent, then its order of convergence is at
least p.
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where for © € A, A(x) denotes the principal element of A generated by z.

For a semigroup .5, @(5) will denote. the lattice of quasi-orders on §, £ (9)
will denote the lattice of equivalence relations on $§ and Con ( 5) will denote
the lattice of congruence relations on §. It is well-known that Con (9) is
a complete sublattice of £(5) and £(5) is a complete sublattice of Q(S).
By £°(.59) we denote the lattice of O-restricted equivalence relation on a
semigroup 5 = S°, which is the principal ideal of E(9) generated by the
equivalence relation x determined by the partition {5°, 0}.

An ideal A of a semigroup S is a prime ideal if for z,y € §, 25y C A
implies that either z € A or y € A, or, equivalently, if for all ideals M and
N of §, MN C A implies that either M C Aor N C A. A completely
0-simple semigroup with the property that the structure group of its Rees-
matrix representation is the one-element group, is called a rectangular 0-

band. Equivalently, a rectangular 0-band can be defined as a semigroup

S = 59 in which 0 is a prime ideal and for all a,b € 5, either aba = a or
aba = 0.

For undefined notions and notations we refer to the following books: G.
Birkhoff [2], S. Bogdanovié [4], S. Bogdanovi¢ and M. Cirié [7], S. Burris
and H. P. Sankappanavar [17], A. H. Clifford and G. B. Preston [35], [36], G.
Grétzer [45], J. M. Howie [48], E. S. Lyapin [62], M. Petrich [72], [73], L. N.
Shevrin [98], L. N. Shevrin and A. Ya. Ovsyanikov [102], [103], O. Steinfeld
[105] and G. Szdsz [109)].

1.2. A classification of decompositions

In this section we classify decompositions of semigroups into few classes
and we single out the most important types of decompositions.

Let us say again that by a decompositions of a semigroup § we mean a
family D = {S. }aey of subsets of § satisfying the condition

S=|J Say  where SanSs=0, for a,fEY, a#p.
acY

Various special kinds of decompositions we obtain in two general ways: im-
posing some requirements on the structure of the components S,, and im-
posing some requirements on products of elements from different classes.

The first general type of decompositions that we single out are decompo-
sitions 5 onto subsemigroups, determined by the property that any 5, is a
subsemigroup of . Clearly, decompositions onto subsemigroups correspond
to equivalence relations satisfying the em-property, so the following theorem
can be easily proved:
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Theorem 1.1. The poset of decompositions of a semigroup S onio sub-
semigroups is a complete lattice which is dually isomorphic to the lattice of
equivalence relations on S satisfying the cm-property.

If to a decomposition of a semigroup S onto subsemigroups we impose an
additional condition

ab € {a) U (b),

for all elements a,b € S belonging to the different components, then we
obtain so called U-decompositions. Decompositions of this type will be con-
sidered in Section 5.1.

The second general class of decompositions that we single out form de-
compositions whose related equivalence relations are congruences. Decom-
positions of this type are called decompositions by congruences. When the
decomposition D is a decomposition by a congruence relation, then the index
set Y is a factor semigroup of § and many properties of S are determined by
structure of the semigroup Y. Special types of decompesitions by congru-
ences we obtain imposing some requirements on the structure of the related
factor semigroup. If a class € of semigroups and a semigroup 5 are given,
then a congruence relation # on 5 is called a €-congruence on 5 if the related
factor 5/ is in €, the related decomposition is given a €-decornposition, and
the related factor semigroup is called a €-homomorphic image of 5. When
there exists the greatest ¢-decomposition of 5, i.e. the smallest €-congruence
on S, then we say that the factor semigroup corresponding to this congru-
ence is the greatest €-homomorphic image of 5. A semigroup § is called
¢-indecomposable if the universal relation is the unique ¢-congruence on 5.
Of course, when the class € contains the trivial (one-element) semigroup,
then the €-decompositions determine a decomposition type. '

If the decomposition D is both a decomposition by a congruence relation
and a decomposition onto subsemigroups, then it is called a band decomposi-
tion of S and the related congruence relation is called a band congruence on
S. Equivalently, the type of band decompositions is defined as the type of
¢-decompositions, where € equals the variety [z 2 = 7] of bands. Moreover,
by some subvarieties of the variety of bands we define the following very
important special types of band decompositions and band congruences:

— semilattice decompositions and congruences, determined by the variety
[2? = =, zy = yx| of semilattices;

— matriz decompositions and congruences, determined by the variety
[% = ¢, zyz = 2| = [2? = 2, 2y2 = ©2] of rectangular bands;

— left (rzghf) zem band dccomposztwm and congruences, determined by
the variety [¢? = z,2y = z] ([2* = z,zy = y]) of left (right) zero
bands;
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= normal band decompositions and congruences, determined by the va-

riety [2? = z, zyzz = zzyz) = [2? = z, 2yzu = rzyu] of normal bands;

— left (right) normal band decompositions and congruences, determined

by the variety [¢® = z,zyz = 22y] ([22 = &, 2yz = yzz]) of left (right)
normal bands.

Also, chain decompositions and congruences are determined by the class of

chains (linearly ordered semilattices). The decomposition D is called an

ordinal decomposition if it is a chain decomposition, i.e. Y is a chain, and
for all a,be 9, '

a€ S8y, beESE a<f = ab=ba=a.

These decompositions will be considered in Section 5.2. In the last chapter
of this paper we will also consider [-matrix decompositions and semilattice-
matrix decompositions, which will be precisely defined in Sections 5.3 and
5.4, respectively.

Semigroups with zero have a specific structure and in studying of such
semigroups it is often convenient to represent a semigroup S = 59 in the
form:

S=J Say  where 5,N85=0, for a,f €Y, a# 4.
€Y

In this case, the partition D of 5, whose components are 0 and 53, a €Y,
is called a 0-decomposition of S. If, moreover, any 5, is a subsemigroup of
5, we say that D is a 0-decomposition of S onto subsemigroups and that §
is a 0-sum of semigroups S,, a € Y, and the semigroups 5, will be called
the summands of this decomposition. Equivalence relations corresponding
to such decompositions are exactly the ones which satisfy the 0-cm-property,
so the following theorem follows:

Theorem 1.2. The poset of 0-decompositions of a semigroup S = 5° onto
subsemigroups is a complete lattice which is dually isomorphic to the lattice
of equivalence relations on S satisfying the O-cim-property.

