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1. Introduction

In the algebraic sense, a word is a formal expression, or finite string of
symbols, built up in a more or less transparent way from certain primi-
tive symbols, called constants, and certain other symbols which represent
algebraic operations. A word problem is the problem of deciding in a given
context, whether or not two eiven words represent the same element of the
algebra. For such a problem to have a definite sense, certain assumptions
must be made. Typically, one is concerned with some specific variety of al-
gebras, such as groups or associative rings or the like. Word problems range
all the way from triviality to algorithmic unsolvability.

The origin of the field of word problems may be traced back to R. Dedekind
who in 1900 described the free modular lattice on three generators. At
the begining of the century Axel Thue had formulated the word problem
for finitely presented semigroups—or, as one now says, Thue systems—and
solved various special cases of the general problem.

But negative results, unsolvability results in algebra, were impossible be-
fore the notion of an_algorithmically urisolvable problem was formulated. In
1935-1936 A. Church and, independently, A. M. Turing gave equivalent pre-
cise mathematical definitions of the intuitive notion of algorithm. ”Tur-
ing machines” and "Church’s Thesis”, led to Church’s negative solution of
the decision problem for first—order arithmetic; and, subsequently, to in-
dependent negative solutions by Church and Turing to Hilbert’s Entschei-
dungsproblem for pure predicate logic. It seems that all unsolvability results
in mathematics are, in final analysis, a translation of such classical results
into a new setting.

[n 1947 E. Post and A. A. Markov, independently, showed the word prob-
lem for semigroups unsolvable, constructing the bridge from logic to algebra.
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This result was the first unsolvability result outside the foundations of math-
ematics.

Perhaps the most celebrated result is the unsolvability of the word problem
for groups obtained by P. 5. Novikov in 1952.

This paper surveys, unifies, and extends a number of results on the word
problems in the context of universal algebra. From our point of view, the the-
ory of free spectra is also a part of algebra dealing with words. A model-
theoretic argument is used to prove unsolvability of many word problems for
varieties of universal algebras. Most of the presented results are small contri-
butions of the authors to the great topic and appeard, or will be published,
elswhere. :

2. Definitions

In the sequel, £ denotes a first order language which contains the symbol
of identity &, and has no relation symbols. If t;, , are terms of the language
L, then £, = ¢y is called an equation or an identity. The set of all identities
of £ is denoted by FEg(L). If 8 is a set of formulas of £, then by Mod (6) we
denote the class of all algebras A such that A |= 6.

If (7 is a set of new contant symbbls (LN G =0), then by £, we denote
L U @, Usually, a symbol from & and its interpretation is denoted by the
same letter. Let A be an algebra and (¢ € A. Then by Ay we denote the
algebra (A, 2).eq. If R is a set of identities in L with no variables, then
((+, R) is called a presentation in L.

Definition 2.1. Let 8 be a set of identities of L, V = Mod (0) and (G, R)

a presentation in L. For an algebra A in L we say that it is presented by

(G, R) in V if the following hold:

(i) A is generated by G;

(ii) Ag = 0 U K;

(ili) For any identity ¢ in Lo, with no variables, we have § U R |= e
provided A |= e.

If an algebra A is presented by (¢, R) in V, then we put A = Py(G, R).
For an algebra B we say that it is finitely presented in V if there are finite
sets (¢ and R such that B is presented by ((+, R) in V. Note that the algebra
presented hy (G, R) in V is unique up to isomorphism.

Example 2.2. Let (G, R) be a presentation in L. Let 8 be a set of identi-
ties of L and V the varicty defined by the set U B. Then the frec algebra
Fu(D) of the varicty V on the empty set of free gencrators is an algebra
presented by (G, R) inV = Mod (8).
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Let ¢ be a set of identities of £, V = Mod (8), and A the algebra finitely
presented by (G, R) in V. The word problem for A = Py(, R) in V asks if
there is an algorithm to determine, for any identity e in L& with no variables,
whther or not A |= e. If such an algorithm exists, the word problem is
solvable (decidable); otherwise it is unsolvable (undecidable).

The following two options occur in the literature for what is meant by the
solvability of the word problem for a variety V:

(1) there is an algorithm which, given a finite presentation Py((7, R)
solves the word problem for Py (7, R) in V;

(2) for each finite presentation Py (7, ), there is an algorithm which
solves the word problem for Py ((, 1) in V.

We say that V has uniformly solvable word problem if (1) holds.

Varieties with uniformly solvable word problem include cominutative se-
migroups and abelian groups, any finitely based locally finite or residually
finite variety, and the variety of all algebras of a given finite type (see [21]).

Most of the examples which appear in the literature, of varieties with
unsolvable word problem, provide a finite presentation for which the word
problem is unsolvable. These include semigroups, groups and modular lat-
tices.

In this paper we will apply the method of embedding to obtain several
unsolvabilities of word problem.

