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Introduction

As known, one of the best methods used in studying of structure of semi-
groups, as well as other algebras, is the decomposition method. The main
idea of this method is to decompose a semigroup into components, possibly
of simpler structure, to study the components in details and to establish
mutual relationships between the components within the entire semigroup.
We differentiate two general kinds of decompositions: external decomposi-
tions, where we include decompositions into a direct product and related
concepts, and internal decompositions, by which we mean decompositions
by equivalence relations. In this paper our attention will be aimed only to
internal decompositions, which will be here called simply decompositions.

By a kind of decompositions we will mean a mapping T : § — Tg by
which to any semigroup S we associate a subset Tg, possibly empty, of the
partition lattice Part(S) of . But it is often of interest to consider such
kinds of decompositions which can be applied on any semigroup, i.e. such
that T is nonempty subset of Part(S), for any semigroup 5. For example,
many kinds of decompositions have the property that for any semigroup
S, F¢ contaius the zero of Part(S), i.e. the one-component partition {5}.
For that reason we define a type of decompositions, or a decomposition type,
as a mapping ¥ : § — Tg by which to any semigroup 5 we associate a
subset T of the partition lattice Part(S) of §, containing its zero. In other
words, a decomposition type T is a collection of sets T¢ indexed by the
set of all semigroups, and it is defined if for any semigroup & we define
what are the elements of Tg. Of course, any type ¥ of decompositions
induces a mapping T’ : § +— T’ by which to any semigroup 5 we associate
a subset T’ of the lattice £(5) of equivalence relations on 5, containing the
universal relation on S, called a type of equivalences, and vice versa. Yor
a given type ¥ of decompositions and a semigroup S, the elements of Tg
will be called T-decompositions of S, and related equivalence relations will
be called T-equivalences on 5, and § will be called T-indecomposable if the
one-component partition {5} is the unique T-decomposition of .5, i.e. if the
universal relation is the unique T-equivalence on 5.

Cousider a decomposition type T and a semigroup S. Since Ty is a subset
of the lattice Part(S), then Ty is a poset with respect to usual ordering of
partitions, from where several very important questions follow:

(1) Does Ts have a greatest element?
(2) Is Ts a complete lattice?
(3) Does Ty a complete sublattice of the partition lattice on 5

Such problems have been treated first by T. Tamura and N. Kimura [112],
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1954, and [113], 1955. After that, they have been considered by many au-
thors. The aim of this paper is to make a survey of main ideas, concepts and
results concerning greatest decompositions of semigroups of various types.
We will talk about the mostly important decomposition types and the results
concerning these.

We know that one of the most important algebraic theorems is the fa-
mous Birkhoff’s representation theorem, proved by G. Birkhoff in [3], 1944,
which says that any algebra can be decomposed into a subdirect product of
subdirectly irreducible algebras. Of course, in Theory of semigroups similar
theorems are also very important. A decomposition type T will be called
atomic if there exists the greatest T-decomposition and their components are
%-indecomposable. But only four atomic types of decompositions of semi-
groups are known: semilattice decompositions, whose atomicity has heen
proved by T. Tamura [110], 1956, ordinal decompositions, whose atomic-
ity has been proved by E. S. Lyapin [62], 1960, U-decompositions, whose
atomicity has been proved by L. N. Shevrin [96], 1965, and orthogonal de-
compositions, whose atomicity has been established by 5. Bogdanovié and
M. Cirié in [10], 1995. In this paper these decomposition types will take an
outstanding place.

This paper is divided into five chapters.

In the first chapter we introduce notions and notations that will be used in
the further text, we give a classification of decomposition types and define
the types that will considered in this paper, and we also present several
general results concerning decompositions by congruences.

Because of the great importance and enormous quantity of the results
concerning semilattice decompositions of semigroups, these results will be
separated from the ones concerning hand decompositions and they will be
presented in Chapter 2.

Chapter 3 is devoted to the remaining significant types of band decompo-
sitions. Namely, in this chapter we make a survey of the results on matrix
and normal band decompositions of semigroups.

In Chapter 4 we consider decompositions of semigroups with zero: or-
thogonal decompositions, decompositions into a left, right and matrix sum
of semigroups, and quasi-semilattice decompositions.

Finally, in Chapter 5 we talk about yet other types of decompositions: U-
decompositions, ordinal decompositions, [-matrix decompositions and semi-
lattice-matrix decompositions.
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1. Preliminaries

This chapter is divided into three sections. In Section I.1 we introduce
notions and notations that will be used in the further text. In-Section 1.2 we
make a classification of decompositions and we single out the most important
decomposition types, which will be treated later. Finally, in Section 1.3
we consider decompositions by congruence relations and we present several
general results concerning these decompositions.

1.1. Basic notions and notations

Throughout this paper, Zt will denote the set of all positive integers.
Further, § = S$° means that S is a semigroup with zero 0, and § # §°
means that § is a semigroup without zero. If 5 = 59, we will write 0 instead
{0}, and if A is a subset of 5, then A® = A—0, A = AUD and A’ = (S—A)".
If A is a subset of a semigroup S, then VA = {2z € 5[(In € Zt)a" € A}.