Special decompositions of this type may be determined by some properties
of the index set ¥. Namely, it is often convenient to assume that Y is a
partial groupoid whose all clements are idempotents, and to require that the
multiplication on 5 is carried by Y, by the following condition:

{ Sa8p C Sap if af is defined in Y , fopslla A e ¥

Sa53=0 otherwise
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For example, if ¥ is a semigroup, i.e. a band, we obtain so called 0-band
decompositions. If the product «f is undefined, whenever a # [, then
SoSp = 0, whenever o # 3, and such decompositions are called orthogonal
decompositions. If Y is a left (right) zero band, then the corresponding
decomposition is called a decomposition into a left (right) sum of semigroups.
If Y is a nonempty subset of I x A, where [ and A are nonempty sets, and the
partial multiplication on Y is defined by: for (i,A),(j,p) € Y, the product
(4, A)(J, 1) equals (¢,p), if (4,p) € Y, and it is undefined, otherwise, then
the decomposition D carried by Y is called a decomposition into a matriz
sum of semigroups S,, a € Y. Finally, if Y is an arbitrary poset and for
o, €Y, the product af is defined as the meet of e and /3, if it exists, then
the related decomposition is called a quasi-semilattive decomposition of 5.

1.3. Decompositions by congruences

* Given a nonempty class € of semigroups. Let Cong (9) denotes the set
of all €-congruences on §. Of course, Cong (.9) is a subset of Con (5) and it
can be treated as a poset with respect to the usual ordering of congruences.
Properties of posets of €-congruences inside the lattice Con (.9) have been
first investigated by T. Tamura and N. Kimura in [123], 1955, where they
proved the following theorem:

Theorem 1.3. (T. Tamura and N. Kimura [123]) If € is a variety of semi-
groups, then Cong (S) is a complete lattice, for any semigroup 5.

For the variety of semilattices, the previous theorem has been proved also
by T. Tamura and N. Kimura [122], 1954 (see Theorem 2.1).

The problem of existence of the greatest decomposition of a given type has
been solved in a special case, for so-called p-decompositions, by T. Tamura
[110], 1956. The solution of this problem in the general case has been given
by N. Kimura [54], 1958, by the next theorem. Note that by an algebraic class
of of semigroups we mean a class of semigroups closed under isomorphisms.

Theorem 1.4. (N. Kimura [54]) Let € be a nonempty algebraic class of
semigroups. Then € is closed under subdirect products if and only if Cong (9)
has the smallest element, for any semigroup S for which Cone (5) # @.

As N. Kimura [54] noted, this theorem has been also found by E. J. Tully.
Note that if Cone () has the smallest elements, then it is a complete meet-
subsemilattice of Con (5).

The converse of Theorem 1.3 has been proved in a recent paper of M.
Ciri¢ and S. Bogdanovié [24]. Namely, they proved the following theorem:
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Theorem 1.5. (M. Ciri¢ and §. Bogdanovié [24]) Lei € be a nonempty alge-
braic class of semigroups. Then € is o variety if and only if Cong (S) is a
complete sublaitice of Clon (5), for any semigroup 5.

By the proof of the previous theorem, given in [24], the next theorem also
follows:

Theorem 1.6. (T. Tamura and N. Kimura [123]) If € is a variety of semi-
groups, then Cong (S) is a principal dual ideal of Con (5), for any semigroup

i3 .

Note that Theorems 1.4, 1.5 and 1.6 holds also for any algebra.

The following theorem, proved by M. Petrich in (72], 1973, has been very
useful in his investigations of some greatest decompositions of semigroups.

Theorem 1.7. (M. Petrich [72]) Let € be a variety of semigroups, © the
class of subdirectly irreducible semigroups from € and § any semigroup. Then
@ congruence 6 on a semigroup 9, different from the universal congruence,
is @ C-congruence if and only if it is the intersection of some family of D-
congruences.

If we define the trivial semigroup to be subdirectly irreducible, then The-
orem 1.7 says that Cong() is meet-dense in Cong (5).

2. Semilattice decompositions

Semilattice decompositions of seinigroups have been first defined and
studied by A. H. Clifford [29], 1941. After that they have been investi-
gated by many authors and they have been systematically studied in several
monographs: by E. S. Lyapin [62], 1960, A. H. Clifford and G. B. Preston
[35], 1961, M. Petrich [72], 1973, and [73], 1977, S. Bogdanovié [4], 1985, .
Bogdanovi¢ and M. Ciri¢ [7], 1993, and other.

First general results concerning semilattice decompositions of semigroups
have been the results of T. Tamura and N. Kimura from [122], 1954. There
they proved a theorem, given below as Theorem 2.1, by which it follows the
existence of the greatest semilattice decomposition on any semigroup. This
theorem initiated intensive studying of the greatest semilattice decomposi-
tions of semigroups and Section 2.1 is devoted to the results from this area.
We present various characterizations of the greatest semilattice decomposi-
tion of a semigroup, the smallest semilattice congruence on a semigroup and
the greatest semilattice homomorphic image of a semigroup, given by M.
Yamada [132], 1955, T. Tamura [110], 1956, [112], 1964, and [117], 1972, M.
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Petrich [69], 1964, and [72], 1973, M. 5. Putcha [79], 1973, and [80], 1975,
and M. Cirié and §. Bogdanovié [21]. We also quote the famous theorem
of T. Tamura [110], 1956, on atomicity of semilattice decompositions, which
is probably the most important result of the theory of semilattice decom-
positions of semigroups, and we give several characterizations of semilattice
indecomposable semigroups given by M. Petrich [69], 1964, and [72], 1973,
and T. Tamura [117], 1972. For the related results concerning decomposi-
tions of groupoids we refer to G. Thierrin [127], 1956.

Section 2.2 is devoted to lattices of semilattice decompositions of a semi-
group, i.e. to lattices of semilattice congruence on a semigroup. We present
characterizations of these lattices of T. Tamura [120], 1975, M. (tiri¢ and S.
Bogdanovi¢ 23], and S. Bogdanovié and M. Cirié¢ [12).

2.1. The greatest semilattice decomposition

As we noted above, the first general result concerning semilattice decom-
positions of semigroups is the one of T. Tamura and N. Kimura [122], 1954,
which is given by the following theorem:

Theorem 2.1. (T. Tamura and N. Kimura [122]) The poset of semilattice
decompositions of any semigroup is a complete lattice.