3. Varieties with solvable but uniformly unsolvable word
problems

Probably the first one who recognized the difference between the uniform
solvability and solvability of the word problem was A. 1. Mal’cev [27]. Ac-
cording to Benjamin Wells, A. Tarski was also interested in the existence of
varieties with solvable but not uniformly solvable word problem.

An algebra A is locally finite if every finitely generated subalgebra is finite.
A wariety V is lically finite if every member of V is locally finite.

Let us recall some facts from mathematical logic. For an arbitrary first—
order theory I, we correlate with each symbol « of K a positive integer I'(a),
called the Gadel number of ae. Thus, T' is a one—one function from the set
of symbols of k', expressions of A, and finite sequences of expressions of K,
into the set of positive integers.

A set of Gédel numbers is recursive if its characteristic function is a re-
cursive function. Denote by 7T (@, #9,...,2,) the set of all n—ary terms in
the language of a variety V. According to Churcl’s Thesis, an algebra A
finitely presented by ((, R) in V has a solvable word problem if the set

{F(P &= q)lp‘!q € T('Il"l.»:l"ih' e 7:1’.?1)1
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pA(.qls.. Zyvoes ?gn) = (IA(glag?.s ceeafn), nEN, G19G25-++ 1 4n € (7,}
is recursive.

Proposition 3.1. Let B be a finite algebra of o finite type. If (c1,ca,... ,¢,)
€ B is a fired n-tuple, then the set

S={T(p=q)lp,g € T(21,29,...,2,),p%(c1, 0, ... cen)=q" (e, 60,00 )}
18 TeCursive.

Proof. The proof is straightforward. D

Proposition 3.2. If a finitely presented algebra A is finite, then the word
problem for A is solvable.

Proof. Follows from the previous prposition 0

Let e, ), €3, ..., €, (Where n € N) be identities of £. Then the formula
erAeg Al Ae, — eis called a quasi-identity. The set of all quasi-identities
of £ is denoted by Q(L). If K is a class of algebras in a language £ then
QIK)Y = {9 € QL) K |= q}. The problem of quasi-identities for a class K
asks if the set Q(K) is recursive (i.e. the set of Gédel numbers of the elements
of Q(K)). If so, the problem of quasi-identities is solvable; otherwise it is
unsolvable.

By the Church’s Thesis, the problem of solvability (decidability) of the
problem of quasi-identities for a class K is equivalent to the problem of the
existence of an algorithm which, for every quasi-identity ¢ € Q(£), decides
whether or not K = q.

Remark 3.3. Let 6 be a set of formulas of £ and K = Mod (0). Then we

have

QK) ={q € QL) 6+ q}.

Therefore, the problem of quasi—identities for such a class A is solvable iff
there exists an algorithm which, for any ¢ € ¢(K’), decides whether or not
o+ q.

The following proposition is a part of the folklore.

Proposition 3.4. Lel 0 be a set of identitics in some language £ and let
K = Mod(8). Then K has uniformly solvable word problem iff the problem
of quasi—identities for K is solvable.

Similarly to the case of quasi-identities, if K is a class of algebras in a
language £, then Eq(K) = {e € Eq(L)|K |= e}. The set Eq(K) is called
the equational theory of the class L. We say that equational theory of a class
K is decidable (solvable) if the set g (K) is recursive (i.e. the set of Godel
numbers of the elements of Eq (k') is recursive).
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Proposition 3.5. Let V be a locally finite variety of a finite type. Then V
has a solvable word problem.

Proof. Follows from Pm]m.sitiou 3.2. 0

As we all know, the set of all recursive functions is countable. For a
class of algebras A, let I Eq(x) denote the characteristic function of the set
{Tp = ¢)lp=qge E¢(K)}. If V, and V, are two different varieties, then
Hpyov) # Heyv,). Therefore we have

Proposition 3.6. If a class of varietics of the same type has uncountably
many clements, then there is a variety from that class having undecidable
equational theory.

Corollary 3.7. Let V be a locally finite varicty of a finite type. If V has un-
countably many subvaricties, then V has solvable but not uniformly solvable
word problem.

Proof. From Proposition 3.6. it follows that V has undecidable equational
theory. This, of course, implies that the problem of (V) is unsolvable which
is equivalent with the uniform unsolvability of the word problem for V. 0O

The student of A. Tarski, Benjamin Wells, in his Ph. D. thesis at the
University of Berkeley (1982), presented the first exanples of varieties having
solvable but uniformly unsolvable word problem. This result appeared first
in [36], later as Theorem [1.17. in [37], and recently as Theorem 1.7. in
[38]. The last result is almost identical to onr result even though they were
obtained independently. Qur construction is primarily based on an example
appearing in the paper of Mekler, Nelson and Shelah [30].

