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ABSTRACT. We discuss probleins and results concerning subsys-
tems of first-order Peano Arithmetic, especially concerning the

provability of basic theorems of elementary nunber theory and
combinatorics.

Let LA denote the usual first-order language of arithmetic and PA denote
Peano’s axioms expressed in LA, Subsystems of PA are obtained by rex-
tricting the induction schema or replacing it by a restriction of some other
schema.

First we recall the definition of the “arithmetic hierarchy” of formulae of
LA.

Definition 1. Let ¢ be a formula of I, A and n > 1. We say that

(a) ¢ is By or I, or bounded if @ involves bounded quantifiers only, i.e.
quantifiers of the form Va Sy de <y, Ve <y, Ja < .

(b) ¢ is X, if ¢ is of the form 3 ¥ ... f, where 0 is bounded and there exist
n alternations of blocks of similar quantifiers in front of 4.

(c) wis I, if = is logically equivalent to a Y, formula.

Now we proceed to the precise definition of the subsystems that were first
studied.

Definition 2. For n > 0,

(a) X, denotes PA with induction only for ¥, formulae with parameters,

(b) BX, denotes IS, plus the collection schema for %, formulas only, i.e.
the schema

Vo < z23dye(a,y) — Jiva < =y < tp(z,y),

where ¢ is any I, formula with parameters. .
(¢) LE, denotes PA with the induction schema replaced by the least number
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schema only for ¥,, formulae with parameters.
I, BIl,, LIL, are defined siwmilarly.

Remark 1. Strictly speaking, the subsystems defined above include a finite
number of axioms expressing commutativity of 4+ and ., associativity of +
and ., etc.; these must be added to the usual axioms, because the amount of
induction available in some of these systems is not sufficient to prove them.

Relations among the systems we have defined were proved by Paris &
Kirby (see [14]) and are summarized as follows.

Theorem 1. For all n > 0:
IE‘H--I-I
I3
BZH-}-I - BHH

4
Xy e M, & LI, & L,

Furthermore, the converses of the vertical arrows do not hold.
In view of this theorem, the following ¢uestion was asked in the 1970%s:

Main Problem. What is the weakest subsystem of PA that can serve as a
basis for clementary number theory and combinatorics?

It is not difficult to see that IT, is strong enough to serve as a basis:
indeed, one can formalize usual proofs so that only induction for ¥, formulae
is needed. But what happens with the strictly weaker systems B, and 3,7
At this point we need to mention the following result, proved by Paris (see
[12]) and, independently, H. Friedman.

Theorem 2. Forn > 0 and ¢ a 11, sentence: BY, 4y Fé=IY,F4.

By the previous theorem and the fact that all basic results of elementary
number theory and combinatorics are formalized by I, sentences, studying
IS, is the same as studying BX,, as far as our main problem is concerned.
Unfortunately, IZ, seems very weak, since the usual method of coding can-
not work in it. To test its strength, the following problems were posed and
still remain open:

Problem 1 (Paris). Does IS, prove the MRDP theorem?

By MRDP theorem we mean the following result of Matijasevi¢-Robinson-
Davis-Putnam (see [10]), which was crucial for the negative solution of
Hilbert’s 10th problem:

MRDP Theorem. For every $, formula o(F) we can effectively find a
polynomial p € Z[¥, ] such that




Subsystems of Peano Arithmetic and Number Theory 475

N | Vilp(3) — 3(p = 0],
where N denotes the standard model of PA,

Remark 2. Strictly speaking, p = 0 stands for pt = p~, where p = p* — p-
and pt,p~ € N[Z,7].

Since the MRDP theorem cannot be expressed as a set of sentences of
LA, what is meant in problem 1 is: Can we replace N = by IX, b in the
MRDP theorem?

Problem 2 (Wilkie). Does IS, prove that the set of primes is unbounded?
Problem 3 (Macintyre). Does IS, prove PHPY,?