For a binary relation £ on a set A, £ will denote the transitive closure
of £, £ will denote the relation defined by et 'b & bfa,and for a € A,
af = {zr € A| afz}and fa = {z € A | x€a}. By a quasi-order we
mean a reflexive and transitive binary relation. If € is a quasi-order on a
set A, then the relation £ defined by E = £n €1 is an equivalence relation
called the natural equivalence of €. A relation £ on a semigroup §=5%is
called left O-restricted if 06 = 0. A right O-restricted relation on 5 is defined
dually, and a relation £ on § = 50 will be called O-restricted if it is both
left and right O-restricted, i.e. if 0 = £0 = 0. We say that a relation £ on a
semigroup S satisfies the common maltiple property, briefly the cm-property,
if for all a,b,c € 5, afcand bfc implies ab&c. Similarly, for a relation £ on
a semigroup 5 = 50 we say that £ satisfies the 0-common multiple properly,
briefly the 0-cm-property, if for all a,b,c € S, ab # 0, a€c and b e implies
ab & c.

Let K Dbe a subset of a lattice L (not necessary complete). If K con-
tains the meet of any its nonempty subset having the meet in L, then K is
called a complete meet-subsemilattice of L. A complete join-subsemilattice
is defined dually. If K is both complete meet-subsemilattice and complete
join-subsemilattice of L, then it is called a complete sublattice of L. If L is
a lattice with unity, then any sublattice of L containing its unity is called a

[-sublattice of L. Dually we define a 0-sublattice of a lattice with zero, and
we define a sublattice of a lattice L with zero and unity to be a 0, [-sublatiice
if it is both O-sublattice and l-sublattice of L. If any element of L is the
meet of some nonempty subset of /', then A is called meet-dense in L.

An element o of a lattice L with the zero 0 is an atom of L if ¢ > 0 and
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there exists no x € L such that a > 2 > 0. A complete Boolean algebra B is
atomic if every element of B is the join of some set of atoms of B.If Lisa
distributive lattice with zero and unity, then the set B(L) of all elements of
L having a complement in £ is a Boolean algebra and it is called the greatest
Boolean subalgebra of L.

For a nonempty set A, P(A) will denote the latiice of subsets of A. Let A
be a nonempty set and let £ he a sublattice of P(A) containing its unity and
having the property that any nonempty intersection of elements of L is also
in A. Then for any a € A there exists the smallest element of L containing a
(it is the intersection of all elements of L containing «), which will be called
the principal element of L generated by a.

A subset A of a semigroup 5 is called completely semiprime if for 2 € 5,
x* € A implies z € A, completely prime if for x,y € §, 2y € A implies the
either x € A or y € A, left consistent if for T,y €5, vy € A implies z € A,
right consistent if for z,y € &, 2y € A implies y € A, and it is consistent
if it is both left and right consistent. Clearly, the empty set has any of
these properties and the sets of cotmpletely semiprime, completely prime, left
consistent, right consistent and consistent subsets are complete sublattices
of P(5). A consistent subsemigroup of a sewigroup .S will be called a filter
of 5. The empty set will be also defined to be a filter. By F(5) we denote
the lattice of filters of 5, which is a complete meet-subsemilattice of P(S5),
and therefore a complete lattice, but it is not necessary a sublattice of P(5).
It is well known that a subset A of a semigroup 5 is a filter of § if and
only its complement is either empty or a completely prime ideal of §. The
principal element F(5), called the principal filter, generated by ¢ € § will
be denoted by N(a).

In studying of semigroups with zero we use some similar notions. Namely,
a subset A of a semigroup 5 = S° is called left 0-consistent if A® is left
consistent, right 0-consistent if A® is right consistent, and it is 0-consistent
if A® is comsistent. Similarly, an equivalence relation 8 on § —= S will be
called left 0-consistent if for x,y € S, ay # 0implies 2y 8 x, right 0-consistent
if for ,y € 5, zy # 0 implies xy 6y, and O-consistent if it is both left and
right 0-consistent.

Let 5 be a semigroup. By Zd(5) we denote the lattice of ideals of §.
This lattice is a sublattice of P(5), it is also a complete join-subsemilattice
of P(5), but it is not necessary a complete meet-subsemilattice, since the
empty set is not included in Zd(.5). The principal element of Zd(5), called
the principal ideal, generated by ¢ € § will be denoted by J(a).Further,
LIZd(S) will denote the lattice of left ideals of a semigroup 5 defined in
the following way: if 5 = S°, then £Zd(5) consists of all left ideals of o

and if S has no zero, then £Zd( 9) consists of the empty set and all left
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ideals of §. The lattice of right ideals of §, in notation RZd(5), is defined
dually. Lattices £Zd(5) and RZd(S) are complete sublattices of P(5). The
principal element of £Zd(S5), called the principal left ideal, generated by
a € § will be denoted by L(a). The principal right ideal generated by a € .9,
defined dually, will be denoted by R(a). By Zd*®(5) we denote the lattice
of completely semprime ideals of S, which is a complete l-subsemilattice
of Zd(S). The principal element of Zd®*(5), called the principal radical,
generated by a € S will be denoted by Y(a). By RZd®(S) and LId*(5)
we denote the lattice of left consistent right ideals and the lattice of right
consistent left ideals of §, which are complete sublattices of RZd(5) and
LId(S5), vespectively.

For a nonempty subset A of a semigroup S define the relations Fu, Ra
and L4 by:

aPsb & (Vz,ye S)(zaye A & aby e A),
aRsb & (YyeS)aye A & bye A),
aliab & (Vzel)(va€e A & abe A).

Then P4 is a congruence on S called the principal congruence on S defined
by A, Ra is a right congruence called the principal right congruence on S
defined by A, and L4 is aleft congruence called the principal left congruence
on S defined by A. If A is a nonempty family of subsets of .5, then P(A) will
denote the congruence which is the intersection of all principal congruence
on S defined by elements from A.

