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ABSTRACT. This is a survey paper on the second largest eigenvalue Ay of the |
adjacency matrix of a graph. Among the topics presented are the graphs with
small Ay, bounds for Ay, algebraic connectivity, graphs with good expand-
ing properties (such as Ramanujan graphs), rapidly mixing Markov chains
etc. Applications to computer science are mentioned. Recent results of the
anthors are included.

0. Introduction '

Let (7 be a graph on vertices 1,2,... ,n. The adjacency matrix of (¥ is
the matrix A = [a;]}, where a;; = | if vertices i and j are adjacent and
aij = 0 otherwise. Since A is symmetric its eigenvalues Ay, Aa,... .\, are
real. Assuming that Ay > Ay > --- > X, we also say that A\;(= Ai()) is
the i—th eigenvalue of (v (i = 1,2,... ,n). In particular, A2((7) is the second
largest eigenvalue of a graph (7.

For general theory of graph spectra see monographs [26] and [27].

Concerning particular eigenvalues the following eigenvalues have been
studied in some detail:

1° the largest eigenvalue;

27 the second largest eigenvalue;
3° the smallest positive eigenvalue;
49 the largest negative eigenvalue;
5% the second smallest eigenvalue;
G¢ the smallest eigenvalue.

For a survey on the largest eigenvalue of a graph see the paper [27] by
D. Cvetkovi¢ and P. Rowlinson (see also [26], the third edition, pp. 381-
392). Concerning the smallest eigenvalue, particular attention has heen paid
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to graphs with the smallest eigenvalue —2 (see [26], the third edition, pp.
378-381).

Graphs with small second largest eigenvalue have interesting structural
properties. The second largest eigenvalue (in modulus) of a regular graph
turned out to be an important graph invariant. This paper provides a survey
of research on such graphs and on the second largest eigenvalue in general.
The starting point for writing this survey was a shorter survey on the same
subject given on pp. 392-394 of the third edition of [26].

1. Graphs with small A,

It is an elementary fact (see, for example, [26], p. 163) that for non-trivial
connected graphs Ay(K,) = =1 (n > 2), Aa(Ky, 1y, m,) = 0 (max(nq, na,

csng) 2 2) and Ay(() > 0 for other graphs (.

A graph property P is called hereditary if the following implication holds
for any graph (1 if (¢ has property P, then any induced subgraph of i also
possesses property P. (In this paper, when we say that "a graph G contains
a graph fI” we mean that (¢ contains # as an induced subgraph). A graph
i is forbidden for a property P if it does not have property P. If a graph (7
contains (as an induced subgraph) the forbidden graph H (for a property P),
then G does not have property P. Then H is called a forbidden subgraph.
A forbidden subgraph [ is called minimal if all vertex deleted subgraphs
H — i have property P. Graphs having property P can be characterized by
a collection (possibly infinite) of minimal forbidden subgraphs for property
"3

For any real « and any integer i the property expressed by the inequality
Ai((7) < ais a hereditary property. This conclusion follows from the inter-
lacing theorem (cf., e.g., [26], p. 19) which says that A;(H) < M) for any
induced subgraph H of (.

The hereditary property of the form A ((G) < a. and in principal, the
second largest eigenvalue of a graph, has been studied in some detail for
the first time by L. Howes [50] and [51] in early seventies. The following
characterization is taken from [51]:

Theorem 1. Let G be an infinite set of graphs, then the following statements
aboul G are equivalent:

1¢ There exists a real number a sueh that Ay (G') < a for every (7 € G.

29 There exists a positive integer s such that for cach (¢ € G the graphs
(KU KL) 7 K, (8K UKy )7 I, (K,_q Usk, YV G, KU K,
2K 5. 2K 5 and the graphs on Fig. 1 (cach obtained from two copics
of I{y s by adding extra edges) are not subgraphs of 3.




Fig. 1.

Here 7 denotes the join of two graphs, while U refers to union of two
disjoint graphs. Notice that (7| 7 (/3 = Gy U Gy

In the rest of this section, we shall focuss our attentoin the following
values for a: a = %, a=v2~1,a= (V5 — 1)/2, a =1 and a = 2.

1.1 The golden section bound

There are several results in which the (upper) bound for Ay does not
exceed the golden section (/5 — 1)/2.

It is proved in 1993 by D. Cao and Y. Hong [17] that the second largest
eigenvalue of a graph ( on n vertices is between 0 and 1; il and only if
G = (n—3)K, v (K; U K3). The problem of characterizing graphs (¢
with 3 < A (G) < (V5 = 1)/2 was also posed in [17]. Graphs G with
A(G) < V2 — 1 are determined by M. Petrovié [75]. An independent
characterization of graphs with Ay < /2~ 1 has been given by J. Li in [56];
in addition, all minimal forbidden subgraphs for the property Ay < v/2—1 are
given there. It is proved by 5. Simié [85] that the set of minimal forbidden
subgraphs for the property As((7) < (V5 — 1)/2 is finite. The structure of
graphs ' with A ((7) < (V5 — 1)/2 has been studied by D. Cvetkovi¢ and
5. Simi¢€ [29]. A part of results has been announced in [28].