By the previous theorem it follows that any semigroup has a greatest semi-
lattice decomposition. The first characterization of the greatest semilattice
decomposition has been given by M. Yamada [132], 1955, in terms of P-
subsemigroups. A subsemigroup T of a semigroup S is called a P-semigroup
of §if for all a1,...,a, € 5,

al"'a"n.ET = Cr(ﬂla--- -:an) cT,

where C'(ay,.. . ,a,) denotes the subsemigroup of 5 consisting of all products
of elements aq, ... ,a, € 5 with each a; appearing at least once [132]. Recall
that P(A) denotes the intersection of all principal congruences defined by
elements of a nonempty family A of subsets of a semigroup.

Theorem 2.2. (M. Yamada [132]) A relation § on a semigroup 5 is a seni-
lattice congruence if and only if § = P(A), for some nonempty family A of
P-subsemigroups of 5.

As a consequence of the previous theorem it can be deduced the following
theorem:
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Theorem 2.3. (M. Yamada [132]) The smallest semilattice congruence on
a semigroup S equals the congruence P(XX), where X denotes the set of all
P-subsemigroups of §.

Another approach to the greatest decompositions of semigroups, through
completely prime ideals and filters, has been developed by M. Petrich (69],
1964. He proved the following four theorems:

Theorem 2.4. (M. Petrich [69]) A relation 8 on a semigroup S is a semi-
lattice congruence if and only if 0 = @(A), for some nonempty family A of
completely prime ideals of 5.

Theorem 2.5. (M. Petrich [69]) The smallest semilattice congruence on a
semigroup S cquals the congruence O(X), where X' denotes the set of all
completely prime ideals of S.

Theorem 2.6. (M. Petrich [69]) A relation 8 on o semigroup § is a semi-
lattice congruence if and only if 0 = O(A), for some nonempty family A of
filters of 5.

Theorem 2.7. (M. Petrich [69]) The smallest semilattice congruence on «
semigroup 5 equals the congruence O(\V), where X denotes the set of all

filters of 5.

Another proofs of the previous two theorems have been given by the
authors in [21].

The role of completely prime ideals and filters in semilattice decompo-
sitions of semigroups can be explained by Theorem 1.7. Namely, the two-
element chain Y5 is, up to an isomorphism, the unique subdirectly irreducible
semilattice, and any homomorphism of a semigroup S onto Y, determines a
partition of .5 whose one component is a completely prime ideal and other
is a filter of 5. This approach has been used by M. Petrich in [72], 1973.

M. Petrich [69], 1964, also gave a method to construct the principal filters
of a semigroup:

Theorem 2.8. (M. Petrich [69]) The principal filter of a semigroup S gen-
crated by an element a € 5 can be computed using the following formulas:
Ni(a) = (a), Npyi(a)={{z e S| N (a)NnJ(z)#2}), neZt
N@)= |J Nu(a).

neZt




398 M. Ciri¢ and $. Bogdanovié

The third approach to the greatest decompositions of semigroups is the

one of T. Tamura from [117], 1972. Using the division relation | on a semi-
group S5 defined by:

alb & be §tas?,

T. Tamura defined the relation — on S by:

¢« —b & (IneZt)a|b,

and he gave an eflicient characterization of the smallest semilattice congru-
ence on a semigroup:

Theorem 2.9. (T. Tamura [117]) The smallest semilattice congruence on a
semigroup S equals the natural equivalence of the relation —° .

Another proof of this theorem has been given by T. Tamura [118], 1973.
Three different characterizations of the smallest semilattice congruence

on a semigroup have been also obtained by M. S. Putcha in [79], 1973, and
[80], 1975.

Theorem 2.10. (M. S. Putcha [80]) The smallest semilattice congruence on
a semigroup S equals the equivalence on S generated by the relation zy =
zyx = ya, for all x,y € S,

Another proof of this theorem has been given by T. Tamura [119], 1973.

Theorem 2.11. (M. S. Putcha [80]) The smallest semilattice congruence on
a semigroup S equals the relation —*°, where — =— N —"1,

Theorem 2.12. (M. S. Putcha [79]) The smallest semilattice congruence on
a semigroup S equals the relation § on S defined by: a8b if and only if for
all x,y € S there exists a semilattice indecomposable subsemigroup T of §
such that zay,zby € T.

An approach to semilattice decompositions of semigroups, diﬂ:erent to
the one of M. Petrich and T. Tamura, has been developed by M. Ciri¢ and
S. Bogdanovié in [21]. As we will see later, the results obtained there ex-
plained the connections between the above presented results of M. Petrich
and T. Tamura. M. Cirié¢ and S. Bogdanovié [21] started from the com-
pletely semiprime ideals and they first gave the following representations of
the principal radicals of a semigroup:
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Theorem 2.13. (M. Ciri¢ and S. Bogdanovi¢ [21]) The principal radical of a
semigroup S generated by an element a € S has the following representation:

Y(a)={z € S|a —* z}.

Theorem 2.14. (M. Ciri¢ and S. Bogdanovi¢ [21]) The principal radical of

a semigroup 5 generated by an element ¢ € S can be computed using the
following formulas:

51(a) = V545, Tu(a) = /SZ,(a)5, n € ZF, (a) = U Zala).

neZ+

Recall that Zd®3(5) denotes the lattice of all completely semiprime ideals
of a semigroup 5. By means of Theorems 2.13 and 2.9, the authors in [21] ob-
tained the following characterization of the smallest semilattice congruence
Ol & semigroup:

Theorem 2.15. (M. Ciri¢ and S. Bogdanovi¢ [21]) The smallest semilattice
congruence on a semigroup § equals the equivalence O(Zd5(.9)).

A characterization of the greatest semilattice homomorphic image of a
semigroup has been given by M. Ciri¢ and S. Bogdanovié [21], through prin-
cipal radicals of a semnigroup:

Theorem 2.16. (M. Ciri¢ and . Bogdanovi¢ [21]) If a,b is any pair of
elements of a semigroup S, then

Y(a) N X(b) = E(ab),

i.e. the set Xs of all principal radicals of S, partially ordered by inclusion,
is a semilatlice and it is the greatest semilattice homomorphic image of 5.

As a consequence of the previous theorem, the authors in [21] proved the
next theorem without use of the Zorn’s lemma arguments:

The next theorem, which gives a connection between Theorems 2.15 and
2.5, has been proved by M. Petrich [72], 1973. Another proof of this theorem,
without use of the Zorn’s lemma arguments, has been given by the authors
in [21], as a consequence of Theorem 2.16.

