FILOMAT (Niš) 9:2 (1995), 161–167 Filomat '94, Niš, October 22–24, 1994 Geometry. Computer Sciences

F(2k+1,1)-STRUCTURE ON THE LAGRANGIAN SPACE

Jovanka Nikić

ABSTRACT. If almost product P or almost complex structure J on the tangent space $T(E) = T_V(E) + T_H(E)$ of Lagrangian 2n dimensional manifold E are defined, and if $f_v(2k+1,1)$ -structure on $T_V(E)$ is defined, then $f_p(2k+1,1)$ and $f_j(2k+1,1)$ -structures on $T_H(E)$ are defined in the natural way. We can define $F_p(2k+1,1)$, $F_j(2k+1,1)$ -structures on T(E). The condition is given for the reduction of the structural group of such manifolds.

1. Introduction

Let M be an n dimensional and E 2n dimensional differentiable manifold and let $\eta = (E, \pi, M)$ be vector bundles and $\pi E = M$. The differential structures (U, ϕ, R^{2n}) are vector charts of the vector bundles η . Hence the canonical coordinates on $\pi^{-1}(U)$ are $(x^1, \ldots, x^n, y^1, \ldots, y^n) = (x^i, y^a)$, $i = 1, 2, \ldots, n$ $a = 1, \ldots, n$. Transformation maps on E are

$$\begin{split} &x^{i'}=x^{i'}(x^1,x^2,\ldots,x^n)\\ &y^{a'}=M_a^{a'}(x^1,\ldots,x^n)y^a=M_a^{a'}(x^i)y^a\\ &\operatorname{rank}\left[\frac{\partial x^{i'}}{\partial x^i}\right]=n,\ \operatorname{rank}\left[\frac{\partial y^{a'}}{\partial y^a}\right]=\operatorname{rank}M_a^{a'}=n. \end{split}$$

The inverse transformations are

$$x^{i} = x^{i}(x^{1'}, x^{2'}, \dots, x^{n'})$$

 $y^{a} = M_{a'}^{a}(x^{i'}, \dots, x^{n'})y^{a'}$

where $M_{a'}^a M_a^{a'} = \delta_b^a$.

¹⁹⁹¹ Mathematics Subject Classification. 53B40, 53C60.

The local natural bases of the tangent space T(E) are $\{\partial_i, \partial_a\}$

$$\begin{split} \partial_a &= \frac{\partial}{\partial y^a} = M_a^{a'}(x^i) \partial_{a'} \\ \partial_i &= \frac{\partial}{\partial x^i} = \frac{\partial x^{i'}}{\partial x^i} \partial_i + (\partial_i M_b^{a'}(x)) y^b \partial_{a'}. \end{split}$$

The nonlinear connection on E is distribution

$$N: u \in E \to N_u \subset T_u(E)$$

which is supplementary to the distribution V,

$$(1.1) T_u(E) = N_u \oplus V_u, \quad \forall_u \in E.$$

They are locally determined by $\delta_i = \partial_i - N_i^a \partial_a$. The local bases adapted to decompositions in (1.1) is $\{\delta_i, \partial_a\}$.

It is easy to prove that on $\{\delta_i, \partial_a\}$

$$\delta_{i'} = \delta_i \frac{\partial x^i}{\partial x^{i'}}, \quad \partial_{a'} = \frac{\partial y^a}{\partial y^{a'}} \partial_a.$$

The subspace of T(E) spaned by $\{\delta_i\}$ will be denoted by $T_H(E)$ and the subspace spaned by $\{\partial_a\}$ will be denoted by $T_V(E)$, $T(E) = T_H(E) \oplus T_V(E)$, $\dim T_H(E) = n = \dim T_V(E)$.

Definition 1.1. If the Riemannian metrical structure on T(E) is given by $G = g_{ij}(x^i, y^a)dx^i \otimes dx^j + g_{ab}(x^i, y^a)\delta y^a \otimes \delta y^b$ where $g_{ij}(x^i, y^a) = g_{ij}(x^i)$, $g_{ab} = \frac{1}{2}\partial_a\partial_b L(x^i, y^a)$ and $L(x^i, y^a)$ is a Lagrange function, then such a space we call Lagrangian space.