By PHPE, we denote the following schema, which formalizes the pigeon-
hole principle for ¥, maps:

Vo < 23y < zp(a,y) — g, 0 < 23y < 2(w) # 24 A (a1, y) A (s, y)),
where ¢ is any X, formula with parameters,

It is widely believed that the answer to all these problems is “no”. Con-
cerning Problem 1, this feeling is especially strong, in view of the following
observation of A. Wilkie (see [19]):

If I, proves the MRDP theorem, then NP = ¢co — N P.

Given the difficulty of working with IS, it seemed worthwhile to consider
systems strictly between ¥, and IX,. Such a system is IZ, + exp, where
exp denotes the axiom Va, y3z(z = N) Here z = &% is a bounded formula
defining the graph of the exponential function in the standard model; the
existence of such a formula was first shown by J. Bennett (see [1]). IZ, +
exp is strictly stronger than /X, since the latter can capture functions of
polynomial growth only, by the following result of R. Parikh (see [11]).

Theorem 3. If IX, F Va Echp( JU), where ¢ is By, then there exists k € N
such that IS, FVYady < «* + & Lp(:r:,y).

It is also known that ISy 4 exp is strictly weaker than 7Y;: this holds
since the former cannot prove BX,, essentially by the proof that /X, cannot
prove BE, (see [14]). However, IX, 4+ cap seems to be as strong as I¥,, as
far as our main problem is concerned; the idea is that existential quantifiers,
unbounded at first sight, are essentially bounded, as long as large numbers
exist. For example, it is known that the answer to Problems 1 — 3 is “yes”
if we replace /¥, by IX, + exp, i.e. the {ollowing hold:

Theorem 4. IY, + cap proves the MRDP theorem.
Theorem 5. [X, + exp proves PHPY,.

Theorem 6. IY, + cap proves that the set of primes s unbounded.
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The first of these results was proved by H. (GGaifman and, independently,
the author (see [6]) and the second one by the anthor and J. Paris (see [5]);
the proofs of both are based on the fact that inside any M = [X, + exp one
can code finite (in the sense of M), X definable sequences of elements of M.
Theorem 6 is proved by a straightforward formalization of the usual proof
of Euclid’s theorem.

To strengthen the belief that X, + exp is very strong, Ch. Cornaros and
the author obtained (see [4])

Theorem 7. IS, + cap proves (a version of ) the prime number theorem.

The proof of this result is a modification of Selberg’s proof, the two main
differences being that
(a) an approximate logarithm function (previously introduced by A. Woods
in [20]) is used instead of log.x and
(b) arguments involving limits have been replaced by induetive ones.
Attempts to solve Problems 2 and 3 led to the study of other systems
strictly between [Y, and [X;. In connection with Problem 2, A. Woods
showed ‘

Theorem 8. [T, + PH PX, proves Sylvester’s theorem, i.c. that for any
1 <a<yoneofy+1,...y+a has a prime divisor p > .

Let us discuss briefly the idea of his proof. In the usual proof, by consid-
ering the largest powers of primes in the prime power decompositions of the
numbers 1, .. , z, ¥+ L, ..., y + @, Sylvester showed that if no prime divisor
of y + 1, ..., y + « exceeds x then for any function &(x) > m(z) (= number
of primes < x)

2yl > (o y— £ (1),
But for sufficiently large & and a suitable choice of £(x) (1) fails and so the
result follows. Woods considered the logarithmic version of (1), using the
approximate logarithm function referred to above. Then he “unravelled” (1)
to obtain the underlying comparison map, the existence of which contradicts
PH PY, (the “unravelling” was necessary, since it is not known how to define
partial sums by a X, formula in X, + PHPE,).

(llearly, we obtain as corollaries of the previous theorei:

(a) the answer to Problem 2 is “ves” if [Y; is replaced by Y.+ PHPY,
(h) if the answer to Problem 3 is “yes”, then the answer to Problem 2 is

1 3

yes”.