Theorem 3.8 ([11]). In a language of the type (2,0, 1, 1) there exists a va-
ricty having solvable word problem and undecidable equational theory. This

variety s axiomatized by the following identities
x-0==0 fl0)=0 h(fh(x)) = h(x)
|| f(f(x)) = f(x) h{xz)y =0
Ly Ry fa-y)=0  f(h(z)) = h(z)
ve(y-z)=(x-y)-2 R(0)=0

W CF(@0)f(2) - Fl ) = 0,

where @(k) is a primitive recursive funetion such that X = {e(k)
a vecurstvely enumerable nonrecursive sel,

ke N}is

In [12] we proved the following
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Theorem 3.9 ([12]). In « language of the type (2,0,1,1) there exists an
infinite (isomorphic to (w, <)) chain of varieties with solvable word problems
and undecidable equational theories.

The varieties from Theorem 3.9. are constructed in the following way. Let
the variety defined in Theorem 3.8. be denoted by V. Denote by &,, n = 2
the identity in {-, f,h,0} of the form:

En :.f(”"lf("r"?. - -'.f("z:n) )) ~ 0.

The variety whose set of definitional identities is same as the one for Vy,
with the exception of f(x-y) & 0 being replaced by (e, ), will be denoted by
V... Obviously,

Vlgv?g"'gvng'-'

It is easy to prove that all the inclusions are strict.

Definition 3.10. Ternary discriminator on a sel A is the function

c, fora=0>0
., otherwise.

tA(V(L,b.(:) = {

Definition 3.11. A varicty V in a language £ is said to be a discriminator
varicty if there exists a term in L inducing ternary discriminator on the
universe of every subdircetly irreducible algebra in V.

Following the idea of Ross Willard we were able to prove

Theorem 3.12 ([12]). There exists a recursively axiomatized discriminator
variety in a finitary :’rmqwrrr;( with solvable word problem and undecidable
equational theory.

Discriminator varieties are only a part of wider class of so called EDPC
varieties, arising in the algebraization of different logical systems.

Corollary 3.13. There exists a recursively based EDPC variety in a fini-
tary language having solvable word problem and undecidable equational the-
ory.

This result rules out the possibility of obtaining the converse of the fol-
lowing result, due to Blok and Pigozzi:

Theorem 3.14 ([2]). Let V be an EDPC variety having decidable equa-
tional theory. Then V has solvable word problem.
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B. Wells proved that there is a variety of a finite type, with a base of
not more than 350000 axioms, having solvable but not uniformly solvable
word problem. Mekler, Nelson and Shelah in [30] also presented a finitely
based variety of a finite type having the same properties. However these
exatples seem to be too complicated and are not from any well known class

of algebras. Also their varieties have decidable equational theories. The
following problem is still open

Problem 3.15. [s there a finitely based varicty with solvable word problem
having undecidable equational theory?

4. Embedding

There are several undecidability proofs in the literature that use the result
of Post and Markov on the existence of a finitely presented semigroup with
unsolvable word problem. For example, in [26] we proved unsolvability of

the word problem for the variety of relation algebras. We used the following
result of Kogalovskii [25].

Proposition 4.1. If K| and Ky are classes of algebras such that
(1) Ky C A,
(if) every algebra from K. is embeddable into an algebra from K,

then the theories of quasi-identitics of K, and Ko are the same.

Proof. See [27] and [25]. D

Corollary 4.2. Let Ky and Ky be varictics of algebras such that Ky C K,
and every algebra from Ky is embeddable into an algebra from K. Then, K,
and Ky have equivalent uniform word problems.

Proof. Direct consequence of Proposition 4.1. [

S0, if Ky is the class of all semigroups, and A is some class of algebras,
such that some reduct A, of A satisfies couditions of Corollary 4.2., then K
has uniformly unsolvable word problem. But, this is not enough to obtain
the result about the solvability of the word problem for K. The following:
theorem gives something more than Corollary 4.2.

Theorem 4.3 ([5]). Let V be a varicty with an associative operation * in
its language. If every semigroup can be embedded into the s—reduct of some
algebra from V, then V has unsolvable word problen.
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The proof of Theorem 4.3. has been given in [5] and [26]. If we analyze
this proof, we see that condition that V has to have semigroups in it is not
necessary. The same goes for any variety with unsolvable word problem.

Theorem 4.3. enables us to obtain several undecidability results in a uni-
form way. For example, this theorem gives results on unsolvability of the
word problem for some varieties which are obtained from the algebras of
binary relations.

For an algebra A = (A, F) we say that it is an algebra of binary relations if
A = P(5?), for some set 5, and I is a set of operations on binary relations.