Theorem 2.17. (M. Petrich [72]) Any completely semiprime ideal of a semi-
group S is the intersection of some family of completely prime ideals of S.

In other words, Theorem 2.17 says that the set of completely prime ideals
of a semigroup 5 is meet-dense in Zd®*(9).

Another consequence of Theorem 2.16 is the next theorem which gives a
representation of the principal filters better than the one from Theorem 2.8.
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Theorem 2.18. (M. Ciri¢ and S. Bogdanovié¢ [21]) The principal filter of a
semigroup S generated by an element a has the following representation:

Na)={ze S|z —* a}.

~ The components of the greatest semilattice decomposition of a semigroup
are characterized by the next theorem, which is clearly a consequence of
Theorems 2.13, 2.18 and 2.9.

Theorem 2.19. (M. Petrich [72]) The component of the greatest semilattice
decomposition of a semigroup S containing an element a of 5 is precisely
the subsemigroup X(a)N N(a).

The most significant theorem of the theory of semilattice decompositions
of semigroup is probably the theorem of T. Tamura [110], 1956, on atomicity
of semilattice decompositions of semigroups, given here as Theorem 2.20.
Note that another proofs of this theorem have been given by T. Tamura in
[112], 1964, by means of the concept of "contents”, in [117], 1972, using the
relation — , in [118], 1973, and [120], 1975, by M. Petrich [69], 1964,
by means of completely prime ideals, and by M. S. Putcha [79], 1973, using
the relation defined in Theorem 2.12 and the subsemigroups of the form
Clag,y ... ,an).

Theorem 2.20. (T. Tamura [110]) Any component of the greatest semalat-
tice decomposition of a semigroup is a semilattice indecomposable semigroup.

Semilattice indecomposable semigroups have been described by T. Tamu-
ra [117] and M. Petrich [69], [72], by the following

Theorem 2.21. The following conditions on a semigroup 5 are equivalent:

(i) & is semilattice indecomposable;

(ii) (Va,be S)a —= b;
(iii) S has no proper completely semiprime idcals;
(iv) S has no proper completely prime ideals.

The equivalence of conditions (i) and (ii) has been established by T.
Tamura [117], 1972, (i) < (iii) has been proved by M. Petrich [69], 1964,
and (i) & (iv) by M. Petrich [72], 1973.

Note that in the class of semilattice indecomposable semigroup the mostly
investigated were Archimedean semigroups, defined by: a — b, for all
elements @ and b. Semilattices of such semigroups have been studied by many
authors. The most important results from this area have been obtained by
M. S. Putcha [79], 1973, T. Tamura [116], 1972, M. ('iri¢ and S. Bogdanovié
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[19], 1993, and [21], S. Bogdanovié and M. Ciri¢ [6], 1992, and [14], and L.
N. Shevrin [99] and [100], 1994. For more informations about semilattices of
Archimedean semigroups the reader is also referred to the survey paper of
S. Bogdanovi¢ and M. Ciri¢ [8], 1993, or their book [7], 1993.

2.2. The lattice of semilattice decompositions

T. Tamura [120] got an idea of studying semilattice decompositions of
a semigroup through quasi-orders on this semigroup having some suitable
properties. We say that a quasi-order ¢ on a semigroup 5 is positive if a £ ab
and b€ ab, for all a,b € S. These quasi-orders have been introduced by B.
M. Schein [88], 1965, and they were since studied from different points of
view by T. Tamura, M. S. Putcha, S. Bogdanovié, M. Ciri¢ and other. By
a half-congruence T. Tamura in [120], 1975, called a compatible quasi-order
on a semigroup, and by a lower-potent quasi-order he called a quasi-order

£ on a semigroup satisfying the condition: a2 £ a, for all elements «. Using

these notions, T. Tamura proved the followin g theoremn:

Theorem 2.22. (T. Tamura [120]) The lattice of semilattice congruences
on a semigroup S is isomorphic to the lattice of positive lower-potent half-
congruences on 5.

As the authors noted in [23], the notion "lower-potent half-congruence” in
Theorem 2.22 can be replaced by "quasi-order satisfying the em-property™.
Recall from Section 1.1 that a relation £ on a semigroup S satisfies the
common mulliple property, briefly the cm-property, if for all a,b,c € §, afe
and b ¢ ¢ implies ab £ c. Using this notion, introduced by T. Tamura in [116]
1972, Theorem 2.22 can be written as follows:

I

Theorem 2.23. The lattice of semilattice congruences on a semigroup 5
is isomorphic to the lattice of positive quasi-orders on § satisfying the cm-
property.

Using the Tamura’s approach, the authors in [23] connected semilattice
decompositions of a semigroup with some sublattices of the lattice Zd=(S5)
of completely simple ideals of a semigroup. Recall from Section 1.1 that a
subset K of a lattice L is meet-dense in L if any element of L can be written
as the meet of some family of elements of K. We will say that a sublattice
L of Zd®5(5) satisfies the completely prime ideal property, shortly the epi-
property, it the set of completely prime ideals from L is meet-dense in L,
Le. if any element of L can be written as the intersection of some family of
completely prime ideals from L. As we seen before, this property was proved
for Zd*5(S) by Theorem 2.17. M. Ciri¢ and §. Bogdanovi¢ [23] showed
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that the epi-property plays a crucial role in semilattice decompositions of
semigroups:

Theorem 2.24. (M. Ciri¢ and S. Bogdanovi¢ [23]) The lattice of semilattice
decompositions of a semigroup S is isomorphic to the lattice of complete
1-sublattices of Td*(9) satisfying the cpi-property.

Another connection of semilattice decompositions of a semigroup, with
sowme sublattices of the lattice of subsets of a semigroup, has been established
by S. Bogdanovié and M. Ciri¢ in [12]. There they proved the following
theorem:

Theorem 2.25. (S. Bogdanovi¢ and M. Cirié [12]) The lattice of semilattice
decompositions of ¢ semigroup S is isomorphic to the lattice of complete
1-sublattices of P(S) whose principal elements are filters of S.

For more informations about the role of quasi-orders in semilattice decom-
positions of semigroups we refer to another survey paper of S. Bogdanovit
and M. Ciri¢ [16].

