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ON THE MAXIMAL ORDER OF
CERTAIN ARITHMETIC FUNCTIONS

Aleksandar Ivié

ABSTRACT. An upper bound for f(f(n)) is obtained when f(n) belongs to
a certain class of multiplicative functions. Also the maximal and average
order of Q(n) and Q(Q(n}) are determined, where Q(n) denotes the number .
of distinct exponents in the canonical decomposition of u.

It is well-known (see e.g. Hardy and Wright [3]) that

log d(n)loglogn

(1) lim sup

= Iog 2
n— o0 log n :

where d(n) denotes the number of divisors of n. A more difficult problem is
to determine the maximal order of d(d(n)). In [I] P. Erd6s and the author
have shown that

i 1/2

(2) log d(d(n)) < (w) y
log, n

where log, 2 = log(log,_; @) is the k-fold iterated natural logarithm of 2,

and f(x) < g(a) (same as f(x) = O(g(a))) means that || f(x)|| < Cg(x) for

some ' > 0, g(a) > 0, @ > xg. The upper bound in (2) is certainly close to

being best possible. Namely if one takes

_ opmi—1_ pe—1 =1 -
N =p  py? eeephr™, r— 00,

where p; is the j-th prime number, then
d(N)=ppz---pr, d(d(N))=2"
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484 A. lvié
But since from the prime number theorem (see [3]) it follows that
pi = k(logk + O(loglog £)),

we have, with #(x) = 3° . logp,

log N = Z log py, — 8(pr) = Z klog® k + O(+* log 7 log log )
e

k<r
l __— - {loglogr
= —¢rlog (1l 4+ 0| ——1).
2, op el + ( log r )
Therefore
) 2(2log N)1/2 log,
(3) r=w(N)=————[1+0 = ,
log, n log,

where w(n) denotes the number of distinet prime factors of n. This gives

I Tve (D T A V172 -
(4) log d(d(N}) = 2082 2ee V) (1+o (1"“*))

log, n log,

which was already known to 5. Ramanujan (see [5]).
P. Erdés and 1. Katai [2] proved that for every £ > 0

log d(r)(‘n) & (log n)lﬂﬁ'g
and that
log ") (n) > (logn)/—=

for infinitely many n, where is the r-fold iterated divisor function and is the
r-th Fibonacci number: Their method, however, does not seem to yield any
improvement of (2). €, is r-th Fibnacci namber: (_q, by, €, = o (v > 1).
Their method, however, does not seewn to yield any improvement of (2).
The argument in [1] that led to (2) depended on an upper bound for

(5) Q =0Q(5n):= Z 1,

ai =S
where n > 1,1 < 5 < logn/log2 and

(y

(6) Kol 2N
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is the canonical decomposition of n. As one { rivially has m > 299 it follows
that

Q< logn

~ Slog2 b2 1,

but a slightly better bound also holds. Namely (G) vields

! ; . L,
logn > Z a;logp; > 8 Z logp=56(py) > E.S’Q log Q)

g 28 PLPo

for @ > Qp. Thus @ < Q1 = (5, n) where (2logn)/S = Q1log(Qy. If
5§ <log"n,0< A< 1, then

2log Q1 > log Q1 + loglog 1 > log2 + (1 — A) loglog n > loglog n,
hence log@)1 > loglog n, which gives

log n

(7) QS n) < (1< S5 <log™nd< A< 1).

Sloglogn

If a(n) denotes the number of non-isomorphic abelian (i.e. commutative)
groups with n elements, then «a(n) is a multiplicative function (meaning
a(mn) = a(m)a(n) if m,n are coprime natural numbers) and a(pk) = P(k),
where P(k) is the number of partitions of £. It was shown in [1] that with n
elements, then a(n) is a multiplicative function (meaning a(mn) = a(m)a(n)
if m.n are coprime natural numbers) and a(p*) = P(k), where P(k) is the
number of partitions of . It was shown in [1] that

(8)  w(a(n)) < (log 7a)"5/‘1(1(ng_1;2 1), log a(a(n)) < (log n)”('/."%(logg"n)_('7

with B = 11/8,(' = 19/16. In what follows a variation of the method
developed in [1] will be used to prove a general result for iterates of certain
arithmetic functions, which in the case of the function a(n) yields the slightly
better values B = 7/4, ' = 11/8 in (R). Perhaps the correct values of the
exponents of the logarithms in (8) are both 1/2 (they cannot be smaller than
1/2). If true, this conjecture seems difficult to prove. [1] will be used to prove
a general result for iterates of certain arithmetic functions, which in the case
of the function a(n) yields the slightly better values B = 7/4,C =11/8in
(8). Perhaps the correct values of the exponents of the logarithms in (8) are
both 1/2(they cannot be smaller than 1/2). If true, this conjecture seems
difficult to prove.
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The functions a(n) and d(n) helong to the class of arithmetic functions F,

which contains all multiplicative, prime-independent functions f(n): N —
N such that