Let Ry be a class of algebras of binary relations such that F contains the
operation of relative multiplication of binary relations "o”. Then the variety
H S P(Rp) has unsolvable word problem. For example, we have unsolvability
of the word problem for the following;:

(a) variety generated by the class of all semigroups of binary relations
(F ={o});
(b) variety generated by the class of all involutive semigroups of binary
relations (F = {o,7'});
(¢) (representable) relation algebras of Tarski (F = {U,N,,0,7", A});
(d) relation algebras of Jénsson (F = {N,0, "', A});
(e)-Kleene algebras (F = {U,0,0,7 ', A,"}), (F = {U,0,0,7,A}) and
(F ={uU,0,0,A,"});
(f) no special name (e.g. F' = {U,o0}, ' = {N,0}).
Theorem 4.3. can easily be applied in the {ollowing cases, thus having un-
solvable word problems

(g) rings (F = {4+, -.0,1}),

(h) involutive semigroups (£ = {-,7'}),
(i) semirings (F' = {+, - }),
(j) variety generated by Baer *—semigroups (F = {-,*}),
(k) variety generated by the class of all simple semigroups,
(1) variety generated by the class of all bisimple semigroups,
(m) inverse semigroups (' ={-,7"}),
)

) rings with involution (£ ={+, -,"}).

5. Partial algebras

Let A be aset and B C A”. Then f: B — A is called a partial operation
on A of type n. A partial algebra A is a pair (A, F'), where A is a nonempty
set and F is a collection of partial operations on A. In our considerations F
will always be a finite set.

Let A be a partial algebra. Denote by A(A) the positive diagram of A:

A(A) = {flar,tay ... yap,)=a| fEF, a1,a,... .0, € A,
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flay,aq, ... a,)is defined and equals a in A.}
Of course, if A is finite, then A(A) is finite.
Suppose that A and B are partial algebras. ¢ : A — B is called a
homomorphism of A into B if, whenever flay, as,. .., a,)is defined, then so
is f(o(ar),e(as),...,po(a,)) and

(lo(f(”’laa"_’a | “‘n)) = .f(cp(("‘l )1 Q(”’fd)? “es LP((‘!'H ))

A homorphism is an isomorphism if w is a bijection.
Let A = (A, F) be a partial algebra and let () # B C A. Then

(i) B is a subalgebra of A if it is closed under all the operations in A
ie.if by, bs, ..., b, € B and S(by. by, ... b,) is defined in A, then
f(by,bay... ,b,) € B.

(ii} B is a relative subalgebra of A if for all fe Fandallby,b,,...,b,,
b e B, we have:

S(b1,bs, ... b, ) is defined and equals b iff f(bq,by,...,0,)
is defined in A4 and f(b,,b.,... ) =0 in A,

It is not dificult to give an example of a partial algebra 4 andaset B C A,
such that B is the carrier of some relative subalebra of A but not the carrier
of any subalgebra in A.

Let K be a class of algebras, A nonempty set, and F a set of partial
operations on A. Then A = (A, F) is a partial K—algebra if (A,F) is a
relative subalgebra of an algebra B in K. For example, if £ is the class of all
lattices, then, a partial algebra A is a partial L-algebra (or simply, partial
lattice) if A is a relative subalgebra (or relative sublattice) of some lattices.

Definition 5.1. Let K be a class of algebras and let A be a partial alge-
bra. The algebra FK (A) is called the algebra freely generated by the partial
algebra A over K if the following conditions are salisfied:
(i) FK (A) is generated by A" and there caists an wsomorphism y 1 A’ —
A between A" and A, where A’ is a relative subalgebra of FI (A);
(i) If @ is a homorphism of A into (' € K, then theve exists a homor-
phism ¢ of FI (A) into (! such that  is an extension of xio.

It is not difficult to prove that FK (A) is unique up to isomorphism and,
if A is an algebra from K, then FK (A) = A. Also, it is well known that if K
is an equational class, then FIK (A) exists if A is (isomorphic to) a relative
subalgebra of an algebra B in K. In other words, in the case of equational
classes X, F'K (A) exists if A is a partial K—algebra.

For example, if A is a partial lattice, then F'L (A) always exists. Tt is well
known (see [22]) these lattices (of the form /L (A)) are the lattices that can
be described by finitely many generators and finitely many relations.
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Proposition 5.2 ([6]). Let K = Mod () be a variety, A a partial algebra.
Then,
FEK (A) S Po(A, A(A)).

Proof. See [6]. O

Let K be a class of algebras in a language £, and let A be a partial K-
algebra. The problem of partial K —-algebra A asks if there is an algorithin to
determine for any identity p = ¢ € Eq(L U (v), with no variables, whether
ornot 'K (A) Ep=q.

The problem of partial K—-algcbras asks if there is an uniform algorithm
which for any finite partial K—algebra A, and any identity p = ¢ € Fqg(LUG),
with no variables, decides whether or not FK (A) |Ep=q.

Proposition 5.3 ([6]). Let K be a wvariety in a language L. If K has a
uniformly solvable word problem, then the problem of partial K—algcbras is
solvable too,

Proof. Let A be a finite partial K-algebra, p = ¢ € Eq (L U (), with no
variables. Then, because of Proposition 5.2., FK (A) = Py(A,A(A)), so
that ‘

FE(A)Ep=q iff Pu(A,AA)Ep=q
Hence, directly from the algorithm for the solution of the word problem, we
obtain an algorithim for the solution of the problem of partial algebras. 0O

Denote by |t| the length of a tern # (i.e. the number of symbols in ). We
can formulate two rules:

(ev) If a set of identities { contains an identity of the form p = ¢, where
p and g are terms |p| = |¢| = 1, then we take out this identity from
the set. f and in all the other identities we replace the symbol ¢ by p.