3. Band decompositions

Although the existence of the greatest band decomposition has been es-
tablished by T. Tamura and N. Kimura in [123], 1955, by the theorem which
is given here as Theorem 1.3, there are no sufficiently efficient characteri-
zations of the greatest band decomposition of a semigroup in the general
case. But, there are very nice descriptions of greatest decompositions for
some special types of band decompositions, as semilattice decompositions,
treated in the previous chapter, matrix decompositions, where left zero band
and right zero band decompositions are included, and normal band decom-
positions, where left normal band and right normal band decompositions
are included. This chapter is devoted to the results concerning the greatest

matrix decomposition of a semigroup, which will be presented in Section 3.1,

and to the results concerning the greatest normal band decomposition of a
semigroup, which will be presented in Section 3.2.

Matrix decompositions, as well as left zero band and right zero band
decompositions, have appeared first in studying of completely simple semi-
groups. Namely, by the famous Rees-Sushkevich theorem on matrix rep-
resentations of completely simple semigroups, any completely simple semi-
group can be decomposed into a matrix of groups, and also into a left zero
band of right groups and into a right zero band of left groups. First general
results concerning these decompositions have been obtained by P. Dubreil
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[41], 1951, who constructed the smallest left zero band congruence on a semi-
group, and by G. Thierrin [128], 1956, who characterized the components of
the greatest left zero band decomposition of a semigroup. The general the-
ory of matrix decompositions of semigroups has been founded by M. Petrich
in [70], 1996. These results will be a topic of Section 3.1.

Normal bands have been introduced by M. Yamada and N. Kimura [133],
1958, whereas left normal bands have been first defined and studied by V. V.
Vagner [129], 1962, and B. M. Schein [36], 1963, and [87], 1965. The general
results concerning left normal band, right normal band and normal band
decompositions of a semigroup, presented in Section 3.2, have been obtained
by M. Petrich in [71], 1966.

For additional informations about matrix and normal band decomposi-
tions the reader is referred to the book of M. Petrich [73], 1977.

3.1. Matrix decompositions

As we noted before, the first general result concerning left zero band

decompositions of a semigroup is the one of P. Dubreil [41], 1951. Define the

2 { T ; =
relations = and =~ on a semigroup S by:

amb & L@NL®)#2, oAb & Ra)nROB) £, (a,bes). -

The relation & has been introduced in above mentioned paper of P. Dubreil,
where he proved the following theorem:

Theorem 3.1. (P. Dubreil [41]) The smallest left zero band congruence on
a semigroup S equals the relation ~ .

The components of the greatest left zero band decomposition of a semi-

group have been first described by G. Thierrin [128], 1956, by the following
theorem: ‘

Theorem 3.2. (G. Thierrin [128]) The components of the greatest left zero
band decomposition of a semigroup S are the minimal left consistent right
ideals.

Other characterizations of the greatest left zero band decomposition of a
semigroup have been obtained by M. Petrich in [70], 1966. In this paper he
proved the following two theorems:

Theorem 3.3. (M. Petrich [70]) A relation 6 on a semigroup S is a left zero
band congruence on S if and only if § = Q(A), for some nonempty family
A of left consistent right ideals of S.
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Theorem 3.4. The smallest left zero band congruence on a semigroup S
equals the relation O(RId™(S)). '

The key theorem in theory of matrix decompositions of semigroups is the
next theorem, proved by M. Petrich in [70], 1966, which gives a connec-
tion between left zero bhand, right zero band and matrix congruences on a
semigroup:

Theorem 3.5. (M. Petrich [70]) The intersection of a left zero band con-
gruence and a right zero band congruence on a semigroup S is a matriz
congruence on 9.

Conversely, any matriz congruence on § can be written uniguely as the
intersection of a left zero band congruence and a right zero band congruence
on 5.

Combining Theorems 3,1 and 3.5, the following characterization of the
smallest matrix congruence on a semigroup follows:

Theorem 3.6. (M. Petrich [70]) The smallest matriz congruence on @ semi-
l ~
group S equals the relation = *°N 5 o,

tombining Theorem 3.3 and its dual, M. Petrich [70] obtained the follow-
ing two theorems:

Theorem 3.7. (M. Petrich [70]) A relation 8 on a semigroup 5 is a matriz
congruence on S if and only if 8 = O(A), for some nonempty subset A of
X, where X = LTd*(5) U RId*(S).

Theorem 3.8. (M. Petrich [70]) The smallest matriz congruence on a semi-
group S equals the relation O(X), where X = LTd™(5)U RId<(S). -

M. Petrich in [70] also gave an alternative approach to matrix decom-
positions of semigroups, through so-called quasi-consistent subsemigroups.
Namely, by a quasi-consistent subset of a semigroup 5 he defined a com-
pletely semiprime subset A of § satisfying the condition: for all z,y,z € 9,
zyz € A if and only if 2y € A. Quasi-consistent subsemigroups of a semi-
group M. Petrich connected with left consistent right ideals and right con-
sistent left ideals by the following theorem:

Theorem 3.9. (M. Petrich [70]) The intersection of a left consistent right
ideal and a right consistent lefi ideal of a semigroup 5 is a quasi-consistent
subsemigroup of S.

Conversely, any quasi-consistent subsemigroup of 5 can be written unigu-

ely as the intersection of a left consistent right ideal and a right consistent
left ideal. '
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Using the previous theorem, matrix congruences on a semigroup can be

characterized through quasi-consistent subsemigroups of a semigroup as fol-
lows:

Theorem 3.10. (M. Petrich [70]) A relation 8 on a semigroup S is a matriz
congruence on 5 if and only if 8 = O(A), for some nonempty family A of
the set of quasi-consistent subsemigroups of .

Theorem 3.11. (M. Petrich [70]) The smallest matriz congruence on a

semigroup 5 equals the relation O(X'), where X' denotes the set of all quasi-
consistent subsemigroups of §.

Using Theorem 3.5 and the fact that the join of any left zero band congru-
ence and any right zero band congruence on a semigroup equals the universal
congruence on this semigroup, the lattice of matrix congruences on a semi-
group can be characterized in the following way:

Theorem 3.12. The lattice of matriz congruences on a semigroup S is
isomorphic to the direct product of the lattice of left zero band congruences
and the latlice of right zero band congruences on S.

A characterization of the lattice of right zero band decompositions of a
semigroup can be obtained through left consistent right ideals of a semi-
group, modifying the results of S. Bogdanovi¢ and M. Cirié [13] to semi-
groups without zero. For related results concerning semigroups with zero we
refer to Section 4.2.