We shall introduce the notation ¢ = (v/5 — 1)/2 =~ 0.618033989. Obvi-
ously, we have 0?2 4+ ¢ — 1 = (.

Graphs having property Ay(() < o ( a-property) will be called o-graphs.
For convenience graphs i for which Ay(G) < o, Ay () = a, Ay(() > o will
be called o~ -graphs, a®-graphs, ot -graphs, respectively.

The next proposition, taken from [95] (see also [9]), enables the definition
of a class of graphs to which every ¢~ -graph belongs.

Proposition 2. If G is a connected graph and if (; has no isolated vertices,
then (¢ contains an induced subgraph equal to 2Is or Py.

Assume now (7 is a ¢-graph. If (¢ is a connected graph, then ¢ must
have at least one isolated vertex (otherwise (7 contains 2K,5(= E) or P4 as
an induced subgraph, and heuce is not a @~ -graph). On the other hand, if ¢
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is a disconnected graph, then (v itself is a join of at least two graphs. Since
the o-property is hereditary, it follows that  belongs to a class of graphs
(here, as in [85], denoted by C) which is defined as the smallest family of
graphs that coutains Ky and is closed under adding isolated vertices (i.e.,
if ¢ € C, then G U Ky € C) and taking joins (i.e., if (+;,G5 € C, then
1V G2 € C). An alternative way to describe graphs from the class C is
in terms of minimal forbidden induced subgraphs. Actually, C is a class of
graphs having no induced subgraphs equal to E (= 2K3) or P (= Py).

Clearly, any o~ -graph belongs to C. hut not vice versa.

The class C has been introduced and studied in [85]. Weighted rooted
trees (with weights assigned to vertices) were used also in [85] in representing
graphs from the class C.

To any graph ¢ from € we associate a weighted rooted tree T, (also called
an expression tree of () in the following way:
if # =(Hy<...v H,)UnK; is any subexpression of a graph G (i.e. a
graph obtained by using the above rules), then a subtree Ty with a root
v corresponds to H; n(= w(v)) is a weight of v, whereas for each i (i =
1,...,m) there is a vertex v; (a son of v) representing a root of H;.
Example. If ¢ = (K, K1) UK) K1) Ky)s7 K{)U3K;, then
the corresponding expression tree is depicted in Fig. 2(a). In Fig. 2(b) we
represent the same graph as a set diagram (a line between two circnmscribed
sets of vertices denotes that each vertex inside omne set is adjacent to any
vertex inside the other set).

o0/ &b

(b)

Fig. 2.

It turned out that the set of o~ -graphs falls into a finite number of struc-
tural types. These types are given in Iig. 3 by the corresponding expres-
sioned trees.

It has been proved along the same lines in [85] that the set of minimal
forbidden subgraphs for the o~ -property is finite. They all belong to C
except for F and Pj. The whole list of these forbidden subgraphs will be
described in a forth-comming paper [30].
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We present now main results of [29].

Theorem 3. A a-graph has at most one non-trivial component G for which
one of the following holds:

1?7 is a complete multipartite graph;
2° (G is an induced subgraph of C;
3° G contains a triangle.

Before proceeding to describe o-graphs mentioned in 3¢ we introduce some
notation.

Let 7' be a o-graph with the vertex set V. Let T' be a triangle in & induced
by the vertices x,y,z. Next, let A((/,T) = A, B(G,T)=B, C(G,T)=C
be the sets of vertices outside 7" which are adjacent to exactly one, two,
three vertices from T, respectively. Also, let. (4, (!, G be the component,
containing 7', of the subgraph of (7 induced by the vertex set V — B — (/,
V—-A-C,V - A- B, respectively.
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Let d(u,T) denote the distance of the vertex u from the triangle T', i.e.
the length of the shortest path hetween u and a vertex from T.

a-graphs containing triangles are now described in more detail in terms
of induced subgraphs (G4, G, Ge.

Theorem 4. Let (¢ be a connected a-graph which contains a triangle. For
any triangle T of (¢ the following holds for subgraphs (4, Gg, Ge -

19 (4 15 an induced subgraph of one of the graphs from Fig. 4.

29 For G g one of the following holds:

i) G'g s an induced subgraph of graphs from Fig. 5;

i) Gg= P~z (Il U Ky) for some a-graph H;

iil) Gp = Hy 7 Hy v Hs for some a-graphs Hy, Hy, 3,

3% For Ge one of the following holds:

1) Ge ois an induced subgraph of (K3 U K1)z H for some a-graph
i;

ii) Ge is obtained from K, 7 Kss7 H by adding a pendant edge to
each vertex of K, where n > 2 and H is a o-graph containing
no induced subgraphs isomorphic to some of graphs Kz U Ky,
Ko U3Ky, Ko U2K, KoUKy, [\'3’;; UK.

