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ON M-HARMONIC SPACE D;

Miroljub Jevtié

ABSTRACT. We show that the M-harmonic Dirichlet space D} is equal to the weighted
Bergman space Aj for0 < p <1 and s > n,

1. Introduction

In [6, chapter 10] author considered the relationship between the weigh-
ted Bergman spaces A3 of M-harmonic functions in the open unit ball B in
C" and the Dirichlet spaces D;. He showed that if s > n and 1 < p < oo,
then A = D;. In this note we show that also .A; = D7 in the case s > n,
0<p< 1.

Let B be the open unit ball in C* and § = 9B the unit sphere in
C™. We denote by v the normalized Lebesgue measure on B and by ¢ the
rotation invariant probability mesure on 5.

Let A _be the invariant Laplacian on B. That is, Zif(z) = A(fo
©2)(0), f € C*(B), where A is the ordinary Laplacian and @ the standard
automorphism of B, ¢, € Aut(B), taking 0 to z (see [5]). The C2-functions
f that are anihilated by A are called M-harmonic (f e M).

Definition 1.1. For 0 < p < oo, and s € R, the weighted Bergman space
A;, is defined as the space of M-harmonic functions f on B for which

1/p

g = | [ 0= BPrisepae)] - <
Here, dA(z) = (1 — |2]*)™""1dv(z2) is the measure on B that is invariant
under the group Aut(RB).

For f € C'I(B)'J vf = (%1"'1%)1 Zl = Tgk—1 +i$2k:1 k =

1,2,...,n, denotes the real gradient of f and let Vf(z) = V(f o ;)(0),
z € B, be the invariant real gradient of f.
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Definition 1.2. For 0 < p < oo, and s € R, the M-harmonic Dirichlet
space D is defined as the space of M-harmonic functions [ on B for which

[, Il da(e) < o

For f € D, set

_ | N\
1A e = LFO)] + ( [ ®sera- |z|2)3d/\(z>) |

For the proof of our main result the following Theorem will be needed.

Theorem 1.3 ([4]). Let 0 < p < 00, § > n — p/:z_andf € M. Then
following statements are equwalent
W) Fe8;,

) /|Vf(7) < |2y *PaA(z) < oo,
(i) [ (1= 1s) P (RAE + [RF) O < o0,

As usual, Bf(z ZZT gf is the radial derivative off

Theorem 1.4. Let h be M-harmonic on B. ;
(i) Forallp, 0 < p < oo, and s € R, there exists a constant C vindependent
of h, such that

f(l —|z|2)3|5'h(z)|”df\(ﬂg C/ (1= |2]%)"|R(2)|PdA(2).
B . B

(i) For allp, 0 < p < oo, and s > n, there f‘.t,zsl‘: a positive constant C,
independent of h, such that

(L)
] (1=21)* |h(2)PdA(2) < C'(lh(O)”+ j (1= )”f’wh(zw*d/\( ))

Item (i) was proved in [6], Theorem 10.10. K 1 < p < oo, then the
second part follows from Theorem 1.3 and Theorem 10.10 [6]. So it remains
to show that (1.1) holds for 0 < p < 1. The proof will be given in section 2.
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Corollary 1.5. For all p, 0 < p < oo, and s > n, we have A= Y2

Next, we consider the relationship between the M-harmonic Hardy

space HP and the spaces DJ. For 0 < p < oo, HP denotes the set of M-
harmonic functions f on B for which

LIS = [;.[Maf(f).]pda(g) < oo, for some (any) « >

Here M, f(f) = SUP.ep, (g) |f(z)| £ €5, where Do(€) = {z € B : |1 -

(2,6)| < 5(1 = |2|*)}, @ > 1, denotes the Koranyl admlsslble a,pproach
regions. :

By fhwrem 6.18 ( ) for 1 <p < oo, f € H” if and 0ﬂ1y if

/; (1= PP Pa) < o0

Thus when p = 2, H? = Dp. ‘ ‘
For all p, 2 < p < 00, HP C D2, with || [Fl lss € Coipllifllsy for all
J € H?, where (,, , is a constant dependmg only on n and P (see (3], [6])-
Forall p, 0 < p <2, Dy CHP. -
Fora > 1, €9, let