Note that IS, + PH P, is strictly weaker than Y, + exp. To see this, let
M be a nonstandard model of PA, e € M — N and K De the substructure
of M with universe {# € M : M |= x < a* for some n € N}. Then K =
IY, + PHPY, (since PHPY, is I axiomatizable), but clearly K & exp.
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Another system studied by A. Woods is /€2, which is defined as follows:

)

Definition 3. Let £* be the smallest class of (primitive recursive) functions ‘
containing +, ., all constant functions and closed under substitution and 1
bounded recursion — this class was defined by A. Grzegorezyk (see [7]). 1£2 |
is obtained from [%; if we ‘

|

(a) add a new function symbol to LA, for each fe &, ‘

(b) allow induction for £2 formulae, i.e. bounded formulae of the new ‘
langnage LA(E?),

(c) add a defining axiom DEF(f) for each new function symbol f.

Clearly, IS, C I£2, but it is unknown whether equality holds. It is easy to
see that /&7 is contained in an extension by definitions of IEo+ exp; in fact,
this inclusion is strict, since [£2 can only capture functions of polynomial
growth (i.e., Theorem 3 can be proved for 1E2 instead of 1%)).

By exploiting the availability of “census functions” of £2-definable sets in
1&Z, i.e. the ability to count the number of elements of any &2-definable set
by means of a function in £%, A. Woods proved (see [20])

Theorem 9. I} proves PHPE?, where PHPE? denotes the pigeonhole I
principle schema for €2 formulac.

As a consequence of Theorems 8 and 9, Problem 2 has a positive answer
if IY, is replaced by 71&2.

Now we turn our attention to subsystems of [£2, studied by A. Berarducci
& B. Intrigila (see [2]) and Ch. Cornaros (see [3]). Each one of these systems
includes TE, and is included in /&2, but it is unknown whether any of these
inclusions are proper.

Berarducci and Intrigila considered combinatorial principles provable in
1&7; we will refer to only two, i.e. weak — PH PY, and EQX,.

Definition 4. (a) Weak — PH P, is the following schema
(I+e)z>2A Vo< (l+e)z3y<zp(e,y) —
Juy, w0 < (14¢€)z Jy < 2(y £ 29 A (1, y) A oz, 1)),

where @ is any ¥, formula with parameters and ¢ > 0is any rational number.
(b) EQXE, (equipartition principle for , relations) tis the following schema

Vz “if p(a,y) defines an equivalence relation on 2z such that every
equivalence class
has exactly » elements, then n | 27,

where ¢ is any B, formula and n € N.
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It should he noted that weak — PH PX, had been previously considered
by J. Paris, A. Wilkie and A. Woods (see [14]) and that Theorem 9 clearly
implies that T2 F weak — PH P,

Using Theorem 9, Berarducei and Intrigila obtained

Theorem 10. [E2 proves EQEZ, where EQE? is as before, bul considering
£2 formulae instcad of ¥y ones.

They also showed that the following hold:

Theorem 11. IS, + weak — PH PY, proves Lagrange’s theorem, i.e. that
every mteger is the sum of four squares.

Theorem 12. IZ, + EQY, proves the “complementary conditions” of the
quadratic reciprocity law. i.c. that for any odd prime p:

(a) -1 is a quadratic residue modp iff p = Lrnod4

(b) 2is a quadratic residuc modp iff p = £lmods.

Theorem 13. IS, + EQI, proves that a prime number is the sum of two
squarcs iff it is of the form 4n + 1.

For the proofs they used the multiplicative property of Legendre’s symbol
( %) (p an odd prime) and some group-theoretical considerations - the usual
proofs are based on Euler’s criterion () = ar="2podp, hut it is unknown
whether this is provable in the theories considered.

Cornaros, continuing the work of Berarducci and Intrigila, proved

Theorem 14. [£2 proves the quadratic reciprocity law, i.e. that for any odd
primes p, ¢:

EYLY — (—1)p=10e=1)/2

()(%) = (~1) :

His proofis based on the usual one and exploits the the fact that | 1| (e
f(z)modp and 3., f(2) are £ functions, for any f € &% and any &
forinula .