X A

Fig. 4.

A A A

Fig. 5.

It is also proved in [29] that the set of minimal forbidden subgraphs for
the o—property is finite. The next theorem (taken from [29]) provides more
details.
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Theorem 5. If H is a minimal forbidden (induced) subgraph for the o—pro-
perty, then:

1% H is one of the graphs E(= 2ICy), Fy, Fy, I}, Fy (see Fig. 6), or
29 H belongs to the class C.

Fig. 6.

All minimal forbidden subgraphs for o—property are not yet known. On
the other hand, more can be said if we require that both, the graph and
its complement are o—graphs. Then, due to S. Simié [86], there are ex-
actly 27 minimal forbidden subgraphs for this property. Here we rather give
explicitely (following[86]) all graphs with the property in question.

Theorem 6. G and (7 arc both a—graphs, if and only iof either of them is
one of the following graphs:
K, Unkqy (m,n>0), KyigUmhy, Ky Umk, (m > 0),
KzsUmKy (m <3), Kyj11Umk; (m < 2),
((A’Q’]‘l U I, ) v K1) U Iy, (( f\rgJ U 21(1) Y ]\'-1) U K,
((Keq UK,y Kq)U Ky, (K1 UK )7 K, (m> 2,0 > 0),
(K201 U K1) Ky, (Ko U2K,) 7 K,y (m < 2),
([(311 U2K1)VI(1, (I{‘Z,l 11U I )7 K, (( (11’2'1 UA )VI\"] )U[f])v_[fl s

1.2 Bounds equal to 1 and 2

Graphs with As((G) < 1 have been studied in 1982 by D. Cvetkovié
[24]. Tt turned out that some of these graphs are the complements of the
graphs whose least eigenvalue is greater than or equal to —2. More precisely,
An(G) > =2 implies M(G) < 1. If A (G) = =2, then A2((G) < I equality
holding if and only if the eigenvalue —2 of @ is either non-simple or non-
main (all eigenvectors are orthogonal to the vector (1,1,...,1)). For other
graphs G with Ay(G) < 1, the complement (7 has exactly one eigenvalue
smaller than —2. However, A, (G) < —2 and A1(G) > =2 does not imply
A((F) < 1. These results are derived by the well-known Courant-Weyl

inequalities for eigenvalues of matrices. For further details see the original

paper or monograph [25] (p. 11, where [Cve5] is wrongly given as [CveT]).
A representation of graphs with Ay(G;) = I in the Lorentz space is given
m 1983 by A. Neumaier and J. J. Seidel [72].
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Bipartite graphs (¢ with A2((') < | have been characterized in 1991 by
‘M. Petrovié [74]. Three families of graphs and four particular graphs with
M () € 1 are constructed. It is proved that a connected bipartite graphs
have the property Ay((¢¥) < 1 if and only if it is an induced subgraph of the
mentioned graphs.

In particular, trees with the second largest eigenvalue less than | were
treated by A. Neumaier [70]. More generaly, an algorithm for deciding if
the second largest eigenvalue of any tree is less than some bound was also
proposed by A. Neumaier.

The exact characterization of graphs with second largest eigenvalue aro-
und 1 still remains an interesting open question in spectral graph theory. -

Graphs with Ay < 2 are called reflexive graphs [72]. Some classes of
reflexive graphs are studied in [72]. In particular, trees with Ay = 2 are
called hyperbolic [60]. All hyperbolic trees are known [60], [70] and [72].

2. Bounds for Ag

Upper and lower estimates for the second largest eigenvalue of a graph
under various restrictions were studied in literature (but not as extensively
as for the largest eigenvalue).

The most general result concerns the counected graphs with prescribed
number of vertices. According to D. Powers, for a connected graph (z on n
vertices the following holds

1 58 AelG) & L%J il

The upper bound is achieved, for n odd (n = 2s+1),if ( is a graph consisting
of two cliques of size s (graphs equal to K,;) bridged by a path of length 2;
for n even this bound is only asymptotically sharp (see [78], or [79]; see also
[48]). The lower bound is achieved if and only if  is a complete graph
(see Section 1). It is interesting to note that the above (upper) estimate is
proved by making use of the following more general estimate of the second
largest eigenvalue in terms of the largest eigenvalue of some parts of a graph.
Namely, due to D. Powers we Lave:

Ma(G) < max min{A;(G1), M(Ga)},

(71,072

where (y and (4 denote the subgraphs induced by vertex sets of some
bisection of (the vertex set of) a (connected) graph . The key argument
for proving this was based on partitioning the vertices of i according to sign
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pattern of the eigenvector corresponding to the second largest eigenvalue (see
[77] for details).