Let A be a nonempty set and let X € P(A). The relation Ox on A
defined by

a@Oxb © abeX or aq,be A-X (a,b e A),

is an equivalence relation on A whose classes are precisely the nonempty sets
among the sets X and A — X. Clearly, when X = & or X = A, then Ox is
the universal relation on A. Also, for any X € P(A), Ox = 04, - Further,
for a nonempty subset A of P(A), O(A) will denote the equivalence relation
on A defined by:
o) =[] ©x-
XeA

If A is a complete meet-subsemilattice of P(A), and it contains the unity of
P(A), then O(A) can be alternatively defined by:

a®(A)b & Ala) = A(b) (a,b€ ),
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Using this theorem, M. Petrich [71] characterized normal band COnEri-

ences and the smallest normal band congruence on a semigroup by the fol-
lowing two theorems:

Theorem 3.20. (M. Petrich [71]) A relation 6 on «a semigroup S is a normal
band congruence on S if and only if @ = ®(A), for some nonempty subset

A of X, where X' denotes the set of all left normal complexcs and all right
normal complexes of 5.

Theorem 3.21. (M. Petrich [71]) The smallest normal band congruence on
a semigroup S equals the relation § = ®(X), where X denotes the sct of all
left normal complexes and all right normal compleaes of 5.

In Theorem 3.20, A’ cannot be re placed by the set of all normal complexes,
but this can be done in Theorem 3.21:

Theorem 3.22. (M. Petrich [71]) The smallest normal band congrucnce on
a semigroup S equals the relation § = ®(X), where ¥ denotes the set of all
normal complexzes of 5. '

4. Decompositions of semigroups with zero

The first known type of decompositions of semigroups with zero have been
orthogonal decompositions, called also 0-direct unions, which have been first
defined and studied by L. S. Lyapin in [60] and [61], 1950, and S. Schwarz
[90], 1951. After that, they have heen studied by many authors, mainly
as orthogonal sums of completely O-simple semigroups. General study of or-
thogonal decompositions of semigroups with zero has done by S. Bogdanovié
and M. Ciri¢ in [10], 1995, and ‘[13]. The results obtained there will be a
topic of Section 4.1. Among these results we emphasize Theorem 4.8 on
atowmicity of orthogonal decompositions.

Decompositions of a semigroup with zero into a left, right and matrix sam
of semigroups have been first defined and studied by 5. Bogdanovié¢ and M.
Cirié in [13]. The results concerning these decompositions obtained in this
paper will be presented in Section 4.2. We also give Theorem 4.21 which es-
tablish connections between the decompositions into a left, right and matrix
sum, and orthogonal decompositions inside the lattice of 0-decompositions
of a semigroup with zero. Note also that some decom positions of semigroups
with zero, similar to decomposition into a matrix sum, have heen considered
by O. Steinfeld in [105].

Quasi-semilattice decompositions of a semigroup with zero, which are
carried by partially ordered sets, appeared recently in the paper of M. Ciri¢
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and S. Bogdanovié [26]. These decompositions will be considered Section
4.3.

Note finally that decompositions into a left, right and matrix sum of
semigroups, and quasi-semilattice decompositions of semigroups with zero
are generalizations (or an alogues) of left zero band, right zero band, matrix
and semilattice decompositions, respectively, as showed by Theorems 4.22
and 4.28. Orthogonal sums have no such analogue.

4.1. Orthogonal decompositions

In studying of orthogonal decompositions of semigroups with zero, 5. Bog-
danovié and M. Ciri¢ [10], 1995, has started from the notion of 0-consistent
ideal. They defined a 0-consistent ideal of a semigroup § = S° as an ideal
A having the property that A®is a consistent subset of §. They denoted by
Tdo=(5) the set of all O-consistent ideals of a semigroup 5 = 59 and they
proved the following theorem:

Theorem 4.1. (S. Bogdanovi¢ and M. Cirié [10]) The poset Zdo(S) of all
O-consistent ideals of @ semigroup § = 59 is a complete atomic Boolean
algebra and Td°*(.5) = B(Zd( 5)).

Furthermore, any complete atomic Boolean algebra is isomorphic to the
Boolean algebra of 0-consistent ideals of some semigroup with zero.

Using this theorem, 5. Bogdanovi¢ and M. (iri¢ [10] obtained the follow-
ing theorem concerning orthogonal decompositions:

Theorem 4.2. (S. Bogdanovi¢ and M. Ciri¢ [10]) Any scmigroup S = e
has a greatest orthogonal decomposition and its summands are all the atoms

in ZdOo°(.5).

Another approach to orthogonal decompositions, through certain equiva-
lence relations, has done by S. Bogdanovi¢ and M. Ciri¢ in [13]. A O-restricted
and 0-consistent equivalence relation on a semigroup S = 59 will be called
an orthogonal equivalence. This name will be justified by the role of these
equivalences in orthogonal decompositions, which will be demonstrated in

Theorem 4.4. Namely, the authors proved in [13] the following two theorems:

Theorem 4.3. (5. Bogdanovi¢ and M. Ciri¢ [13]) The poset of orthogonal
equivalences on @ SCMAGroup § = §9 is a complete sublattice of the lattice
Theorem 4.4. (S. Bogdanovi¢ and M. Ciri¢ [13]) The poset of orthogonal
decompositions of a semigroup 5 = 59 is a complete lattice and it 18 dually
isomorphic to the lattice of orthogonal equivalences on 5.
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Note that the sumands in an orthogonal decomposition of a semigroup
S = 59 are precisely the nonzero classes of the related orthogonal equiva-
lence, with the zero adjoined, and vice versa.

By Theorems 4.3 and 4.4 we deduce the following;:

Theorem 4.5. The lattice of orthogonal decompositions of a semigroup S =
5% is a complete sublattice of the partition lattice of §.