Until the end of this section we will consider only semigroups without zero,
because the definition of the lattice RZd(S) is different for semigroups with

and without zero, and the set of right consistent left ideals of a semigroup
with zero is one-element.

Theorem 3.13. The poset RId'(S) of left consistent right ideals of a

semigroup S # S° without zero is a complete atomic Boolean algebra and
RId*(S) = B(RId(S)).

Theorem 3.14. The lattice of Igft zero band decompositions of a semi-

group 5 # S° is isomorphic to the lattice of complete Boolean subalgebras of
RId*“(S). '

The role of left zero band decompositions of a semigroup in direct decom-
positions of the lattice of right ideals of this semigroup is demonstrated by
the following two theorems:

Theorem 3.15. The lattice RId(S) of right ideals of a semigroup § # S°
is a direct product of lattices Lo, o € Y, if and only if § is a left zero band
of semigroups Sy, « €Y, and L, = RId(S.), for anya €Y.
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Theorem 3.16. If S, @ € Y, are components of the greatest left zero
band decomposition of a semigroup S # 5°, then the lattice RId(S5) can be
decomposed into a direct product of its intervals [0, 5.], @ € Y, which are
directly indecomposable.

3.2. Normal band decompositions

In the introduction of Chapter 3 we said that the general theory of nor-
mal band decompositions of semigroups, including here left normal band and
right normal band decompositions, has been founded by M. Petrich in [71],
1966. The methods used in this paper has been obtained by combination of
the methods which M. Petrich used in [69], in studying of semilattice decom-
positions, and the ones used in [70], in studying of matrix decompositions.

M. Petrich in [71] defined a left (right) normal complez of a semigroup
S as a nonempty subset A of § which is a left (right) consistent right (left)
ideal of the smallest filter N(A) of S containing A, and he defined a normal
complez of § as a subset A of § which is a quasi-consistent subsemigroup
of N(A). He also introduced the following relations on a semigroup .5 for a
nonempty subset A of §, ® 4 is the equivalence relation on 5 whose classes
are nonempty sets among the sets A, N(A)— A and § — N(A), and for a
nonempty family A of subsets of §, ®(.A) is the equivalence relation on S
defined by:

o(A) = () 4.
’ AcA
Theorem 3.17. (M. Petrich [71]) A relation 8 on a semigroup S is a left
. normal band congruence on S if and only if § = ®(A), for some nonempty
family A of left normal complezes of 5.

Theorem 3.18. (M. Petrich [71]) The smallest left normal band congruence
on a semigroup S equals the relation § = ®(X'), where X' denotes the set of
all left normal complezes of 5.

In order to study normal band congruences on a semigroup through left
normal band congruences and right normal band congruences, M. Petrich
proved the following theorem, similar to Theorem 3.5 concerning matrix
congruences:

Theorem 3.19. (M. Petrich [71]) The intersection of a left normal band
congruence and a right normal band congruence on a semigroup S 1s 6 nor-
mal band congruence on S.

Conversely, any normal band congruence on S can be written as the in-
tersection of the smallest left normal band congruence and the smallest right
normal band congruence on S coniaining it.
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Let X0 5 A-1 bhe an initial inclusion for A=1 and ®(X,A) define a
‘Schulz-type method of order p for A1, Then for fixed integers £ > 0 and

p > 1 we define:
(75) X040 = pp(x(0)),
X0 = g(X0D 4), 1 <igh,

(empty statement in case k = 0)

r—1
X(R+1.U) - J\f(n,k) Z([ _ A‘Xr(nl,k))i i X(”’U)(I _ A)((n,fi:))'r‘,

i=0

(Horner-scheme evaluation in interval arithmetic), n >0,

and

(7.6) X0 = p(x (0,
X('n,i) — (I)(‘X'(”‘v"_”’A), 1 S i E ka

(empty statement in case k=0)

r—1

X(n+1,0) — {)((n,k) Z([ _ A‘X:(n.k))i 4 X(?l,ﬂ)([ o AX(vz,k))r} n X(?l,o)’

i=0

(Horner-scheme evaluation in interval arithmetic), n >0,

where m(X) = (m(X;;)) is the midpoint matrix.
Remark 6. For k = 0 we get as special cases the methods (4.4) and (4.5)
discussed in Section 4.

In particular, for the fixed » = 0in (7.5) and (7.6), we obtain the combined
methods

X0 =@XU-D A), 1<i<h,

r—1
(7.7) X — x (k) Z(.I_ AX®YE 4 xO)(f _ AX Ry,

i=0
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and the monotonic version

X =X A), <8<k,
(7.8) . i i o
X8 = {x 0377 - Ax W) 4 XO(T - Ax By } Nx©.
i=0

The combined methods (7.7) and (7.8) are, therefore, performed applying
k iterations in floating-point arithinetic in order to obtain sufficiently good
approximation (point matrix) X*) to the inverse matrix A~! and then, in
the final step, the inclusion method of the order » to provide the guaranteed
error bounds to A~1. Such a combination is of a great interest in practice
and, for this reason, it was studied extensively in the papers [19] and [25].

For the combined methods (7.5) and (7.6) the following theorem has been
proved in [19].

Theorem 11. For the methods (7.5) and (7.6) the inclusion A= € X(n0)
(n > 0) holds.

Theorem 12. The scquence {X(9} obtained by the method (7.5) con-
verges to A~ if and only if p(I — AX(O0)) < |,

As presented in Sections 4 and 6, the convergence criterion for monotonic
methods like (7.6) for which

3 (0,0) o) 3 (1.0) Do 3 X(m0) 5 4-1

obviously holds, differ from those of the non-monotonic methods like (7.5).
This is contained in the convergence theorem, which is quite similar to The-
orem 8.

Theorem 13. The sequence {X*0} generated by the method (7.6) con-
verges to A™1 if the inequalily

XDy [|< 2/ | Al

with a monotonic matriz norm || - ||, is fulfilled.

According to Traub [33, Appendix ] the efficiency index of an iterative
method of order ¢ can he defined by ¢!/, where © is the total amount of
work for one iteration step. In methods like (7.5) and (7.6) one usually mea-
sures O in terms of matrix multiplications and all other computational costs
are considered to be negligible compared with these. If we count the com-
putational efforts by Traub’s formula we get the following results, assuming
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that one interval matrix multiplication costs at least about two times as
much as a point matrix multiplication:

ks multiplications for the application of the schulz-type method where
s is the number of multiplications for the evaluation of ¢;
r+1 interval matrix multiplications for the Horner-scheme interval evalu-
* ation or approximately 2(r 4+ 1) point matrix multiplications.