(9) FpFy = g(k), g(ky < e (0<e< 1, A>0)

for all integers k > | and primes p, where g(k) € N. As we have d(pF)y = k+1
(9) holds in this case for any ¢ > 0, and in the case of a{n) it holds with
c=1/2, since P(k) < eAVE (see [5]). A simple proof that

log f(n)loglogn

(10) lim sup = max( f(2%))1/*
p—— log 2 k1

if f(n) € F was given by P. Shiu [6]. We shall be interested here in the
maximal order of f(f(n)) when f(n) € F. Lack of information about the
arithmetic structure of g(k) makes this, in general, quite a difficult problem.
Even in the relatively simple case of d(n) the existing bounds (2) and (3)
are of a different order of magnitude. We shall prove an upper bound result,
contained in

Theorem 1. If f(n) € F and ¢ is given by (9), then

(11) log F(F(n)) < (logn)'"+2= (log, )< =372,

Proof. We shall prove first that
(12) W(f(1)) < (log n)HD/2(log, n)~(+I/2,

which seems to be of independent interest. Let the a;’s denote the distinct
exponents in the canonical decomposition of n(n > 1). Since

w(mn) < w(m) +w(n), w(n®) = w(n), w(n) < J&,
loglog n
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we have, for suitaqble integers 3; > 1,

wfm)=w( [I o) [T @) ) < ¥ wlg@) + ¥ wlglar))

;<8 ;28 e <8 w; >S5
9% as
< - 1+ ) a2 5——
log § Lz.;s' Z "= " og a;
({5 e 2

o] Oflog log n)

{ as af
<igst 2 Y =t F ‘
10g 2 i=0 208 <ay <18 Iug i w; >(log n)(3+e)/4 ]Og &
Got O(log log n) 2jc i ‘
< ]"Og 5+ Z_; ]og'-b' Q(25,n) + (log n)°Q((log n)B+)/4 )

et Ofloglog n)

- Ricge logn -
T g T l ' (34¢)/4
< log § * = log S 2iSToglogn + (bagn]
Gett S logn
- - loan (34c)/4
< log § T log 5'log log n + (logn) 1

where sumination is over j such-that 29+1¢ > |

used (7). Now the choice
G _ log n Wa
= loglog n

gives (12), since 0 < ¢ < 1. To obtain (11) from (12) note that, if (6) holds
(the exponents now do not have to be distinct), then by Hélder’s inequality
and (7) it follows that (€2(n) is the number of all prime divisors of n)

log n)3e+1/1 and where we

(13) log f(n) < Ai: a; < A(Q(n)) (w(n))'—e.

i=1

In (13) we replace n by f(n), use (12),(10) and the fact that Qn) <
logn/log2 for all » > 1. We obtain

- £( logn \* . (+1)/2 (100 Tog o1 —(eH1) /211 —c
08 7)< (2B (log )=+ loglog (421

which gives then (11).This ends the proof of Theorem |.
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We recall that a(n) € F with ¢ = 1/2, so that (12) and (11) yield B = 7/4
and (" = 11/8 in (&), as already mentioned.

It follows from (10) that (11)gives anon-trivial upper bound for log f( f(n))-
However, Theorem 1 certainly does not resolve.the problem of the maximal
order of log f(f(n)), whose solution requires additional information on the
function g(k) in (9). To see that f(f(n)) may assume both large and very
small values infinitely often if f(n) € F', we present the following two exam-
ples.

Example 1. Let fi(n) € F with AP = k), n(1) = gu(2) =2 n (k) =
[¢#°] for k& > 3 and a fixed ¢ such that 0 < ¢ < 1, where [z] denotes the
integer part of x. Then ifn = (pypa---pr)* (£ — o0) we have

fin) = 25, fi(fu(n)) = [e57 ], logn = 20(px) ~ 2K Tog K.

Thus for infinitely many n we have

(14) tog /i) > (o)
og log n

By construction the constant ¢ in (14) is, for fi(n), the same as the one
appearing in (9). If we compare the bounds in (11) and (14) for log fi( fi(n))
it is hard to tell which one lies closer to the true order of magnitude of
log fi( fi(n)). Although g1 (%) in this example is of simple form, its arithimetic
structure is obscure, and for this reason the problem is a hard one.

Example 2. Let fo(n) € I with
1 k#2

h@%—{z e o B

In the previous example the function fi(fi(n)) exhibited large values, but
in this case we clearly have

liminf fo(fa(n)) = L, lmsup fol fa(n)) = 2,

e n—00

since fo(fa(m)) equals either 1 or 2. Here, at least, the problem of the
maximal order of fa( f2(n)) is solved. Note, however, that fa(n) itself takes
large values, since by (10) one has

log fo(n)loglogn  log?2

lim sup — -
=00 ]0{:‘; T i

Related to the functions w(n), Q(n) is the function Q(n), which for n > 1
we define as the number of distinct exponents a; in the canonical decomposi-
ton (6) of n, and for convenience we set (J(1) = 1. Note that the function
Q(n) is neither multiplicative nor additive. We shall determine the maximal
and average order of Q(n) and Q(€)(n)). The results on the maximal order
are contained in
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Theorem 2. Forn > n, we have

, logn \ 1/? he N
(15) Qn) < 2 og n L+0 log., n ’
log, n log, n

and equality holds in (15) for infinitely many n. We also have

G 1/2
(16) Q@wng(ﬁﬁﬂj O*“(EQ%D’

log, n log; n

and equality holds in (16) for infinitely many .