The lattice of orthogonal decompositions has been also characterized by
some Boolean subalgebras of Zd%($) as follows:

Theorem 4.6. (S. Bogdanovi¢ and M. Ciri¢ [13]) The lattice of orthogonal
decompositions of a semigroup § = §9 iy isomorphic to the lattice of complete
Boolean subalgebras of Td%%(5).

Note that any complete Boolean subalgebra of ZdO(.S) is atomic and its
atoms are precisely the summands in the related orthogonal decomposition
of 5, and vice versa.

To describe the smallest orthogonal equivalence on a setigroup with zero,

S. Bogdanovié¢ and M. Ciri¢ in [10] defined the relation ~ on a semigroup
5= 5% hy '

a~b & Je)nJ()#£0, forabe S°, 0~0,

and they proved the following:

Theorem 4.7. (S. Bogdanovi¢ and M. Ciri¢ [10]) The smallest orthogonal
equivalence on a semigroup S = §° equals the relation ~°.

Note also that the lattice of orthogonal equivalences on § is the principal
dual ideal of the lattice £°(8) of 0-restricted equivalence relations on 9,
generated by ~*. Since £°(5) is the principal ideal of E(S), generated by
the equivalence relation y on S determined by the partition {5°,0}, then
the lattice of orthogonal equivalences on § is precisely the (closed) interval
[~ x] of £(5).

The main theorem of the theory of orthogonal decompositions of semi-
groups with zero is the theorem on atomicity of orthogonal decompositions,
proved by S. Bogdanovi¢ and M. Ciri¢ in [10], 1995. This is the following
theorem:

Theorem 4.8. (S. Bogdanovié and M. Cirié [10]) The summands of the great-
est orthogonal decomposition of a semigroup § = 5° are orthogonally inde-
composable semigroups.
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S. Bogdanovi¢ and M. Ciri¢ in [13] also observed that orthogonal decom-
positions of a semigroup § = 59 are closely connected with direct decompo-
sitions of the lattice of ideals of 5. This connection is demonstrated by the
following three theorems:

Theorem 4.9. The lattice Td(S) of ideals of a semigroup S = 5% s a
direct product of lattices Lo, a € Y, if and only if S is an orthogonal sum
of semigroups Sq, « €Y, and Ly = Zd(5,), for any « € Y.

Theorem 4.10. (S. Bogdanovi¢ and M. Ciri¢ [13]) The lattice Zd(S) of ideals
of a semigroup 5 = §9 s directly indecomposable if and only if 5 s orthog-
onally indecomposable.

Theorem 4.11. (S. Bogdanovi¢ and M. Cirié [13]) If Sq, @ € Y, are sum-
mands of the greatest orthogonal decomposition of a semigroup 5 = i
then the lattice Td(5) can be decomposed into a divect product of lattices
Td(S,), o € Y, which are directly indecomposable.

4.2. Decompositions into a left, right and matrix sum

In studying of decompositions of semigroups with zero into a left sum of
semigroups, 5. Bogdanovi¢ and M. (‘iri¢ in [13] used the methods similar
to the ones used in studying of orthogonal decompositions. At first, they
considered equivalence relations on a semigroup with zero which we call here
left sum equivalences. Namely, a 0-restricted, left O-consistent equivalence
relation on a semigroup § = S0 will be called an left sum equivalence. Right
sum equivalences on S are defined dually. These names will be explained
by the role of these equivalences in decompositions of 5 into a left sum and
a right sum of semigroups, respectively, as demonstrated in Theorem 4.13.
But, first we give the following theorem:

Theorem 4.12. (S. Bogdanovi¢ and M. Cirié [13]) The poset of left sum
equivalences on a-semigroup S = 5% is a complete sublattice of the lattice

£(S).

Theorem 4.13. (S. Bogdanovi¢ and M. Cirié [13]) The poset of decompo-
sitions of a semigroup S = 59 into a left sum of semigroups 1s a complete
lattice and it is dually isomorphic to the latlice of left sum equivalences on
S.

As in orthogonal decompositions, the sumands in a decomposition of a
semigroup 5 = S into a left sum are the nonzero classes of the related left
sum equivalence, with the zero adjoined, and vice versa.

By Theorems 4.12 and 4.13 we obtain the following:
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Theorem 4.14. The lattice of decompositions of a semigroup § = S° into
a left sum of semigroups is a complete sublattice of the partition lattice of S.

To characterize the smallest left sum equivalence on a semigroup, the

authors used the relation ~ defined by . Lallement and M. Petrich [59]

?
1966, on a semigroup 5 = 50 hy:

a~b & R(a)N R(D)# 0, fora,be §°, 0~ 0.

The relation ~ on 5 is defined dually. Using the above relation, S. Bog-
danovi¢ and M. Cirié¢ [13] characterized the smallest left sum equivalence as
follows:

Theorem 4.15. (S. Bogdanovié¢ and M. Cirié [13]) The smallest left sum
equivalence on a semigroup 5 = §° equals the relation ~ =,

As in orthogonal equivalences, the set of left sum equivalences on a semi-
group § = $° equals the interval [< > x] of the lattice £(.9).

Instead of 0-consistent ideals, used in studying of orthogonal decomposi-
tions, in studying of decompositions of a semigroup with zero into a left sum
of semigroups, S. Bogdanovié¢ and M. Ciri¢ used in [13] the notion of the left
0-consistent right ideal. Namely, they defined a right ideal A of a semigroup
5 = 59 to be left O-consistent if A® is a left consistent subset of 5. The set
of all left 0-consistent ideals of a semigroup they denoted by RZd¢($) and
they proved the following two theorems:

Theorem 4.16. (S. Bogdanovi¢ and M. Ciri¢ [13]) The poset RId0¢(S) of
all left 0-consistent right ideals of o semigroup S = 5O is a complete atomic

Boolcan algebra and RId0¢(§) = B(RIA(S))

Theorem 4.17. (S. Bogdanovi¢ and M. Ciri¢ [13]) The lattice of decompo-
sttions of a semigroup 5 = SO into «a left sum of semigroup is isomorphic o
the lattice of complete Boolean subalgebras of RTdW0¢(9).