Let $X\in T(E)$, then $X=X^i\delta_i+\bar{X}^a\partial_a$ and the automorphism $P:\mathcal{X}(T(E))\to\mathcal{X}(T(E))$ defined by

$$PX = \bar{X}^i \delta_i + X^a \partial_a$$

is the natural almost product structure on T(E). i.e, $P^2 = I$. If we denote by v and h the projection morphism of T(E) to $T_V(E)$ and $T_H(E)$ respectively, we have

$$P \circ h = v \circ P$$
.

The automorphism

$$JX = -\bar{X}^i \delta_i + X^a \partial_a$$

is the natural almost complex structure on T(E).

2.
$$f(2k+1,1)$$
-structures

Definition 2.1. We call Lagrange vertical $f_v(2k+1,1)$ -structure of rank r on $T_V(E)$ a non-null tensor field f_v of type (1,1) and of class C^{∞} such that $f_v^{2k+1} + f_v = 0$, $k \in N$, and rank $f_v = r$, where r is constant everywhere.

Definition 2.2. We call Lagrange horizontal $f_h(2k+1,1)$ -structure on $T_H(E)$ a non-null tensor field f_h on $T_H(E)$ of type (1,1) of class C^{∞} satisfying $f_h^{2k+1} + f_h = 0$, $k \in N$, rank $f_h = r$, where r is constant everywhere.

An F(2k+1,1)-structure on T(E) is a non-null tensor field F of type $\binom{11}{11}$ such that $F^{2k+1}+F=0, k\in N$, rank F=2r=const.

For our study it is very convenient to consider f_v or f_h as morphism of vectors bundles.

$$f_v: \mathcal{X}T_V(E) \to \mathcal{X}T_V(E)$$

 $f_h: \mathcal{X}T_H(E) \to \mathcal{X}T_H(E).$

Let f_v be a Lagrange vertical $f_v(2k+1,1)$ -structure of rank r. We define the morphisms

$$l = -f_v^{2k}$$
 and $m = f_v^{2k} + I_{T_v(E)}$

where $I_{T_V(E)}$ denotes the identity morphism on $T_V(E)$.

It is clear that l + m = I. Also we have

$$l m = m l = -f_v^{4k} - f_v^{2k} = -f_v^{2k-1} (f_v^{2k+1} + f_v) = 0,$$

 $m^2 = m, l^2, = l.$

Hence the morphisms l, m applied to the $\mathcal{X}(T_V(E))$ are complementaly projection morphisms, then there exist complementary distributions VL and VM corresponding to the projection morphisms l and m respectively such that dim VL = r and dim VM = n - r.

It is easily to see that

(2.1)
$$lf_v = f_v l = f_v, \quad mf_v = f_v m = 0, \quad f_v^{2k} m = 0,$$
$$f_v^{2k} l = -l.$$

Proposition 2.1. If a Lagrange $f_v(2k+1,1)$ -structure of rank r defined on $T_V(E)$, then the horizontal $f_h(2k+1,1)$ -structure of rank r is defined on $T_H(E)$ by the natural almost product structure of T(E), as f_p , or by the almost complex natural complex structure of T(E), as f_j .

Proof. If we put

$$(2.2) f_p X = P f_v P X, \ \forall X \in T_H(E)$$

$$(2.3) f_j X = -J f_v J X, \ \forall X \in T_H(E)$$

it is easy to see that

$$f_p^{2k+1}X = Pf_v^{2k+1}PX, \ f_j^{2k+1}X = -Jf_v^{2k+1}JX$$

and

$$f_p^{2k+1} + f_p = 0, \ f_j^{2k+1} + f_j = 0$$

and rank $f_p = \text{rank } f_j = r$. It is easy to see that $f_p = f_j = f_h$.

Proposition 2.2. If a Lagrange $f_v(2k+1,1)$ -structure of rank r is defined on $T_V(E)$, then an $F_p(2k+1,1)$ -structure or $F_j(2k+1,1)$ -structure are defined on T(E) by the natural almost product or natural almost complex structure of T(E).