(#) If a set of identities [ contains some identities of the form t = ¢,
l = ty, where t; # 1, then from I we take out the identity ¢ = ¢, and
in all the other identities we replace the symbol ¢35 by ;.

Let T be a set of identities. Denote by «([) the set of identities which
appear from I, if the rule («) is applied, and by (1) if the rule (/3) is applied.

We say that the set of identities I is a—pure if a(f) = I. Analogously, f
is B—purc if B(I) = I. Obviously, if I is a finite set of identities, then there
are natural numbers, m, n such that the set o™(/) is a—pure and set g™(I)
is [F—pure.

Definition 5.4 ([6]). Let K be a variety in a language L and (A, R) some
finite presentation in k. Then,

(1) If t is @ term in L, then by Sub(t) we denote the set of all the
subterms of t.
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(2) Sub(R)=U{Sub(t)|(Is)(s=te RVtxse R)}.
(3) A" ={C,|o € Sub(R)} U A. ' _
(4) Define the mapping ¢ : Sub(R) — Eq(L U A') an the following way:
() If|t] = 1, then o(t) ist = C,;
(i) Ift = flty,t0, ..., t,), where fis an n—ary function symbol and
biytoy oo sty are Lermis, then @(t) is t = f(C,,,C,,, . .. O Y
[
() Define the set R' as

R = ¢[Sub(R)]U{C, ~ ¢

pl=1 and p~q¢e R}U

U{f(C, Crayen . O ) = Colp=flti,tay... t,) and p g € R},
where o[Sub(R)] = {p(t)| t € Sub(R)}.

Note that if # € Sub(R) and |[{| = 1, then £ € A or ¢ is a contant in £ and
the set R’ is a set of identities, in the langnage £ U A’, with no variables.

Let A = (A, R) be a finite presentation in a variety K. Let » be a finite
natural number such that «™(R’) is a—pure and m be a natural number such
that 4™ (a™(R’)) is f—pure. Then let B* = A" (a™(R')) and A* be the set of
all these symbols from A’ U const (£) which appear in the identities of B*.

Theorem 5.5 ([6]). Let A = (A, F) be a finite presentation in a varicty
K = Mod(Z), in a language L, and let A* be a K—partial algebra. Then, if
the problem of the partial algebra A* in K is solvable, the word problem for
A =(A,R) in K is solvable, too.

Proof. See [6]. O

6. Free spectra

Let V be a variety of type F. The cardinality of the free algebra over

n generators (n > 0) in V is denoted by f, (V). The sequence of cardinal
numbers

f(V) == (fn(vnnzﬂ = (ffl(v)a fl( V)- » ey fu(v)7 g >
is called the free spectrum of V.

Let A = (A, F) be an algebra of type F. Every term of the type £ in n
variables @, @y,... 2, (n > 0) defines an n—ary operation £ : A" — Ain a
natural way. These operations are called n-ary term operations. The number
of differnt n—ary term operations on A is denoted by s,(A4). If A generates
the variety V then obviously f, (V) = s,(A) for all n > 0. The investigation
of free spectra of specific varieties may have started with R. Dedekind [1900].
The Dedekind problem, the determination of the free spectrum of the variety
D of distributive lattices, is still open.
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In group theory, the famous Burnside problem asks whether f,(G,,) is
always finite, where G, is the variety of groups of exponent m. This was
solved in the negative by S. I. Adjan and P. S. Novikov. They proved that
f» is infinite, for instance, for m > 4381. The choice of m was improved to
m > 115 for odd exponents m.

A major problem of this field is to determine what sequences can be rep-
resented as the free spectrum of a variety.

If Vis a variety and all f,(V) are finite, then V is a locally finite variety.
In what follows we are going to consider only locally finite varieties.

Is there a variety V having fo(V) = 0, fi(V) = 10 and fo(V) = 187 To
answer this question we use the concept of s, -sequence (or p, -sequence in
the literature). Denote

3(-’4) = (_3-‘;”(_,4)_,,91(,4)1 ''''' 4 n(-A)!"'>-

For a nontrivial variety V., we define s,—sequence of V as the s,—sequence of
Fy(w), the free algebra on w generators in V. s,(A) is the number of unary
contant term operations and s, (A) > 1.

The following two formulas connect the free spectrum and the s,—sequence
for an algebra A: |

(C1)
A=Y (jj)%m),
(C2) =
ol ) = 3 (1) (,:) il A).
Back to the variety V with f(,(vk)z'J: 0. fi(V) = 10 and fo(V) = 18. By
formula (C2), we have s, = fo — 2f; + f» = —2, a contradiction. So a

necessary condition for the representability of a sequence as a free spectrum
of an algebra is that the corresponding s,-sequence be nonnegative.