As in orthogonal decompositions, the summands in a decomposition of
a semigroup S = S into a left sum of semigroups are precisely the atoms
in the related complete Boollean subalgebra of RZdA(S), which is atomic,
and vice versa.

As S. Bogdanovié¢ and M. Cirié in [13] observed, the previous two theorems
can be applied to direct decompositions of the lattice of right ideals of a
semigroup with zero:

Theorem 4.18. The lattice RT d(S) of right idcals of a semigroup § = 9
s a direct product of lattices L, o € Y, if and only of 5 is a left sum of
semagroups S, « € Y, and L, = RId(S,), for any o € Y.
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Theorem 4.19. (S. Bogdanovi¢ and M. Ciri¢ [13]) If Su, @ € Y, are the
sununands of the greatest decomposition of a semigroup 5 = 59 into a left
sum of semigroups, then the lattice LTd(S5) can be decomposed into a direct
product of its intervals [0, 8], o € Y, which are directly indecomposable.

Note that the interval [0, 5,] in Theorem 4.19 cannot be replaced by the
lattice RZd(S5,), in contrast to Theorem 4.11.

In order to characterize decompositions of a semigroup with zero into
a matrix sum of semigroups, 5. Bogdanovié¢ and M. Ciri¢ consider in [13]
equivalence relations that are the intersection of a left sum equivalence and
a right sum equivalence, which will be called here matriz sum equivalences,
and they proved the following theoremns:

Theorem 4.20. (5. Bogdanovi¢ and M. Ciri¢ [13]) The poset of matriz suin
equivalences on a semigroup S = S is a complete lattice.

Theorem 4.21. (S. Bogdanovi¢ and M..Ciri¢ [13]) The posct of decomposi-
tions of a semigroup 5 = S into a matriz sum of semigroups is a complete
lattice and it is dually isomorphic to the lattice of matriz sum equivalences
on 5.

Note that the sumands in a decomposition of a semigroup 5 = 59 into
a matrix sun are exactly the nonzero classes of the related matrix sum
equivalence, with the zero adjoined, and vice versa.

Note also that the previous two theorems give a connection between the
decompositions into a left sum, decompositions into a right sum and de-
compositions into a matrix sum. The authors in [13] established a similar
connection between the decompositions into a left sum, decompositions into
a right sum and orthogonal decompositions. This connection is given by the
following theorem:

Theorem 4.22. (S. Bogdanovi¢ and M. Cirié¢ [13]) The join in £(5) of any
left sum equivalence and any right sum equivalence on a semigroup S = 5¢
is an orthogonal equivalence on 5.

: e T a ¢ .
Especially, the join of ~ °° and ~ ™ equals ~°.
The above quoted results can be summarized by the following theorem:

Theorem 4.23. In the partition lattice of a semigroup 5 = SO, the meet
of any decomposition of S into a left sum and any decomposition of 5 into
a right sumn of semigroups is an orthogonal decomposition, and ils join is a
decomposition into a matriz sum of semigroups.

FEspecially, the meet of the greatest decomposition of § into a left sum and
the greatest decomposition of § into a right sum of semigroups is the greatest
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orthogonal decomposition of 5, and its join is the greatest decomposition of
S inlo o matriz sum of semigroups.

Note finally that decompositions of a semigroup with zero into a left sum,
right sum and matrix sum of semigroups can be treated as generalizations
of left zero band, right zero band and matrix decompositions, respectively.
This follows by the following theorem:

Theorem 4.24. The lattice of left zero band (vight zero band, matriz) de-
compositions of a semigroup § is isomorphic to the lattice of decompositions
into a left (right, matriz) sum of semigroups of a semigroup T arising from
S by adjoining the zero.

4.3. Quasi-semilattice decompositions

Studying of quasi-semilattice decompositions of semigroups with zero be-
gan in the paper of M. Ciri¢ and S. Bogdanovié [20], 1994. In this paper,
some notions which appears in studying of semilattice decompositions of
semigroups the authors modified for semigroups with zero. Namely, the au-
thors defined a 0-positive quasi-order on a semigroup 5 = §° as a quasi-order
£ having the property that for a,b € 5, ab # 0 implies a £ ab and b £ ab, they
defined a quasi-order £ on 5 to satisfy the 0-cm-property if for all a,b,c € S,
ab # 0, afcand b cimplies ab € ¢, and they proved the following theorem:

Theorem 4.25. (M. Ciri¢ and S. Bogdanovi¢ [20]) The poset of left O-restric-
ted positive quasi-orders on a semigroup S = S satisfying the O-cm-property
and the poset of O-restricted 0-positive quasi-orders on S satisfying the 0-cimn-
property are complete lattices and they are isomorphic.