Proof. We put

$$F_p = f_p h + f_v v,$$

$$F_j = f_j h + f_v v,$$

where f_p , f_j are defined by (2.2), (2.3) and h, v are the projection morphisms of T(E) to $T_H(E)$ and $T_V(E)$. Then it is easy to check that

$$F_p^2 = f_p^2 h + f_v^2 v, \quad F_p^{2k+1} = f_p^{2k+1} h + f_v^{2k+1} v.$$

Thus $F_p^{2k+1}+F_p=0$. Similary $F_j^{2k+1}+F_j=0$. It is clear that rank $F_p={\rm rank}\,F_j=2r$.

If l_p , m_p are complementary projection morphisms of the horizontal $f_p(2k+1,1)$ -structure, which is defined by the natural almost product structure of T(E), we have

$$l_p X = -f_p^{2k} X = -P f_v^{2k} P X = P l P X, \forall X \in T_H(E)$$

$$m_p X = f_p^{2k} + I_{T_V(E)} X = P f_v^{2k} P X + P I_{T_V(E)} P X = P m P X, \forall X \in T_H(E).$$

If L_p , M_p are complementary projection morphism of the $F_p(2k+1,1)$ structure on T(E), then we have

(2.4)
$$L_{p} = -F_{p}^{2k} = -f_{p}^{2k}h - f_{v}^{2k}v = l_{p}h + lv$$

$$M_{p} = F_{p}^{2k} + I_{T(E)} = f_{p}^{2k}h + f_{v}^{2k} + I_{T_{H}(E)}h + I_{T_{V}(E)}v = m_{p}h + mv.$$

Thus, if there is given a Lagrange $f_v(2k+1,1)$ -structure on $T_V(E)$ of rank r, then there exist complementary distributions HL_p , HM_p of $T_H(E)$, corresponding to the morphisms l_p , m_p such that

$$(2.5) HL_p = PVL, HM_p = PVM.$$

Thus we have the decompositions

$$T(E) = T_H(E) \oplus T_V(E) = PVL \oplus PVM \oplus VL \oplus VM.$$

If TL_p , TM_p denote complementary distributions corresponding to the morphisms L_p , M_p respectively, then from (2.4) and (2.5) we have

$$TL_p = PVL \oplus VL$$
 , $TM_p = PVM \oplus VM$.

Let \bar{g} is a pseudo-Riemannian metric tensor, which is symmetric, bilinear and non-degenerate on $T_V(E)$.

$$\bar{g}: \mathcal{X}(T_V(E)) \times \mathcal{X}(T_V(E)) \to \mathcal{F}(T(E)).$$

(for examples \bar{g} can be the vertical part of Lagrange metric structure). The mapping

$$a: \mathcal{X}(T_V(E)) \times \mathcal{X}(T_V(E) \to \mathcal{F}(T(E))$$

which is defined by

$$a(X,Y) = \frac{1}{2} [\bar{g}(lX,lY) + \bar{g}(mX,mY)] \ \forall X,Y \in \mathcal{X}T_V(E)$$

is a pseudo-Riemannian structure on T(E) such that $a(X,Y)=0, \ \forall X\in \mathcal{X}(T(VL)), \ Y\in \mathcal{X}(T(VM)).$

Theorem 2.1. If a Lagrange $f_v(2k+1,1)$ -structure $k \geq 1$ of rank r is defined on $T_V(E)$ then there exist a pseudo-Riemannian structure of $T_V(E)$ with respect to the complementary distributions VL and VM are orthogonal and f_v is an isometry on $T_V(E)$.

Proof. If we put

$$g(X,Y) = \frac{1}{2k} [a(X,Y) + a(f_v X, f_v Y) + \dots + a(f_v^{2k-1} X, f_v^{2k-1} Y)]$$

it is easy to see that

$$g(X,Y) = 0 \quad \forall X \in \mathcal{X}(VL), \quad Y \in \mathcal{X}(VM).$$

Using (2.1) we get

$$g(f_v X, f_v Y) = \frac{1}{2k} [a(f_v X, f_v Y) + a(f_v^2 X, f_v^2 Y) + \dots + a(X, Y)].$$

Thus f_v is an isometry with respect to g.