Let S be a semilattice with more than one element. Using formula (C1)
we see that f,(S) =2"—1, forall n > 0. Let & be the variety of semilattices
then

#S) = W0 Ls Lpsns 4 Lyvsa s

Let us see some examples which explain the flavor of the field.

Proposition 6.1 ([15]). Let A be an idempotent groupoid with s3(A) < 6.
Then A is equivalent to a semilattice, a diagonal semigroup, o groupoid with
s, (A) = n, or a distributive Stainer quasigroup.

Proof. See [15]. O
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Proposition 6.2. If A has two commutative binary term operations, then
(1) s5(A) = 9 ([17]);
(2) 8,(A) >3+ 0! for alln > 3.

Proof. See [17]. O
The following result of J. Dudek seems especially attractive:
Proposition 6.3. Let d, be the n—th Dedekind’s number, that is, d, =

| Fp(n)|, where D is the variety of ditributive lattices. For a variety V,
Fa(V) = d,, holds, for alln >0, iff V is equvivalent to D.

Proof. See [20]. O

Among other things, J. Dudek proved the following
Theorem 6.4, Let (A, 4+, -) be an idempotent commutative algebra of the
type (2,2) such that + and - are distinct. Then

(i) (A, +, -) is a distributive lattice iff s4((A,+,-)) = 9.
(i) If (A, + ) is a bisemilattice, then (A, + -) 18 a lattice iff s5((A,+-))=
2,

There is no bisemilattice (A, +-) for which s,((A, + - =

(A, +5 - ) is a nondistributive modular lattice iff s3((A, + - ) = 19.

Proof. See [16], [17]. O

In a joint paper with J. Dudek we investigated so called rectangular

groupoids

Definition 6.5. A groupoid ((7, - ) is called rectangular (right) if it satisfies
the following laws
@’ x o,

(zy)z = zz.

Proposition 6.6 ([13]). For any rectangular groupoid ((, -}, being not a
semagroup, we have

su((Gy =) > 02, form > 3.
Proof. See [13]. O
This estimation is the best posible because we have

Theorem 6.7 ([13]). Let ((, -) be a rectangular groupoid. Then the fol-
lowing conditions arc equivalent

(i) (G, ) is not a semigroup and satisfies

w(y(zu)) = 2(z(yu));
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(i) s.((G, +)) = u?, for all n;

(iii) s4((3, -)) = 16.

Proof. See [13]. O

In [9] we proved the following and therefore, solving the Problem 25. in
[23].
Theorem 6.8 ([9]). Let V be a varicty of semigroups. Then s,(V) = n2,
for all n > 0, if V is the variety of normal bands.

Proof. See [9]. O

From Theorem 6.8. and by duing some technical calculations we were able
to prove

Theorem 6.9 ([8]). Let G be a groupoid. Then S,(G) = n?, for all n > 0,
off one of the following conditions hold

(i) G generates the variety of novrial bands;
(ii) G is nol a semigroup and salisfics

e & @
x(yz) = a2
((zy)z)u = ((22)y)u;
iii) G is not a semigroup and satisfies
grouy
L =
(zy)z = =z=z
w(y(zn)) = wx(z(yu)).

Proof. See [8]. D

E. Marczewski formulated in [28] the problem of representability of s,—
sequences by algebras. He and his colleagues in Wroclaw considered many
agsociated problems.

If one considers semigroups, the following problem can be formulated.

Problem 6.10. Characterize s, —sequences for the class of semigroups.
We may start with the representability of sequences
So =< 0,00, a .. > a € N
in the variety of semigroups.

Proposition 6.11. If a semigroup S has s4(S) = 0 and $,(8) = a, o > 0,
then the following hold:

(i) @, 22, ..., 2" are different essentially unary term operations;

(i) S satisfies x*t! = P for some § € {1,2, ..., a};
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(i) S satisfies 27 =~ 2® iff v. 6 > 3 and Y=46 (moda+1-3);

(iv) If p,q are two terms having lenghts 1, b .s-’u.c‘_h that l, # 1, and 1,1, <
a, then p # g. Specially, all the terms wy, xY*, ..., 2y~ are different.

(v) If @ semigroup S has an essentially n—ary term operation, then the
term Ty xg -+ 2, induces essentially n—ary term operation.

Proof. Follows immediately. 0

Proposition 6.12. [fa semigroup S satisfies
ry =y, vy’ ~aty, o xaf (o> A >0),

then every nontrivial n—ary term operation is equal to one of the following
BTy ey i, HE DN T, ey HAR AN B! PR B

Proof. Straightforward. 0O

It is easy to demonstrate that a semigroup has < 0,1, 1,...,1,... > as the

sy sequence iff it is nontrivial semilattice. For the case < 0y 2,2; 00205
we have the following.

Proposition 6.13. A semigroup S has the Spsequence < 0,2,2,...,2, ... >
iff S generates the variety of semigroups determined by the identities
¥t wymoyr, ay z?y.