He also attempted to prove the following conjecture of A. Woods (see

[20]).

Conjecture. IZy(7)+ DEF(7) proves thal the sct of primes is unbounded,
where ISq(m) + DEF(m) is the subsystem of 1£7 if we allow only one new
function symbol 7 corresponding to the usual function m(x) = number of
primes < x.

(lornaros showed that adding 7 and one more new function symbol to LA
suffices. namely
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Theorem 15. IS(m, K)+DEF(r)+ DEF(K) proves Bertrand's postulate,
where K is @ new function symbol corresponding to the usual function K(z)=

Z[l<n<a [Og‘ .

For the proof, an approximate logarithm function is used again and care
is taken to define other functions involved in the usual proof, e.g. P(x),in a
Yo(m, ) manner.

Next, we discuss problems and results concerning the system %, 4+ Q.
where (2, denotes the axiom Ya3y(y = xl°=v1), By Theorem 3, I, is strictly
weaker than IX,+Q,. To see that [5,+142, is strictly weaker than 1) +exp,
it suffices to consider the structure with universe {& € M : M |= & < allog=al"
for some n € N}, for an arbitrary nonstandard M = PA and a € M — N.

Let us see what is known about Problems 1 — 3 if 1Y, is replaced by
Yo+ 8,.

(a) The feeling is that Problem 1 again has a negative solution. Indeed,
Wilkie’s observation shows that if IS, + Q, proves the MRDP theorem,
then VP =¢co— NP.

(b) By using ingenious coding techniques, Paris, Wilkie and Woods showed
(see [15])

Theorem 16. IS, + )y proves weak — PH PY,.

(c) Again in [15] one finds

Theorem 17. IX, 4 Q proves thal the scl of of primes is unbounded.
Actually this can be improved to

Theorem 18. [X, + Q; proves Sylvester ’s theorem.

This follows from Theorem 16 and the fact that Woods’s proof of Theorem
8 really uses weak — PH PX,, not P PYS,.

We continue with a short discussion of a very weak subsystem of [X,.
This is denoted by [Open and is obtained from IS, if we allow induction for
open formulae only. The study of free-variable systems was first advocated
by T. Skolem (see [17]). Shepherdson obtained (see [16])

Theorem 19. /Open does not prove any of the following:
(a) * # 2y* V=0

(b) 2*+ 9y £ B Vayz =

(c) the set of primes is unbounded.
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By part (a) of this theorem and the fact that IZ, proves Vu,y(z? #
292V @ = 0), it follows that IOpen is strictly weaker than /X,

To prove this theorem, Shepherdson constructed a recursive nonstandard
model M of TOpen, in which (a)-(¢) fail, as follows:
The universe of M is the set of all polynomials of the form

“rXp/q + %‘l){l;v—l)/q P XM ty,

where p, ¢ € N, ¢ > 0, a,,... ,a, are real algebraic, a, > 0if p > 0, ay is
an integer and is > 0 if p = 0. Successor. addition, ete., are defined in the
obvious way; by taking X to be “infinitely large”, one can make M into a
discretely ordered sewi-ring,

Many other authors studied [Open, among which A. Wilkie ([19]), L.
Van den Dries ([18]) and A. Macintyre & D. Marker ([9]), obtaining very
interesting results. We mention only one result from [9], namely

Theorem 20. [Open does not prove Lagrange’s theorem.

Most proofs in [9], inclnding the proof of the previous result, involve con-
structions of models by unions of chains argunents and repeated use of
purely algebraic constructions.

Let us finish with a remark: Most of the systems we have defined in this
paper have been studied extensively from more than one viewpoints, but we
have been concerned only with results associated to the main problem stated
at the beginning. For information concerning other viewpoints, we urge the
interested reader to consult A. Macintyre’s excellent survey of the subject

([8])-
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