Further, M. Cirié and S. Bogdanovié defined in [20] & completely O-scmi-
prime ideal of a semigroup 5 = 5 as an ideal A of § having the property
that A® is a completely semiprime subset of 5. Similarly, A is said to he
completely O-prime if A® is a completely prime subset. The set of all com-
pletely 0-semiprime ideals of .5, denoted by Zd“®(5) is clearly a complete
lattice. A sublattice L of Zd®%%(5) is defined to satisfy the e-O-pi-property
if the set of completely 0-prime ideals from L is meet-dense in L, i.e. if any
element of L can be written as the intersection of some family of (,‘Ompletely
0-prime ideals from L. Using these notions, M. Ciri¢ and S. Bogdanovié [20]
proved the following theorem:

Theorem 4.26. (M. Ciri¢ and S. Bogdanovié [20]) For a semigroup S = 59,
the poset of complete 0,1-sublattices of the lattice Td%(8) satisfying the c-
O-pi-property is a complete lattice and il is dually isomorphic to the lattice
of O-restricted 0-positive quasi-orders on S satisfying the 0-cm-property,
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The investigation of quasi-semilattice decompositions of semigroups with
zero M. Ciri¢ and Bogdanovié continued in [26], where they proved the fol-
lowing three theorems that characterize the lattice of quasi-semilattice de-
compositions of a semigroup with zero:

Theorem 4.27. (M. Ciri¢ and S. Bogdanovié [20]) The posct of quasi-semi-
lattice decompositions of a semigroup S = 859 is a complete lattice and it is
dually isomorphic to the lattice of O-restricted O-positive quasi-orders on S
satisfying the 0-cm-properly.

Theorem 4.28. (M. Ciri¢ and S. Bogdanovié [26]) The lattice of quasi-semi-
lattice decompositions of a semigroup § = SO it is dually isomorphic to
the lattice of left O-restricted positive quasi-orders on S satisfying the 0-cm-
property.

Theorem 4.29. (M. Ciri¢ and S. Bogdanovié [26]) The lattice of quasi-senyi-
lattice decompositions of a semigroup § = 59 is isomorphic to the lattice of
complete 0,1-sublattices of Td®0%(8) satisfying the c-0-pi-property.

We finish this chapter by the theorem which give a connection between
quasi-semilattice decompositions of semigroups with zero and semilattice
decompositions. Note that this connection is incorporated in the name of
quasi-semilattice decompositions.

Theorem 4.30. (M. Ciri¢ and S. Bogdanovi¢ [26]) The lattice of semilat-
tice decompositions of a semigroup S is wsomorphic to the latiice of quasi-
semilatiice decompositions of the semigroup T arising from S by adjoining
the zero.

5. Yet other decompositions

In this paper we talk about yet other types of decompositions having the
greatest one.

The topic of Section 5.1 will be U-decompositions, introduced and first
studied by L. N. Shevrin [93], 1961, as a powerful tool in studying of lat-
tices of subsemigroups of a semigroup. We quote the theorem considering
the properties of the poset of U-decompositions, the theorem on atomic-
ity of these decompositions, as Theorem 5.3, and also three theorems on
application of U-decompesitions to direct decompositions of the lattice of
subsemigroups of a semigroup. For informations on other applications of
U-decompositions, and related U-band decompositions, in studying of the
lattice of subsemigroups of a semigroup the reader is referred to the hooks
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of L. N. Shevrin and A. Ya. Ovsyanikov [102], 1990, and [103], 1991, their
survey article [101], 1983, and the book of M. Petrich [73], 1977. Note that
L. N. Shevrin used the names "strong decomposition™ and ”strong band
decomnposition” for these decompositions. But, because the notion "strong
band of semigroups” has been also used for other concepts of the semigroup
theory, here we use the names used also in the hook of M. Petrich [73], 1977.

Ordinal decompositions, treated in Section 5.2, came out from studying
of linearly ordered groups in the papers of F. Klein-Barmen [55] and [56],
1942, and [57], 1948, and A. M. Kaufman [51] and [52], 1949. They have
been introduced by A. M. Kaufman [31], 1949, where they have been called
successively-annihilating sums (bands) of semigroups. General study of these
decompositions has done by E. S. Lyapin in his hook [62], 1960, where he
showed that the poset of ordinal decompositions of any semigroup is a coin-
plete sublattice of the partition lattice of this semigroup, and proved the
theorem on atomicity of ordinal decompositions, given here as Theorem 5.8.
Here we also present the results of M. Cirié and S. Bogdanovié that character-
1ze lattices of ordinal decompositions of semigroups. For more applications
on applications of ordinal decompositions see the hooks: E. S. Lyapin [62],
1960, M. Petrich [73], 1977, and L. N. Shevrin and A. Ya. Ovsyanikov [102],
1990, and [103], 1991.

I-matrix decompositions have arisen in the paper of G. Lallement and M.
Petrich [59], 1966, as a generalization of matrix decompositions. The very
nice results obtained in this paper will be presented in Section 5.3. For some
applications of such decompositions see the papers of J. Fountain and M.
Petrich [43], 1986, and [44], 1989.

The last section of this chapter is devoted to semilattice-matrix decom-
positions of semigroups. These decompositions have been first studied by A.
H. Clifford [29], 1941, who proved that unious of groups (completely regular
semigroups) are semilattices of completely simple semigroups, which are in
fact semilattices of matrices of groups. After that, semilatticematrix de-
compositions have been studied by many authors. for example by P. Chu,
Y, Guo and X. Ren [28], 1989, L. N. Shevrin [100], 1994, S. Bogdanovié and
M. Ciiri¢ [11], 1995, and [15], and other. By the well-known theorem of D).
McLean [64], 1954, and A. H. Clifford [30], 1954. on the decomposition of
a band into a semilattice of rectangular bands, semilattice-matrix decom-
positions can be treated as generalizations of band decompositions, and in
many papers these decompositions have heen used to make preparations
for band decompositions. Here we present some general properties of these
decompositions discovered by M. Ciri¢ and §. Bogdanovi¢ in [27].
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5.1. | J-decompositions

We said in the introduction of this paper that general study of U-decom-
positions has been done by L. N. Shevrin in [96], 1965. There he has obtained
the result that can be formulated in the following way:

Theorem 5.1. (L. N. Shevrin [96]) The poset of U-decompositions of a semi-
group 5 is a principal ideal of the partition lattice of 5.