If (7 is a connected graph on = vertices and m edges, then, due to R.C.
Brigham and R.D. Dutton [13], the following inequality holds:

m(n — 2)
7 ’

Aa(GF) <

In particular, this estimate in not too good for trees. If we assume that ¢
is not a tree, then some refinements are possible, as shown in [79]. Then
the result is expressed in terms of the estimates for the largest eigenvalue
of a connected graph with a fixed number of edges (but not vertices). The
latter problem is completely solved by P. Rowlinson [S1] to within the graphs
which realize the bounds. More precisely, as remarked in [79], then

mn m— 1

AI(L?J — 1) <max{A(G)} < Ay(] 5 s

where Aq(im) is the maximum for the largest eigenvalue of a connected graph
with m edges); thus the estimate is very tight.

In particular, for triangle-free (and bipartite) graphs some further esti-
mates are obtained in [13].

Much better estimates for trees are known. If T is a tree with = >3
vertices, then

n—2

0<M(T)< 4/ {s
The upper bound was obtained by Y. Hong [47]. It is the best possible
for n (> 3) odd (then it coincides with the bound of A. Neumaier [70]

A(T) < 1/% which holds only for n odd). As remarked by D. Powers
[78], with more careful analysis one can get:

A/ [n; 1J — 1 <max{ (T)} < [“ ; 2],

i.e. the bound for n even is asimptotically sharp. The lower hound is clear
from the above (it is achived for a tree isomorphic to a star, i.e. for T =
K1n-1). Otherwise, if T # Ky ,,_1, then A2(T) < 1only for T = S2_, (here
S2_, is the graph obtained from a star with » — 2 arms by subdividing one

arm). Also then \y(T) = \/HM Thus if T # K

then Ao(T) > 1.

2

1,n—1> ‘5'7;,—27
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Star-like trees are trees homeomorphic to a star (I s for some s > 3).
The second largest eigenvalue of star-like trees (with a fixed number of ver-
tices and fixed number of arms) were studied by F. K. Bell and 5. K. Simié¢
(see [87]). We only mention here that for fixed s > 4, the trees with mini-
mum and maximum second largest eigenvalue (on fixed number of vertices)
are those as intuitively expected (i.e., those having the length of all arms
as equal as possible in the former case, and those having the length of all
arms but one equal to 1 in the latter case). If s = 3. then some interesting
phenomena do occur (for detail see [87]).

Results on regular graph are given in the next section.

3. Regular graphs

There are two main reasons why regular graphs deserve special interest
in this context. The first is that the largest eigenvalue of a regular graph
of degree d is equal to d, so then the second largest eigenvalue becomes
the dominant feature in many asspects (in particular, in spectral orderings).
The second is that regular graphs allow a simple connection between the
eigenvalues (of the adjacency matrix) and the eigenvalues of some other
matrices associated with graphs, in particular, with the eigenvalues of the
graph Laplacian (see helow).

3.1 X, and spectral ordering of regular graphs

The role of the second largest eigenvalue in ordering cubic graphs has
been observed in 1976 by F.C. Bussemaker, 5. Cobelji¢, D. Cvetkovié and
J.J. Sedel [16] (see also [26], pp. 268-269). The 621 connected cubic graphs
with not more than 14 vertices, together with eigenvalues and many other
data, are displayed. The sequence of eigenvalues is given in non-increasing
order for each graph, and for a fixed number of vertices the graphs are
ordered lexicographicaly with respect to their sequences of eigenvalues. Since
the largest eigenvalue Aq is equal to 3 in cubic graphs, the second largest
eigenvalue Ay determines roughly the ordering of graphs. Decreasing Ay
shows graphs of more "round” shape (smaller diameter, higher connectivity
and girth).

A partial theoretic explanation of these empirical observations was offered
in 1978 by D. Cvetkovi¢ [23].

Theorem 1. Let (¢ be a d—regular graph on n vertices. Let @ be any vertex
of (¢ and let § be the average vertex degree of the subgraph induced by the
vertices not adjacent to . Then we have:
5 < {l/\g + Aa(n — (l).
Mn—1)+d
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The same inequality (see also [25], p. 71) was derived in (6] Dy quite
different method.

In further we shall offer some other theoretic support to these (empirical)
observations (see Section 3.3).

3.2 Algebraic connectivity

For a graph (' on n vertices, let dy,ds,... ,d, denote the corresponding
vertex degrees. The matrix L = D — A with D = [dibi;]} (6i; the Kronecker
symbol) is called the Laplacian of (7. The graph Laplacian is positive semni-
definite and the second smallest eigenvalue of L (here denoted by a(= ee( (7))
is called the algebraic connectivity of (/. It was introduced in 1973 by M.
Fiedler [35].

The algebraic connectivity o of a graph (in regular case) can be expressed
in terms of the second largest eigenvalue. If (7 is a d-regular graph, then
= d— Ay. (Thus the algebraic connectivity increases as the second largest
eigenvalue becomes smaller).