This makes a total cost of ks + 2(r + 1) multiplications for one step of
methods (7.5) or (7.6), reduced to point matrix multiplications. A Schulz-
type method of the form (7.4) requires only ordinary floating point oper-
ations whereas the Horner-scheme interval evaluation has to be done com-
pletely by rounded interval operations to ensure the inclusion property of
Theorem 11.

From Theorem 11 and Theorem 12 we get lower bounds for the order of
convergence of our methods (7.5) and (7.6) as g = rp¥ + 1 so that lower
bounds for the efficiency index are given by

E(p,r,k) = (rpk 4 1)1/(rst2(r+1)

Before determining parameters p and r in order to establish the optimal
combined method concerning the computational effi ciency expressed by the
efficiency index E(p,r, k), we recall that the most efficient method of Schulz’s
type in ordinary floating-point arithmetic reads

X1 = x (k) (I + ‘ﬁ’; by AX®) 4 (1 - AX““))z)

:
X (1 - "5;’ Sr— AX®Yy 4 (1 - AX““))Z),
which is constructed using the mapping ®; given in Example 5. Namely,
the number of multiplication is s = 4 for the evaluation of P5(X, A) given
by (7.3) and s = p for ,(X, A) (p # 5) given by (7.2) when Horner-scheme
evaluation is applied. .

In the sequel, speaking about the function ®; (the case p = 5), we will
assume the function defined by Ostrowski’s identity (7.3), while in the re-
maining cases ®, (p # 5) will denote the mapping (7.2). According to this,
we define the total amount of work (expressed by point matrix multiplica-
tions) by
— R

i)

{4k+2(7'+1), p=>5
pk+2(r+ 1), P#ED
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(see [19]). Therefore, the lower bound of the efficiency index is given by

5k 1 1/(4.‘:+‘21‘+2)_J - 'r,
(7-9) E(p»?‘ak) = { (T )k + ) )1 k42942 ?) ’
(rpt 4 1)k tred),  pot s

The detailed procedure for finding optimal values of p and r (with respect
to definition (7.9)) has been done by M. Petkovié¢ and J. Herzberger in the
paper [25]. This problem is of a great practical importance in applying the
combined methods (7.5) and (7.6), and also (7.7) and (7.8). It leads to an
optimization problem in the field of integers. First, the following theorem
has been proved:

Theorem 14. Letr e {1,..., 7} andletk > 1 andp (p>2 and p#5) be
arbitrary integers. Then

(7.10) E(5,m,k) > E(p,r, k).

As explained in [25], the restriction for » to be less than 8 is made for
practical reasons. Namely, for a sufficiently great r (at least 7 = 16 but
usually considerably greater, even more than 100) it is possible to find p > 6
and k such that the inequality (7.10) becomes converse. But, such values
of p (at least 6 iterations in floating-point arithmetic) and = (at least 16
iterations in interval arithinetic) are meaningless in practice, especially in
the situation when it is easy to provide initial matrices which insures the
safe convergence.

The optimal choice of the number of point iterations r has been considered
in the following theorem, assuming that p = 5.

Theorem 15. The function ¢(r) 1= (r5% + 1)1/ UE+2r42) gttains its mazi-
mum on the interval (1,2) for arbitrary k > 1.

Using the result of Theorem 15 and the fact that » is an integer, we
conclude that the optimal r in the combined methods can be either v =1
or r =2, depending on the number of iterative steps. A short analysis has
shown that :
E(5,2,k) > E(5,1,k) for k= 1(1)6

and ‘
E(5,2,k) < E(5,1,k) fork >7.

Thus, if the number of point iterative steps k is less than 7 then r = 2 is
the optimal value, while for & > 7 the optimal value is r = 1. However, the
second case (k > 7) is only of theoretical importance due to the very fast
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convergence of the applied point method (of the order 5). For example, if
| d(X©)) ||= 0.8, using the estimation

“ d(x(l.k)) “N“ d(X(”)) Sk+1

for k = 4 we obtain even || d(X""%) ||~ 1091, which is an indicative il-
lustration that the use of a (relatively) great number of iterative steps (say,
k > 3) is not only meaningless but also not profitable (because of the limited
precision of digital computers),

Finally, according to the previous results and discussion, in a practical
realization of the combined method it should be chosen p=>sandr =2

(optimal for k < 6). Thus, the most efficient combined method of Schulz-type
is of the form

(zu)‘wmﬂﬂzxmﬂ-1+W5+lu—AxmﬂyH1—AXWﬂf)x
1

2
( V5 +
x| I -

5 (I _ A‘Xv(n,i)) 4 (I _ AX-(n,-i))‘Z)’

t=0,1,... .k~ 1 (in floating point arithmetic)

(7.12) X(nt1,0) _ (X(U)(] — AX("’I“')) 4 X(?M‘)) ol = AX(”"’“')) 4 X (k)

(in interval arithmetic),

where X (70 = 15 (X(%9) and n > 0 and the starting matrix X(%9) includes
A1,

The combined methods (7.11) and (7.12) have heen considered in details
in [19]. '
Example 6. To illustrate numerically the combined method (7.11) - (7.12),
we present the example taken from the paper [19], where 2 9 x 9 nonsingular
matrix A with A =7 —.B, || B ||< 1, was considered. Here || - || denotes the
column-sum norm and the matrix B = (bij) is defined by

0.1 i1 £
buz{ .#{1(1§uj<9y
0 b=

A starting inclusion matrix X9 is constructed according to Theorem 9,

o 30,00 _ i s o= . B]] : 0,00y —
that is, X9 = I 4 ([—e¢,¢]), where ¢ = ey Evidently m(X(00) = 1
and the inclusion A=1 € X(0.9) |yp]ds.
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For the method (7.11) - (7.12), referred to as the method (a), it was taken
= 2. The result of this combined method was compared to the classical
optlmal method, referred to as method (b), which can be defined as

Y0 = x(00  nd
ylntl) — m.(Y(”)) + (m(Y(”)) -+ Y(”)(;r - Am( Y‘“ N — Am(Y ”')))

for m=0,1; vus s

Let the inequality || d(X) ||< ¢ = 5 x 1071° define the stopping criterion.
The results obtained by the methods (a) and (b) are given in Table 1.