Let
$$X \in \mathcal{X}(T(VL))$$
 then $f_v X, f_v^2 X, \dots, f^{2k} X \in \mathcal{X}(T(VL))$ and $g(X, f_v^k X) = g(f_v X, f_v^{k+1} X) = \dots = g(f_v^k X, f_v^{2k} X) = -g(f_v^k X, X).$

Consequently

$$g(X, f_v^k X) = g(f_v X, f_v^{k+1} X) = \dots = g(f_v^k X, f_v^{2k} X) = 0$$

and r = 2km.

Thus we can chose in $\mathcal{X}(T(VL))$ r=2km mutually orthogonal unit vector fields such that

$$f(X_a) = X_{\alpha+m}$$
 $\alpha = 1, 2, \dots, (2k-1)m,$
 $f(X_\alpha) = -X_{-(2k-1)m+\alpha},$ $\alpha = (2k-1)m+1, \dots, 2km.$

An adapted frame of the Lagrange $f_v(2k+1,1)$ -structure on $T_V(E)$ is the orthogonal frame $R = \{X_{\alpha}, X_{\beta}\}$, where X_{β} is an orthogonal frame of $\mathcal{X}(T(VM))$.

Let $\bar{R} = \{\bar{X}_{\alpha}, \bar{X}_{\beta}\}$ be another adapted frame of the Lagrange $f_v(2k+1, 1)$ structure, and $\bar{R} = AR$, then orthogonal matrix A is an element of the group $U_{(km)} \times O_{(n-2km)}$.

Theorem 2.2. A necessary and sufficient condition for $T_V(E)$ to admit Lagrange $f_v(2k+1,1)$ -structure, $k \geq 1$ of rank r is that r=2km and the structure group of the tangent bundle of the manifold be reduced to the group $U_{(km)} \times O_{(n-2km)}$.

We can define a maping g_p :

$$g_p(X,Y) = g(PX,PY), \quad \forall X,Y \in \mathcal{X}(T_H(E))$$

 g_p is a metric structure on $T_H(E)$. Using (2.5) the distributions HL_p , HM_p are orthogonal with respect to g_p and the horizontal $f_p(2k+1,1)$ -structure which is define by $f_pX = Pf_vPX$, $\forall X \in \mathcal{X}(T_H(E))$ is an isometry on $T_H(E)$ with respect to g_p .

Proposition 2.3. If $\{X_{\alpha}, X_{\beta}\}$ is an adapted frame of a given Lagrange $f_v(2k+1,1)$ -structure f_v on $T_V(E)$ with respect to g, then the frame $\{PX_{\alpha}, PX_{\beta}\}$ is an adapted frame of the horizontal $f_p(2k+1,1)$ -structure with respect to g_p .

It is clear that the frames $\{PX_{\alpha}, PX_{\beta}, X_{\alpha}, X_{\beta}\}$ are adapted frames to the decomposition

$$T(E) = HL_p \oplus HM_p \oplus VL \oplus VM.$$

Theorem 2.3. If a Lagrange $f_v(2k+1,1)$ -structure is defined on $T_V(E)$ with pseudo-Riemannian structure g, then the structure group of the tangent bundle on T(E) be reduced to $U_{(km)} \times O_{(n-2km)} \times U_{(km)} \times O_{(n-2km)}$.

Refrences

- M. Atanasiu, Modes in Finsler and Lagrange geometry, Proc. IVth Nat. Sem. on Finsler and Lagrange geometry, Brasov, (1986), 43-56.
- [2] F. G. Andreou, On a structure defined by a tensor field f of type (1,1) satisfying $f^5 + f = 0$, Tensor, N.S. 36(1982), 79-84.
- [3] S. ISHIHARA, K. YANO, On integrability conditions of a structure satisfying $f^3 + f = 0$, Quart-J. Math. 15(1964), 217-222.
- [4] J. Nikić, I. Čomić, $f(2 \cdot 2^k + 1, -1)$ -structure in (k + 1)-Lagrangian Space, Review of Research Faculty of Science, Mathematics Series, (toappear).
- [5] J. Nikić, On a structure defined by a tensor field f of the type (1,1) satisfying $f^{2\cdot 2k+1} f = 0$, Review of Research Faculty of Science-University of Novi Sad, 12(1982), 369-377.

FACULTY OF TECHNICAL SCIENCES, UNIVERSITY OF NOVI SAD, TRG D. OBRADOVIĆA 6, 21000 NOVI SAD, YUGOSLAVIA