Definition 1. An (n,d,¢)—enlarger is a d-regular graph  on n vertices
with a(G) > «. ‘

The significance of enlargers lies, among others, in the fact that they
enable an explicit construction of graphs with good expansion properties
(such as expanders). One such construction of expanders is obtained by N.
Alon and V.D. Milman [6]. For this aim we need the following definition:

Definition 2. Let (¢ = (V,F) be a graph with V = {v1,...,v,}. The
extended double cover of 7 is a bipartite graph [T = (X,V, F) with X =
{1, e} Y = {p1,. . 90} where F = {2y 1 1= 7 or v;u; € E}.

Remark. Actually, an extended double cover is a NEPS (Non-Complete Ex-

tended P-Sum, see [26], pp. 65-66) of ¢+ and K, in the basis {(0,1),(1,1)}
(see, also [25], p. 60).

Now the following theorem from [6] offers an explicit construction of an
expander (see Definition 2 from Section 6).

Theorem 2. Let G = (V, E) be an (n,d, ¢)—enlarger and let H be its ex-
tended double cover. Then H is a strong (n,d + L, 0)—expander for

e

b= .
d 4+ 4e

The next theorem of N. Alon [3] points that good enlargers are in fact
good magnifiers (see Definition 3 {rom Section 6).
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Theorem 3. Every (n,d,¢)—enlarger is an (n, d. §)-magnifier, where

o o
d 4 2¢

It is interesting to note that the converse also holds, i.e. that every mag-
nifier is an enlarger with some appropriate parameters (see [3], for further
details).

Remark. Generally, the fact that the algebraic connectivity is relevant to
expansion property of a graph (see Definition 1 from Section 6) can be also
justified by the following relation (cl. [42], Lemma 5.7) given below. Namely,
for any graph G = (V, ') we have:

XNV X

1 :
(V.Y C V)(I‘¥| § E = |()/Y| 2 l‘/'l (l((r'),

where 0X = {y : 2y € E,2 € X}. A similar result is due to R.M. Tanner
[92]. :

More inforination on expansion property of graphs, and other related
graphs can be found in Section 6.

The work on algebraic connectivity and graph Laplacian for graphs in
general (in particular, for non-regular graphs) will not be reported in this
paper. For more information see papers by M. Fiedler [36], [37], [38] and
also [44], [45]. Much information on graph Laplacians can be found in the
hook [26] and in expository papers [43], [61], [62], [66], [67].

3.3 Second largest eigenvalue in modulus

The second largest eigenvalue (in modulus) of a regular graph turned
out to be an important graph invariant since it has relations with various
graph invariants (such as diameter and covering number etc.) and graph
properties (including expanding properties and convergence properties of
simple random walks).

Let (¢ be a d-regular graph, and let A(= A(G)) = maz{|Ai| : |\i| # d}.
Notice that for bipartite graphs we have A(G) = Ay((7) (due to symmetry
of the spectrmin with respect to the origin).

Let (¢ be a connected d-regular graph on n vertices. According to N.
Alon and V.D. Milman [6] we have the following bound:

‘ 2d
(1) diam(G) < 2[4/ l2{ X log, n].
d—
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This bound was improved by several authors, in several directions. In-
teresting improvements are given by B. Mohar in [65], but expressed in
terms of the second smallest, and the largest eigenvalue of Laplacian ma-
trix of any (not necessarily regular) graph. Also the following lower bound,

. : 4 .
diam((7) > —, valid for any (connected) graph on n vertices, can be found
no

in [65]. Bound (1) is also improved by F.R.K. Chung [22]. For regular
graphs this bounds reads:

(2) diam(() < (log -t 1) 1.
Iog;

For this bound it was observed in [31] that it is indeed the upper bound for
covering index of a graph (i.e. it is the smallest integer ¢ such that any pair
of not necessarily distinct vertices is connected by a walk of length exactly
¢). Let cover((i) denote the covering number of a connected graph . As
proved in [31], for any (connected) graph we have diam(() < cover(() (it
is also true that cover(G) < diam{(/) + s il every vertex of < is in some
closed walk of odd length, at most 25 + 1; if (¢ is a bipartite graph, then
cover((G) = oo). By convenient distinction between diameter and covering
index we have: if (7 is a d-regular connected graph on n vertices and t some
positive number then:

(i) if d™/n > A™(1 — jj), then cover() < m (by F.R.K. Chung,
restatement of (2));

(i) if a4t n' > A=A (L= 2) (3 & [ o g ) and £ 30005
then diam((/) <m (by C. Delorme and P. Séle [31]).

According to P. Sarnak [82] (see also [80]) the following estimate holds:

(3) diam(() < M”

arccosh( (K{ )

for any d-regular graph (¢ on n vertices. By considering separately non-
bipartite, and bipartite case, some further refinements of (3) are ohtained
by G. Quenell in [80]:

arccosh(n — 1 : '
L'(”[_) +1 (7 non-bipartite,
arccosh ()

rlwm(ﬁ e arccos(n/2 — 1)

= +2 (7 bipartite.
arccosh (K )

The inequality (3) can be further refined, by introducing the injectivity radius
r of ( into consideration. According to Gi. Quenell (see [80] for the definition
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of r) it holds:

s )

arccosh( -1y

(4) diam(() < + 2r + 1.

arccosh( T )

As also remarked in [80], the estimate (3) is better than (4) provided A >
2¢/d — 1 (in other words, see helow, (4) is better only for Ramanujan graphs).