Proof. (—). Let S be a semigroup having < 0,2,2,...,2,... > as the
sn—sequence. If § satisfies #® = 2, then, hecause of ay? = aly = @ =
z?, it follows that xy, xy?, 2%y are three different essentially binary term
operations. Hence, S satisfies #* ~ 22. If S is 4 non commutative semigroup,
then xy, ya are only essentially binary term operations of S. The term TYz
i5 essentially 3-ary (Proposition 6.12.) so that from s5(S) = 2 it follows
that S satisfies zyz = zay = yzx which implies 2y® = y%2 = yzy. But then
z°y* = y*x* which is a contradiction since S does not have a comnutative
binary term operation. Therefore, S is a commutative semigroup. s$,(S) =
2 implies that both of essentially binary term operation are commutative.

Specially, zy* = 22y. Therefore S belon gs to the variety given by

2 = a?, ey~ yr, and ay® ~ iy
If A is an arbitrary semigroup from the variety above, then Proposi-
tion 6.13. implies that every essentially n—ary term operation is equal to
Ty Bpq@y OF 2y --m, ). Hence, s5(A) < 2. Since 5,(8) = 2 for all
n 2z 1, it follows that S generates the varietly,

(«<). It is sufficient to prove that the free semigroup F in the vari-
ety #° ~ 2%, 2y ~ yx, 2y ~ 2%y over an infinite set of generators has
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< 0,2,2,...,2,... > as the s,—sequence. It was demonstrated above that
F) < 2 101 all n > 1. Obviously, both of terms a---2,_, #, and
;1:1 ‘&2 induce mqential]y n—ary term operation in F. F satisfies z; -

Tp &y =Ty X, iff this identity can be deduced from the deﬁnmg
identities. However, we can only apply a2y = ya to , -+ 2,_,2, and hence
obtain a permutation of it. Therefore, s,(F) = 2 for all n > 1 and it is
obvious that so(F) = 0. O

Having done some more calculations we will be able to prove the following.

Theorem 6.14. (1) For o > 3 the scquence < 0, «v, v, . > is not
representable in the class of all semigroups.
(ii) The sequence < 0,1,1,...,1,... > is the s, —sequence for a semigroup
S iff S is a nontrivial semilattice.
(iti) The sequence < 0,2,2,...,2,... > is the s, -sequence for a semigroup
S IS generates the var zrty df’hrmnwa’ by the identitics

3 2 2
at ot wy = oyr, ay’ =iy

Proof. Follows from the considerations above.
A variety V is log-linear if it is locally finite and there exists a constant
¢ > 0 such that log f,,(V) < en for all n > 1. Ohviously V is log-linear iff

the free spectrum of V has subexponential rate of growth, i.e. iff there exist
constants a,¢ > 0 such that Fa(V) < ae™ for all n > 0.

In [10] we gave a solution of the following problem of Gritzer and Kisi-
elewicz.

Problem 6.15 ([23], Problem 29). Characterize log-linear varieties of
semagroups. Is there any algebraic property of semigroups equivalent to (or
Jollowing form) log-lincarity?

Theorem 6.16 ([10]). For any semigroup variety V the following condi-
tions are equivalent:
(i) V is log-linear;
(ii) V satisfies the identities
2%+ 2y P
LTyl = Loy la(ay: - Tea(m)s
for some o > 3 > 0, m > 1, and some non—trivial permutation o of
the set {1,...,m};
(ili) V satisfies the identities
gotl g gf
Ty o T BT Tjyg by, X Ay e Ly T By Ty,

forsomea >8>0, m>1:i>1.
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Proof. See [10]. O

Corollary 6.17. Let S = (5,-) be an arbitrary finite semigroup and let n
be @ natural number such that S*=' = §". S generates a log—linear variety
iff cabd = cbad holds for all a,b € 8 and all ¢,d € §™.

It was proved in [31] that every semigroup satisfying condition (iii) of
Theorem 6.16. has a finite basis for its identities, so that every log-linear
semigroup variety is finitely based. Moreover, every subvariety of a log-—

linear semigroup variety is log-linear, and therefore finitely based. So we
have:

Corollary 6.18. Every log-linear varicly of semigroups is «a hereditarily
finitely based.

However, log-linearity is not necessary condition for a semigroup variety
to be finitely based, even if the variety is locally finite. The variety V defined
by the identity xyzz &~ 2 was shown in [33] to be hereditarily finitely based.
On the other hand, it is easy to check that n! < f,(V) < (n+ 1) for all
n 2 1, so that V is locally finite but not log-linear.

7. Decidability

Let ¥ be a fixed set of identities of a given similarity type. The elemen-
tary theory based on ¥ is the set of sentences of first—order logic which are
logical consequences of £. An elementary, quasi-identies, equational theory
is deciable iff it is a recursive set of sentences. The connections between

these concepts are given in the diagram below. This diagram refers to any
fixed set ¥ of equations.