In the same paper L. N. Shevrin considered also U-band decompositions
and some their special types. Namely, for any subvariety V of the variety
of bands a U-V-band decomposition of a semigroup 5 is defined as a de-
composition which is both U-decomposition and V-band decomposition. By
Theorems 5.1 and 1.6 the following theorem follows:

Theorem 5.2. For any subvariety V of the varicty of bands, the poset of U-
V-band decompositions of a semigroup S is a principal ideal of the partition
lattice of 5.

L. N. Shevrin [96] also proved the theorem on atowmicity of U-decomposi-
tions, which is given helow.

Theorem 5.3. (L. N. Shevrin [96]) The components of the greatest U-de-
composttion of a semigroup S are U-indecomposable.

Among the numerous applications of U-decompositions in studying of
lattices of subsemigroups of a semigroup we emphasize the application to
decompositions of these lattices into a direct product, which is demonstrated
by the following three theorems:

Theorem 5.4. (L. N. Shevrin [94]) The lattice Sub (5) of subsemigroups of
a semigroup S is a divect product of lattices L, o € Y, if and only if S has
a U-decomposition into subsemigroups S,, o € Y, and Sub (5,) = L,, for
any o € Y.

Theorem 5.5. (L. N. Shevrin [96]) The lattice Sub (5) of subsemigroups of a
semigroup S is divectly indecomposable if and only if § is U-indecomposable.

Theorem 5.6. (L. N. Shevrin [96]) If 5, v € Y, are the components of the
greatest U-decomposition of a semigroup S, then the lattice Sub (5) of sub-
semigroups of S can be decomposed into a dircet product of lattices Sub (5,),
a € Y, which are directly indecomposable.

We advise the reader to compare the previous three theorems with Theo-
rems 4.9-4.11, concerning direct decompositions of the lattice of ideals of a
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semigroup with zero, Theorems 4.18 and 4.19, concerning direct decompo-
sitions of the lattice of right ideals of a semigroup with zero, and Theorems
3.15 and 3.16, concerning direct decompositions of the lattice of right ideals
of a semigroup without zero.

5.2. Ordinal decompositions

General study of ordinal decompositions has been made by E. 5. Lyapin
in his book [62] from 1960. There he showed the following property of the
poset of ordinal decompositions:

Theorem 5.7. (E. S. Lyapin [62]) The poset of ordinal decompositions of a
semigroup S is a complete sublattice of the partition lattice of .

E. S. Lyapin [62] also proved the very important theorem on atomicity
of ordinal decompositions, whose another proof has been given by M. Cirié
and 5. Bogdanovi¢ in [25].

Theorem 5.8. (E. S. Lyapin [62]) The components of the greatest ordinal
decomposition of a semigroup S are ordinally indecomposable.

To characterize the lattice of ordinal decompositions, M. Ciri¢ and S.
Bogdanovi¢ [25] have used the next theorem, obtained in their earlier paper
(23], which gives a characterization of the poset of chain decompositions of
a semigroup through completely prime ideals.

Theorem 5.9. (M. Ciri¢ and S. Bogdanovi¢ [23]) The poset of chain decom-
postitions of a semigroup § is isomorphic to the poset of complete I-sublattices
of Td®3(5) eonsisting of completely prime ideals of 5.

Note that another characterization of the poset of chain decompositions
cau be given by filters as follows:

Theorem 5.10. (S. Bogdanovi¢ and M. Cirié [12]) The poset of chain de-
compositions of a semigroup S is isomorphic to the poset of complete 0,1-
sublattices of P(5) consisting of filters of 5.

M. Ciri¢ and S. Bogdanovi¢ [25] defined a strongly prime ideal of a semi-
group S as an ideal P of S having the property that for all 2,y € §,
xy = p € P implies that either 2 = p or y = p or 2,y € P, and they
proved that the set of all strongly prime ideals of a semigroup S, denoted
by Zd*P(5), is a complete I-sublattice of the lattice Zd(S) of ideals of S.
Moreover, they gave the following characterization of the lattice of ordinal
decompositions of a semigroup:
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Theorem 5.11. (M. Ciri¢ and S. Bogdanovi¢ [25]) The laitice of ordinal
decompositions of a semigroup S is isomorphic to the lattice of complete
{-sublattices of TdP(.9).

5.3. I-matrix decompositions

If 6 is a congruence on a semigroup S and S/ is a rectangular 0-band,
then & is said to be an I-matriz congruence, where [ is an ideal of S which
is the @-class that is the zero of 5/6. The corresponding decomposition is
an [-matriz decomposition of 5, and [ is called a matric ideal of 5. G.
Lallement and M. Petrich [59] defined a quasi-completely prime ideal of a
semigroup 5 as an ideal [ satisfying the condition that for all @,b,c € S,
abe € I implies that either ab € T or be € I, and they proved the following
theorem:

Theorem 5.12. (G. Lallement and M. Petrich [59]) An ideal I of a semigroup
S is a matria ideal if and only if it is prime and quasi-completely prime.