Finally, let us mention that the inequality (3) has been generalized to the
case of biregular graphs and regular directed graphs [31]. The authors also
discuss connections to finite non-abelian simple groups, primitive association
schemes, primitivity exponent of the adjacency matrix, covering radius of a
linear code and Cayley graphs.

The relationship between the second largest eigenvalue in moduli of a
graph and girth, was investigated by P. Solé [90]. For the graphs with small
diameter we have:

; Vid g((7) > 4 -
G) > —— = ; (7 is non-bipartite
AG) > { =T g(()>6 (v is non-bipartite,

’ Vidn=2d)/(n—2) g(G)y>6 .. .. .
T) > ’ ¢ e (718 artite.
AG) = { ofE=T HE>8 (7 is bipartite

(Here, as in Section 1, o denotes the golden section.) For the graphs with
larger diameter we have:

A(G) > 2vid — 1cos .15 (+ is non-bipartite,
Y 2vd = 1 eos :’f] (7 is bipartite,

where s = L%J

From the above (upper) bouunds for diameter it generally follows that the
diameter is expected to be smaller as Ay (or A is smaller). Thus, by these
inequalities, we have at least partial explanations for the shape of cubic
graphs.

We now turn to important class of graphs in this context, so called Ra-
manujan graphs:

Definition 3. Let (¢ be a (conected) d—regular graph. Then (' is called a
Ramanujan graph if A(G) < 2v/d — L.

Remark. The importance of the number 2v/d — 1 in the above definition lies
in the following lower bound due to N. Alon and R. Boppana (cf. [58];
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see Proposition 4.2). Suppose (7, is a d—regular (connected) graph on n
vertices (d being fixed). Then for any sequence of such graphs we have:

liminf A(G, 4) > 2Vd — 1.

T— O

Thus if one wants graphs with as small A, as possible, the above number
serves as the lower limit of what can be done. More information this kind
of results can be found, for example, in [73].

Since the second largest eigenvalue is small in Ramanujan graphs, they are
also good enlagers (see Definition 1 from above), and hence good magnifiers.

An infinite family of Ramanujan graphs have been counstricted, for the
first time, by A. Lubotzky, R. Phillips and P. Sarnak in 1988. These
graphs were realised as Cayley graphs of some groups (such as, for example,
group PGL(2, F,)) relative to some symmetric subset (or, alternatively, as
quotients of a quaternion group); see [58] for details. In particular, cubic
Ramanujan graphs are treated in [20]. It is remarkable that the diameter
of Ramanujan graphs cannot be too large (besides the hounds for particular
Ramanujan graphs from [58], see the result of A. Nilli, given below). The
girth of Ramanujan graphs is investigated in [10].

The following result of A. Nilli [73] explains some effects on As when, in
fact, diameter increases. Let (7 be a d-regular graph, and suppose that ¢
contains two edges the distance between which is at least 2k +2 (the distance
between two edges is the length of shortest path whose terminal vertices are
the vertices of edges in question). Then we have:

_ 1 1
As(@) = 2v/d = - .
Ay ((7) > 2v/4 1(1 A;+l)+k+1

4. Rapidly mixing Markov chains

The second largest eigenvalue of graphs is of some interest in the theory
of rapidly miring Markov chains.

Consider a Markov chain on a finite state space 5, = {1,2,...,n} with
transition matriz P = [p;;]f. Thus for any ordered pair i, 7 of states the
quantity p;; is the transition probability from state i to state j and is in-
dependent in the time ¢. The matrix P is non-negative and stochastic, i.e.
its row suns are all equal to 1. Let 7; (¢ = 1,2,...,n) be a probability
distribution over 5, and suppose that m;p;; = m;pji for all 4,5 € 5,. Then
P is said to be reversible w.r.t. probability distribution 7; and the Markov
chain is ergodic with the stationary distribution ;.
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As is well known, P has real eigenvalues Ay, Ao,. .. A, with Ay =1 >
Ay = Ay > - 2 A, > —1. The rate of convergence to w; is governed by the
second largest eigenvalue in absolute value, i.e. by max(A;,|A,|). One can
show that the influence of A, can be neglected so that the really important
quantity is A». A reversible Markov chain is called rapidly mizing if Ay is
sufliciently small.

It 1s useful to identify an ergodic reversible Markov chain with a weighted
undirected graph (7 (possibly containing loops) as follows. The vertex set is
the state space 5, of the chain. If p;; # 0, there is an edge in G between
vertices + and j with the weight ¢;; = mipy; = 7jpj;. The eigenvalues of
G (i.e. of the weight matrix ) = [g;;]{") are equal to the eigenvalues of
P. In this way we see that the theory of graph spectra is relevant to the
problem considered. There are two immediate consequences of the above
facts. Firstly, one can use the theory of graph spectra to evaluate or estimate
X2 in Markov chaius, in particular to find upper bounds for A;. Secondly,
one can use known graphs with small Ay to construct rapidly mixing Markov
chains.