Decidable elementary theory

Decidable  theory Unifornly “solvable
of quasi-identities word problem
| |
Decidable equational theory Solvable word problem

In general, none of the implications above can be reversed.

It is well known ([24]) that in the case of the variety of relation algebras
of Tarski every quasi-identity is equivalent to some identity. Since, in the
case of relation algebras, there is an algorithn to construct, for every quasi-
identity, the equivalent identity, the problem of quasi-identities is equivalent
to the problem of decidability of the equational theory. It was mentioned, as
a consequence of Theorem 4.3., that the word problem is unsolvable for the
class of relation algebras of Tarski. Therefore, the theory of quasi-identities
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of relation algebras is unsolvable. Hence, we obtain, as a consequence, the
well known theorem of Tarski.

Theorem 7.1. The equational theory of the class of relation algebras is un-
decidable.

Starting from the result on unsolvability of the word problem for rings,
we can prove that some varieties of modules have undecidable equational
theory. The main reason for that is that every ring R = (R, +, -,0) can be
considered as an R module M = (R,+, -,0,(f.)rer), where f.(2) = r-a for
every 2 € R. Then, to every equality hetween two words in R, corresponds
an identity in M, and from the unsolvability of the word problem for R we
can prove the undecidability of equational theory for M (and HSP(M)).

The same idea, with some additional ones, can be applied for the class of
dynamic algebras.

There are several algebraic structures which correspond to some notions
from computer science. Such are Kleene and dynamic algebras. We con-
sider Kleene algebras which are obtained from the so—called Kleene relation
algebras (without inversion). Kleene relation algebra, with some base U, is
an algebra having the set of all binary relations on the set U as the carrier,
and the fundamental operation are set—theoretical union, composition, and
reflexive—transitive closure. Kleene algebra is an algebra that belongs to the
variety generated by all Kleene relation algebras.

Because of the relationship between Kleene relation algebras and regular
languages, it follows the the equational theory of Kleene algebras is decid-
able.

We proved in [5] that the word problem for the class of all Kleene algebras
is unsolvable.

Dynamic algebras are algebraic counterparts of propositional dynamic
logic. Roughly speaking, dynamic logic is a classical propositional logic
with some modal operators (¢} associated with the elements x of a Kleene
algebra. We can say that the corresponding algebraic structure, dynamic
algebras, are Boolean algebras with normal unary operators which are in-
dexed by the elements of a Kleene algebra. Although the equational theory
of Kleene algebras is decidable, we proved in [7] that there are infinitely
many finitely generated varieties of dynamic algebras having undecidable
equational theories.

Definition 7.2. Let K = (K,V,;.x) be a Klcene algebra. An algebra D =
(B, ,—.F,(a € K)) is a dynamic K algebra if it satisfies the following
conditions:

(1) (B, -,—) is a Boolean algebra,

(2) F.(0)=0,
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(3) Fulw+y) = Fo(z) + Fu(y),

(4) Fa\/b(”’) ~ F(a)+ Fy(x),

(5) Fap = FLE(x),

(6) 2+ FoFu(2) < Fo(x),

(7) Fo(2) < x4 Fou(—x - Fy(2)),
foralla,be K, x,y € B.

The definition above is from the paper of B. Jénson [24].

Let S be a semigroup with an ideutity. By 7(S) we denote the so-called
semigroup of left translations of S,

Definition 7.3. Let S be a semigroup with an identity. By ¥(S) we denote
the subalgebra of the Kleene relation algebra K (S) generated by the set T (S).
We define the dynamic set algebra D(S) to be (P50, —, Fo(a € ¥(S))).

Definition 7.4. The semigroup of Cejtin is the semigroup C presented by
(G(C), R(C)), where
G(C)={a,b,e,d, ¢},
R(C)={ac = ca,ad = da,bc = ¢b,bd = db, abac = adace, cca = ac, edb = be}

It is well known that the semigroup of Cejtin has unsolvable word problem.

Proposition 7.5. There is a sequence C, C,, ..., C,,, ... of finitely presented
semigroups such taht

(a) all semigroups C;, (i € NYhave unsolvable word problems;
(b) HSP(D(C;)) # HSP(D(C;)) for all i # §, i,j € N.

Proof. See [7]. O

Theorem 7.6 ([7]). There are infinitely many finitely generated varieties of
dynamic algebras, with countably many operations, having undecidable equa-
tional theories. All these varieties ave generated by representable dynamic
algebras, '

Proof. See [7]. D

Corollary 7.7. There arc infinitely many finitely generated varietics od dy-
namic algebras with countably many operations, having uniformiy unsolvable
word problems.

-

Theorem 7.6. does not give any information on the word problem of dy-
namic algebras. Therefore we can formulate

Problem 7.8. Is the word problem for all the varicties of dynamic algebras
solvable?
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Also, the following is still open

Problem 7.9. [s there a finitely based variety of dynamic algebras having
undecidable equational theory?

Problem 7.10. [s therc finite dynamic algebra which is not finitely based?
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