2

Saf(€) = (/D © I@f'(z)|2;ix(zj)l/h

@

denote the area integral of f. In [1] it is shown that if f € M then f € HP,
0 <p < oo, if and only if Sof € LP(c). From this and the inequality

/ [Saf()])do() < C / (1 = |w]?)"| ¥ f(w)[PdA(w),
S B R . SN

where f € M and 0 < p < 2 (see [6]), it follows that Dy CHP,0<p<
We note that this inclusion was proved in [6] for 1 < p - < 2.4

In this note we follow the custom of using the letter ' to stand for a
positive constant which changes its value from one appearance to another
while remaining independent of the important variables.

2. Proofof (1.1), case 0'<.p< 1

FO0<r<l, weset BE.(z) ={we B :|p.(w) <7} = c,o,,(TB) Er(2)
Zn( |zi )n-i—l

=Tl

is an ellipsoid and its volume is given by v(E,(2)) =

5], p-30).

(see

For the proof of (1. 1) 0 < p<l1,the 101]0W1ng lemmas will he needed.




80 M. Jevtié

Lemma 2.1. If s > 1, then
< C g
o [L-t{zw)|* = |1 —(z,w)|*~1

z,w € B.

Lemma 2.2 ([4]). Let 0 < r < 1 and 0 < p < . There is a constant
C > 0 such that if f € M then

M ? m_ 7 - |
(ll_(ziw)l) = E,.(w)(ll—(.z,f)‘) d’\(E)a z,w € B.

Lemma 2.3 ([2]). For 1 < p < r < o0, 0 < ¢ < 0o and a measurable
F LT (g = [ 1FGP( = o)1 dn(z) < o0) we have
B

R
< Cllfllpyg—1-

Lemma 2.4 ([5], p.17). If a > 0, then
doe) (1
foi=@ e = o(am): =<

Lemma 2.5. For (0 < 5 <t we hqve

1 s=1g
/(1f),p S<C-p)h 0<p<lL.

Assume now that s > n,0 < p < 1 and / (1—|22)°*P|Vh(2)|PdA(z) < o0
B

Since |Vh(z)| has M-subharmonic behavior, i.e. '

[Vh(w)| < C/ |Vh(z)|d\z), w € B, for some 0 < r < 1, we have for

w(w

any a >0

e sc(wors ([ [ o))

Y IVR(w)|(1 = |w]*)® F
se(mor+ ([ [ i) )

_C(|h(0 "+ (/ |Vh(w)|(1 — |w]?)*du(w) / = zi)|n+a+1)p)

cofuor s ([ BAM o)),
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by Lemma 2.1.
Applying Lemma 2.3 to the function

F(w) = (|Vh(w)| 1= (z,w)|™" “)p/2 w € B (z € B-fixed) and replacing
p,7,q by 2,2/p,p(a+ n + 1) — n respectively and using Lemma 2.2 we find
that

VAL~ Juf)*
/| dv(w)

|1 - (z,w)|nte

FE(1 = [€Ryetm-ntaye\ e
SC]B(«[E(w) 11 = (w, £) |[P(a+nt1) ) (1= |w|*)*dv(w)

F(E)(1 = |g|2yplatndl)—n-1 2/p )
= C(/B( 5 (fl)i— <1]u,|.f; [Plaat) dv(f)) (1 = [w]?) dv(w)

P(1 — 2\plo+nt1)—n—1 1/p
< C(f [Vh(w)|P(1 - |w|?) du(w)) ’
B

ll i (z, w) |p(n.+a)

we may assuine that ¢ > § — n.
Thus, by using Fubini’s theorem, Lemma 2.4 and Lemma 2.5 we obtain

[ =1y I@ParG) < € IOP + [ (1= )= duo)x
B B

|Vh w)|P(1 — |fm 2yp(a+nt1)—n-1
" (w)] = ¢ [y

W) |P(1 — |w plat+ntl)—n—1 el ( |Zl2)s"u_1(lll(z)
+ [ 1B upet-ta) [ O ]

1 - {z,w) |platn)

<C []h(O)P’ + / |Vh(w)|P(1 - |w|2)s"‘”_""1du(w)].
B

This finishes the proof of Theorem 1.4.
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