Detailed elaboration of above ideas can be found in papers [2], [32], [33],
[53], [88] and [89], just to mention a few among several papers by the same
authors (D. J. Aldous, P. Diaconis, M. Jerrum, A. Sinclair). Note that
rapidly mixing Markov chains are important parts in stochastic algorithms
for enummeration of large combinatorial sets.

5. Miscelaneous

In this section we briefly mention other results concerning As.
Let us define

jp () = liminf{A(H) : ¢ C H,d(H) > d}.

d—o00
A.J. Hoffman [46] proved the following result.

Theorem 1. Let (¢ be a graph with n vertices and with adjacency mairiz
A. Let T be the set of all (0,1) matrices ¢ with n rows and at least two
columns such that every vow sum of C' is positive, and if C' has more than
two columns, no column can be deleted withoul destroying the property that
C' has positive row sums. Then

s (G = mineerh (A= C(J = 1)7CT).

It was proved by M. Doob [34] that the set of all second-largest eigenvalues
is dense in the interval (v/2 + v/5,00). The same set has infinitely many
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accumulation points, but is nowhere dense in the interval (—oo, -1+ \/Z]
These points are described in some detail by J. Li [56].

It is proved by C. Licata and D.L. Powers [57] that the Platonic solids are
self-reproducing in the following specific sense. We consider an eigenvalue
A (in this case A = Ay) of the graph of the solid P considered, and the
corresponding eigenspace £(A) which is of dimension & The convex hull
of a basis of £(A) is a polytope (). If Q is isomorphic with P, then P is
called sell-reproducing. It is also proved in [57] that some other polyhedra
are self-reproducing.

Spectra of weighted adjacency matrices have heen used by Y. (. de
Verdiére to introduce a new important graph invariant in [94]. For a con-
nected graph ¢ we introduce the class A¢; of matrices A = [a;;] for which
a;; > 0 if + and j are adjacent and a;; = 0 otherwise. Let puq, pa, ..., gy,
(H1 > p2 > <=+ > Jig) be distinet eigenvalnes of A with multiplicities
ki = 1,ka, ... ke, respectively. Let pu(() = maxky, where maximun is
taken over the class A¢;. For example, p(K,) = n — | and WhKsa) =4 It
is proved that (7 is planar if and only if u() < 3. It is conjectured that
) > x(G) = 1, where x(() is the chromatic number of (7. The validity
of this conjecture would imply the four colour theorem!

Various inequalities involving the isoperimetric number and the spectrum
of graphs are provided by B. Mohar [63] and [64].

Second largest eigenvalue in random graphs is studied in [15], [39] and
[40].

It is interesting to note that expanding properties in infinite graphs are
related to the spectral radius of the graph [11].

6. Some applications

The topic concerning the second largest eigenvalue has many theoreti-
cal and practical applications. Its major interest stems from the fact that
it is significantly related to various types of expansion (and concentration)
properties of graphs. These properties, in turn, are of great practical and
theoretical interest in many brances of mathematics and/or computer sci-
ence (such as extremal graph theory (see, e.g., [8]), graph pebbling (see, e.g.,
[55]), computational complexity (see, e.g., [52]), parallel sorting algorithms
(to be treated below), etc.) as well as other branches of science (like elec-
trical engineering; some detals in counection with various networks are also
included below).

We shall not attempt within this paper to go into details. Rather, we shall
try to gain the importance of the topic toward various applications. The key
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idea is that many spectral parameters (invariants of graphs) are important
link to structural properties (such as various expansion properties).

Informally, a graph has a "good” expanding property if each (its) vertex
subset has a large neighbourhood. For bipartite graphs, more precisely, we
have:

Definition 1. Let (¢ = (U/,V, E) be a bipartite graph with |U| = |V| = ».
Then 7 is an (n, o, 3)- expanding (0 < o < # < n) if the following condition
holds:

(VX CU)N|X| > a= |0X]| = 3).

Here, for the sake of completness, we recall that dX = {y: d(y, X) =1},
where d stands for the usual metric on a graph.

Bipartite graphs having good expanding properties are known as ex-
panders. One of the most general definition reads as follows:

Definition 2. Let (7 = (I/,V, E) be a bipartite graph with |U| = |V| = n,
and |E| < dn. Then 7 is an (n,d,d, «)- expander (« < 1) if the follwing
condition holds:

(VX CU)|X|<an=|0X|>(1+461- %))X\).
In particular, if @ = f; then & is called an (n,d, d)-expaders and if &« = 1,
then (7 is called a strong (n,d. 8)-expader.