The total computational amount of work in terms of point matrix multi-
plications under the same assumption for interval matrix multiplications as
above is as follows:

for the method (a): 2 x (4 4+ 6) = 20
for the method (b): 5 x 6 = 30.
It is clear that method (a) converges faster with the smaller computational

efforts. Moreover, the computational efficiency of the method (a) is greater
the greater is k. ‘ ‘

n | d(X =00y || | YT |

0 7.20000000000 x 10! 7.20000000000 x 10!

1 7.73094113280 x 10° 4.60800000000 x 10!

2 1.96000000000 x 1010 1.20795955200 x 101

3 217606647543 x 10!
4 1.27215720000 x 1075
5 2.56000000000 x 10~10

Table |

8. Bounding the inverse of an interval matrix

Let A = (A;;) be an n x n interval matrix for which A=1 exists for every
real matrix A € A and denote A* = {A7!] A € A}. In this section the
problem of computing an interval matrix X with A? C X is considered. In
many cases one can find an initial inclusion X®) O A’ for example, by
means of norm inequalities. But, in that case, the question arises how to
improve X in such a way that its width d(X(®) = d((X; (0} = (d(X” ))
will be reduced. Theoretically, it is possible to find the inter val hull of A% in
the form X = N{X| X 2 A}, but this, in general, cannot be done without
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an unreasonable amount of work. For this reason, we are not dealing with
this kind of problem and we are looking for an improvement X* for X(©) with
A" C X* C XO and d(X*) < d(X(®)) such that at least for a monotone
matrix norm [| - || the strict inequality

| d(X*) [|<|| (x|

is valid. Schinidt found in [28] and [30] a monotone algorithm for the iterative
improvement of X(©), Alefeld and Herzherger suggested in (3, Ch. 18] (see,
also, Section 4 of this paper) a somewhat different approach by means of
interval analysis. The proposed method is closely related to the monotone
version of the interval Schulz method for the iterative improvement of bounds
for the inverse of a real nonsingular matrix A and it can be read in the form

(8.1) XD = (X)) 4 XMW1 = Am(XW))y n x®,

where m(X) is the midpoint matrix of X. A similar generalization with A
and limy_.o, Ay = A instead of A was already used in Chapter 20 in [3] in
counection with the Newton-method. In the case A = A one obtains the
well-known interval Schulz-method. For iteration (8.1) we get immediately
the following lemmas:

Lemma 2. For A* C X© the sequence of matrices {XMY produced by
(8.1) has the property

ATCcX® (k=0,1,...).

Proof. Since A* C X9, we choose A= € X© and by the use of the inclu-
sion property of the interval operations we find

A7l = m(X(O)) +ATYI - Am(X(9)) € m(XO)+
XO(T - Am(X®)) c XM,
For & > 1 the proof can be done analogously. O
From (8.1) there follows I
¥ (0) o x5 x® DX o,
and thus

lim X = x*

h—oo
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is valid. But the iteration process (8.1) could already fail with X* = X(0)
especially if d(A) is of considerable size. In that case, instead of improving
X0 the process starts reproducing the same disk. Therefore, a convergence
analysis for (8.1) which gives suflicient conditions for

has to be done in such a way that the method (8.1) yields an improved
inclusion X*. For a given matrix A these sufficient conditions will impose
some restrictions for || |X(O] || as well as for || d(X()) || and so determine a
class of matrices X(® with A7 € X(® for which method (8.1) improves X(©).
The main result is the following theorem whose proof was given in [14].

\
| d(X*) fl<|l d(X®) |
|
\

Theorem 16. Let A be given, then the iteration process (8.1) converges to
X* with || d(X*) [|<|| d(XO) || if the matriz X©) with A* € X©) fulfills the

inequalities

3

8.2 1WA '
(82) ) 1< o T A - T 42

and

4Nl d(A) || - 11X |2
2— || d(A) || - | 1XO ]

16 1

(8.3) 19 |m(Aa)]

<[] (X |I<

In addition to this, for X* the incquality

2+ || deA) || - X1
= g LAY || - IO |

(8.4) I (X" 1< 5

holds. ‘

Remark 7. A sufficient condition for || |X()| || in terms of || m(A) || and |
|| d(A) ||> 0 such that (8.2) is fulfilled can easily be derived as ‘

2 |
LA 1 \fIAE L 2 | nA) |- d(A) |

X<

Remark 8. From (8.4) it follows that || d(X*) ||— 0 as || d(A) ||— 0. Thus,
the estimation (8.4) claims that for A = A the interval Schulz-method con-
verges to A1, This is the reason why (8.1) can be regarded as a general-
ization of the Schulz-method (5.1) in the case of an interval matrix A.
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Remark 9. The condition (8.3) is more restrictive than the corresponding
result for the interval Schulz-method in the case A = A (see [8]) where the

sufficient condition for the convergence
2

(X

is proved. Here, X(®) can contain singular matrices as examples show.
Remark 10. Condition (8.3) implies that every X € X(® ig nonsingular.
This can be seen taking X € X(®_ Then (m(A))~! € X and we have

16 1

_ 1 [ 1X = (il AV)=1 (0) 2 o B
X = (AN =] X = ()7 <] X)) < 22 ETEST]

1

(| m(A) ||
According to [4, Theorem 4 in Section 4] it follows that

(m(A)™T+ (X = (m(A)) ™) = X
is nonsingular.

As it was shown in [14], the assumption on | X)) || can be weakened.
But this requires more complicated form of the upper bound for || d(X(®) |.
Both is given in
Corollary of Theorem 16. Let A be given. Then the iteration process
(8.1) converges to X* with || d(X*) ||<|| d(X(®) | if the matriz X with
AT CXO) fulfills the inequalitics

| d(A) | l

< . - i
[ XO] -2 | m(A) |- || XO ][ +1

and

4-Hd(A) || - || X )2
2— (| d(A) || - [] 1O )

<[l (X |

L A IX”’)III)
S Tm(a) | (1 - 2 |

In addition to this, the inequality (8.4) holds.

In practical computations the quantity | d(A) || is of small size. The
interval matrix A appears, for instance, because of inaccurate initial data
for a real matrix A or from conversion errors which are usually not too
large. Therefore, the necessary initial inclusion X© for A can often be
calculated by an application of an interval Gaussian elimination or even by
norm inequalities (see [14]).
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