To characterize [-matrix congruences, ;. Lallement and M. Petrich [59]
introduced the following notions: if A is a nonempty subset of a semigroup
S, then an equivalence relation # on § is called a left A-equivalence if the
following conditions hold:

(1) Ais a f-class of 5;

(2) @ is a left congruence;

(3) forall z,y € S, 2y ¢ A implies 2y 0 .
A right A-cquivalence is defined dually. Necessary and sufficient conditions
for existence of a left A-equivalence and a right A-equivalence on a semigroup
have been determined by the following theorem:

Theorem 5.13. (G. Lallement and M. Petrich [59]) Let A be a subset of a
semigroup §. Then there exists a left A-equivalenee and a right A-equivalence
if and only if A is a quasi-completely prime ideal of 5.

The following theorem has heen also proved in [59]:

Theorem’ 5.14. (G. Lallement and M. Petrich [59]) Let { be a matriz ideal
of a semigroup S. Then the poset of lefl [-equivalences on S is a complele
sublattice of the lattice of left congruences on 5.

Gi. Lallement and M. Petrich [59] characterized the smallest /-equivalence
in three ways. At first, they defined a left [-complex of a semigroup § as a
nonempty subset A of 5 having the following properties:

(1) AnlI=w@;
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(2) Ais a left consistent subset of §;

(3) AU/ is a right ideal of 5.
A right I-complex has been defined dually. For an element ¢ € § — I, let
C(e) they denoted the smallest left [-complex of § containing @, i.e. the
intersection of all left /-complexes of § containing «a, called the principal left
I-complex of 5 generated by a, and they proved the following

Theorem 5.15. (G. Lallement and M. Petrich [59]) Let I be a matriz ideal
of a semigroup 5. Then the relation 8 on § defined by:

abb & a,bel or Cla)=C(b) (a,be 5),
equals the smallest left I-equivalence on §.

The second and third characterization of the smallest left J -aquivalence
on a semigronp have been given by the following two theorems:

Theorem 5.16. (G. Lallement and M. Petrich [59]) Let [ be a matriz ideal
of a semigroup S. Then the rvelation § on S defined by

abb < (Veel)(awael & baxbel) (a,be f),

equals the smallest [-matriz congruence on §.

Theorem 5.17. (G. Lallement and M. Petrich [59]) Let I be a matriz ideal
of a semigroup S. Then the smallest left [-equivalence equals the principal
left congruence Ly.

Following the ideas used by M. Petrich in studying of matrix decomposi-
tions, G. Lallement and M. Petrich proved in [59] the next theorem, similar
to Theorem 3.5.

Theorem 5.18. (G. Lallement and M. Petrich [59]) Let I be a matriz ideal
of a semigroup S. Then the intersection of a left I -cquivalence and a right
I-equivalence is a I-matriz congruence on 5.

Conversely, any I-matriz congruence on § can be written uniquely as the
intersection of a left I-equivalence and a right I-equivalence on §.

Using the previous theorem and Theorem 5.14, G. Lallement and M.
Petrich proved also in [59] the following two theorems:

Theorem 5.19. (G. Lallement and M. Petrich [59]) Let I be a matriz ideal of
a semigroup 5. Then the poscl of [-matriz congruences on S is a complete
sublattice of Con (\9).

Theorem 5.20. (G. Lallement and M. Petrich [69]) Let I be a matriz ideal
of a semigroup S and let 0 denote the smallest [-matrix congruence on 5.
Then® = RN Ly = Rx = Ly, where K = {g € 5|a® ¢ I}.
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5.4. Semilattice-matrix decompositions

Let a semigroup 5 be a sewmilattice ¥ of semigroups S,, a € Y, and for
any @ € Y, let 5, he alelt zero band (right zero band, matrix) of semigroups
S i€ I,. M. Ciri¢ and S. Bogdanovié [27] called the partition {9; | i € I},
where I = J, ey lu, a semilattice-left (semilattice-right, semilattice-matriz )
decomposition of 5, or brieflly s-I- (s-r-, s-m-)decompasition. I 8 denotes
the equivalence, relation determined by this partition and if p denotes the
semilattice congruence determined by the partition {5, | @ € Y}, then 8
is called a semilattice-left { semilattice-right, semilattice-matriz) equivalence
on S carried by p, or briefly s-l- (s-r-, s-m-)equivalence, and p is called a
carrier of #. Clearly, an equivalence relation # on a semigroup 5 contained
in a sewilattice-congruence g on 5 is a s-1-(s-r-, s-m-) equivalence carried by
o if and only if for all a,b € 5, apb implies ab@a (¢ pb implies ab8b, apd
implies abaf a).

M. Ciri¢ and S. Bogdanovié studied in [27] some general properties of s-1-,
s-1- and s-m-equivalences and their carriers, and they proved the next four
theorems. Note that Theorem 5.24 is similar to Theorems 3.5, 3.19 and 5.18.

Theorem 5.21. (M. Ciri¢ and S. Bogdanovi¢ [27]) The set of s-I-(s-r-, s-m-)
equivalences on a semigroup S carried by a semilattice congruence p on S s
a closed interval of £(9).

Theorem 5.22. (M. Ciri¢ and S. Bogdanovi¢ [27]) The set of carriers of a
s-l-(s-1-, s-m-)equivalence 8 on a scmigroup S is o conver subset, with the
smallest element, of the lattice of semilattice congruences on 5.

Theorem 5.23. (M. Ciri¢ and S. Bogdanovic [27]) The poset of all a s-1-(s-r-,

s-m-)equivalences on o semigroup S s a complete lattice.

Theorem 5.24. (M. Ciri¢ and S. Bogdanovié [27]) The intersection of a
s-l-equivalence and a s-r-equivalence on a semigroup 5 is a s-m-cquivalence.

Conversely, any s-in-equivalence can be written, uniquely up to a carrier,
as the intersection of a s-l-equivalence and a s-r-equivalence.
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