In the above definition d and ¢ are regarded as densily and extension,
respectively, Notice also that the expression (14 6(1 — % )) is larger as | X|
is smaller, which supports the fact that small subsets X, more likely, have
large neighbourhood.

For non-bipartite graphs, the above definition has to be modified (since
the verices are generally not distingused according to colour classes, or
viewed as "input - output parts” of some system). According to [3], the
non-hipartite analogon of expanders are magnificrs. The cooresponding def-
inition (inost frequently refering to regular graphs) reads as follows:

Definition 3. Let (¢ = (V, E) be a graph on n vertices, and maximal vertex
degree d. Then 7 is an (n,d,d)-magnifier if the following condition holds:

1
(VX CU)|X| < gt =t [0X]| = 6| X].

Some examples of (good) expanders and maguifiers we have encountered
in Section 3. To provide some hints on applications, we need some further
definitions.
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We first define two classes of graphs (having special connectivity prop-
erties and possibly small number of edges) which can be viewed as com-
munication networks: concentrators (defined by M.S. Pinsker [76] in 1973)
and superconcentrators (defined by L.(i. Valiant [93] in 1975). There is an
extensive literature on applications of these graphs in communication prob-
lems (a good source of references can be found, e.g.. in [22]; see also [91] on
construction of low complexity error-correcling codes)

Definition 4. An (n, m)—concentrator is a graph with n input vertices and
m output vertices, n > m, having the property that, for any set of r (< m)
inputs, there exists a flow (a set of vertex-disjoint paths) that join the given
mputs to sowme set of r outputs.

With a slight modification, we get the definition of superconcentrators.

Definition 5. An n—superconcentrator is a graph with » input vertices and
n output vertices having the property that, for any set of ¢ (< n) inputs and

any set of 7 outputs, there exists a flow that join the given inputs to given
outputs.

Remark. Besides these two classes of graphs, which were firstly used in con-
struction of various switching networks, there are many others of similar
kind: for example, nonblocking networks where the partial correspondence
between inputs and outputs by disjoint paths can be always extended with-
out disturbing existing paths (see, e.g., [21] for more precise definition).

It is also worth mentioning that superconcentrators can be constructed
from concentrators, but also from expanders (see, e.g., [41] and [83]). Su-
perconcentrators, among others, are used in construction of parallel sorting
networks [1].

As is well known from literature, expanding graphs within some prop-
erly choosen classes do exist. Moreover, by probabilistic arguments, one can
show, with relative ease, that within many such classes almost every graph
posseesses the desired property (see, for example, [12]). On the other hand,
if one needs some of these graphs, there is no efficient algorithm, for a ran-
dowmly choosen graph, to decide if it indeed satisfies the required properties
(for example, it is known that the problem of checking if a given graph is
an (n,d,0)—expander is coNP-complete). So explicit constructions are de-
sitable (but, as a rule, are very complicated). The first breakthrough was
given by G.A. Margulis [59] (but without explicit estimate on expansion
magnitude; only non-zero estimate is proved to exist). By a slight modi-
fication of the previous construction, . Gabber and Z. Galil [41] have
provided the estimate explicitely. Another important construction is due to
N. Alon and V.D. Milman [5] (based on theory of group representations




468 D. Cvetkovié and S. Simié

or harmonic analysis). For [urther constructions see [7], [4] (where finite
geometries are used - points and hyperplains are the vertices of bipartite
graph), [54] (bipartite graphs are obtained from affine transformations), [22]
(graphs represented as k-sum are used), etc. On the other hand, it is worth
noting that explicit constructions are in many cirecnmstances poor substitute
for probabilistic ones, since giving graphs with worse expanding properies
then probabilistic ones.

Besides the particular graphs with good expanding properties, very fre-
quently the (infinite) families of such graphs are more preferable.

In the rest, we give some details on sorting in rounds.

Suppose we are given n elements @y, ... ,x, with linear order unknown to
us. Our task is to determine this linear order by as few probes as possible.
Each probe (or question) is a binary comparision (say, is «; > x;7). The
(information) theoretic bound is, clearly, log, n! (~ nlog, n). The sorting
in rounds is organized as follows: In the first round we ask mq (< m)
simultaneous questions. IHaving the answers, we deduce all implications
and ask, in the second round, another ms(< m) questions, deduce their
implications, and so on. After r rounds, we need to have the unknown
order. The need for such algorithms arises in structural modeling,.

The sorting described above is in fact parallel sorting. Here m is a number
of processors (also called the width of algorithm); » is a (parallel) time
requred by algorithm (also called the depth of algorithm). The object is to
minimize the size of the algorithin (equal to the number of comparisions),
here denoted by f,.(n).

It is known, for example that fi(n) = (}); fo(n) = (')(n% log n) (proba-
bilistic bound) and fy(n) = ()(n%) (explicit construction by expanders).

Here the idea of using expanders is based on the fact that after each round
enough comparisions are avoided due to good expanding properties of partial
graph so far grown.

For more details see [4], [1] and [12].
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