Proof. Take

(17) ’-'?-:P%Pg---ﬁ::, K — oo,
Then
(18) K =wn)=Qn), Q(Q(n))=QK).

But from (17) we have

(19) logn = Z jlogp; = Z J(log g + O(log, 7))

i<K i<k

]. ) " T - -
= 5K log I + O(K*log, K),

logn \' & _ S { logyn
Qn)=2{—— 1+0 | —=——
log, n log, n

for m given by (17), that is, for infinitely many n. From (18) we have

, N ey o f log K vy L logg K
Q(Q(n)) = Q(K) =2 (logz A_,) (1 +0 (m))

which gives

for infinitely many K of the form
(20) K =pip}---pl, r — o0.

But fromn (19) it follows that

1 ; .
log i = 3 log, n + O(logs n), loglog K = logy n 4+ O(1).
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Inserting those values in the expression for Q(Q(n)) it follows that equality
holds in (16) if n is given by (17) and Kby (20).

To obtain an upper bound in (15) note that if (14925 --5]Q) is any per-
mutation of (1,2,...,Q)and 1 <ay < -+ <ag () = Q(n)) are the distinct
exponents in the canonical decomposition of n, then

a; =1 (3 = Lyws sl )
Thus we have, for some permutation (ji,72,-- wig)of (1,2,..., Q),

Q Q Q
logn > Z a; log pj, > z a;log po—iv1 = Z tlog pg—iv1
t=1 =1 i=1
Q Q
=3 (Q—i+1)logpi = 3(Q — i+ D(logi + O(logy i)
i=1 =1
Q Q 1
= ;logi ~ Y ilogi+ 0(Qlogy Q) = icgz(mgcg + O(log, Q).

i=1

The above expression is similar to (19) and easily implies the upper bound
in (15). Since the right-hand side of {15} is an increasing function of n for

n > nq we have

L (log QU '  (logs Q)
£ 2| === Ql————
mmmy_(b&mm 140 fogy 0(m)) )
and if apply (15) to the right-hand side of the last inequality, we obtain (16).
This completes the proof of Theorem 2.

To investigate the average order of Q(n) and Q(Q(n)) we shall use the
approach developed by G. Tenenhaum and the author [4]. Therein an
s-function f(n) was defined as an arithmetic function for which f(n) =
f(s(n)), where s(n) denotes the squarefull part of n (s is called squarefull if
s = 1orif p* | s whenever p | s, p a prime). Thus a(n) and @(n) — w(n)
are both s-functions, the former being multiplicative and the atter addi-
tive. Now Q(n) is neither multiplicative nor additive, but it turns out that
it is "nearly” an s-function. Every m can be uniquely written as n = ¢s,
(g,8) = 1, where ¢ = ¢(n) is squarefree (meaning that it is either 1 or a
product of distinct primes) and s = s(n) is squarefull. But then

) N = 1+ Q(s(n)) if g(n) > 1,
1) m”‘{@wmn >
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Therefore
Do Q) =1+ Q(s) > 1Y)
nLz s<w 1<n<z/s,(q,5)=1 s<w

We evaluate the sum over ¢ by (1.4) and (1.5) of [4], noting that Za(a
va. We obtain

(22) Y Q) = 301+ Qls)x

n<a s<w

<

—r)_;lf:H(l—}—pq) + O(B(s)s™ /2172 log

=8
rls

with

B(n) = H(l + p~ 172
pln

To estimate the error term in (22) we use (15) and
Y B(s)s™V? < T+ By > Ty < loga
s<x p<ae m=2

In a similar way we may evaluate the summatory function of Q(Q(n)). The

expression will be similar to (22), only instead of | + ((s) we shall have
Q1+ Q(s)). We obtain

Theorem 3. We have

D Q(n) = Dz + O(x"210g"" ¢ (log, 1 )12,

n<r
6 = )(5) 1,
- _J)Z I+ Q(5) H(I-H'r])_l‘
2 P
=1 pls
Z Q(Q(n)) = Ea 4 O(a'/? log? x(log, :1:}1/2(1012;3 :1;)_1/2),

n<ax

E:FZQ 1+(,) H(IHJ -y

s=1

It may be noted that by similar arguiments one also ohtains

(23) Y I=dga + O 1og? %),
n<e,Q(n)=~k
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where the so-called "local density” dj is given by

(oo}

§] [
I, = — — 1 a=1y=1 L
di = — II Sl [(1+p7Y) (k> 2),

s=1,Q(s)=k—-1  p|s

and d; = 672 (since Q(n) = 1 if n is a power of a squarefree number). The
error term in (23) is uniform in &, and each dy > 0, since for any given & > 1
the equation Q(s) = k — | has a solution in s, namely

g = 12l k
S=PPr P
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