SOME CARDINAL FUNCTIONS ON URYSOHN SPACES

Ljubiša D. Kočinac

Abstract. We give some results on the cardinality of Urysohn H-closed topological spaces involving a new cardinal function denoted by $\operatorname{sq} L_{\theta}(X)$.

1. Introduction

In [7], the following cardinal function was introduced. For a space X, sqL(X) is the smallest infinite cardinal τ such that there exists a subset A in X of cardinality $\leq 2^{\tau}$ satisfying: for every family \mathcal{U} of open subsets of X there exist a subfamily \mathcal{V} of \mathcal{U} and a subset B of A such that $|\mathcal{V}| \leq \tau$, $|B| \leq \tau$ and $\cup \mathcal{U} \subset \overline{B} \cup (\cup \mathcal{V})$. In [10], this cardinal function was studied in some details. In a similar way we define here another cardinal function, denoted by $sqL_{\theta}(X)$, and prove some results on the cardinality of Urysohn spaces involving this function. These results improve some results from [6] and [10].

2. Notation and terminology. Definitions

Notations and terminology in this paper are standard as in [2], [4], [5]. Unless otherwise indicated, all spaces are assumed to be at least T_1 and infinite. α , β , γ , δ are ordinal numbers, while τ , λ denote infinite cardinals; τ^+ is the successor cardinal of τ . As usual, cardinals are assumed to be initial ordinals. If S is a set, then $[S]^{\leq \tau}$ denote the collection of all subsets of X having cardinality $\leq \tau$.

We recall some definitions that we need.

- 2.1. A space X is Urysohn if for every two distinct points x and y in X there are open sets U and V such that $x \in U$, $y \in V$ and $\overline{U} \cap \overline{V} = \emptyset$.
 - 2.2. If X is a space and A a subset of X, then we put

Received 20.04.1995

1991 Mathematics Subject Classification: 54A25

Supported by Grant 0401A of RFNS through Math. Inst. SANU

 $Cl_{\theta}A = \{x \in X : \overline{U} \cap A \neq \emptyset \text{ for every neighbourhood } U \text{ of } x\}.$ The set $Cl_{\theta}A$ is called the θ -closure of A. A is θ -closed if $Cl_{\theta}A = A$.

- 2.3. A Hausdorff space X is called H-closed if every open cover \mathcal{U} of X has a finite subcollection \mathcal{V} whose union is dense in X.
- 2.4. ([1]) The θ -bitightness of a space X, denoted by $bt_{\theta}(X)$, is the smallest cardinal τ such that for each non- θ -closed set $A \subset X$ there exist a point $x \in X \setminus A$ and a collection $S \in [[A]^{\leq \tau}]^{\leq \tau}$ such that $\{x\} = \cap \{Cl_{\theta}S : S \in S\}$.
- 2.5. ([6]) Call a subset A of a space X θ -dense in X if $Cl_{\theta}A = X$, i.e. if for every open set $U \subset X$, $\overline{U} \cap A \neq \emptyset$. The θ -density of X is

 $d_{\theta}(X) = \omega \cdot \min\{|A| : A \text{ is a } \theta\text{-dense subset of } X\}.$

Clearly, for every space X, $d_{\theta}(X) \leq d(X)$. There are spaces X for which $d_{\theta}(X) < d(X)$ holds.

- 2.6. ([9]) The θ -spread $s_{\theta}(X)$ of a space X is the supremum of the cardinalities of subsets D of X such that for every $x \in D$ there exists a neighbourhood U of x with $\overline{U} \cap D = \{x\}$. The inequality $s_{\theta}(X) < s(X)$ is possible.
- 2.7. A Hausdorff space X is said to be of closed pseudocharacter τ , denoted by $\psi_c(X) = \tau$, if τ is the smallest cardinal such that for each point $x \in X$ there exists a family $\{U_\alpha : \alpha \in \tau\}$ of neighbourhoods of x with $\{x\} = \cap \{\overline{U}_\alpha : \alpha \in \tau\}$.

3. Results

In [9], the following lemma is proved.

Lemma 3.1. Let X be a topological space and $s_{\theta}(X) = \tau$. If \mathcal{U} is a family of open subsets of X, then there exist $A \in [\cup \mathcal{U}]^{\leq \tau}$ and $\mathcal{V} \in [\mathcal{U}]^{\leq \tau}$ such that $\cup \mathcal{U} \subset Cl_{\theta}A \cup \cup \{\overline{V} : V \in \mathcal{V}\}$. \square

After this lemma and the definition of sqL(X) it is reasonable to introduce:

Definition 3.2. Let X be a space. Then $\operatorname{sq} L_{\theta}(X)$ is defined to be the smallest cardinal τ such that there exists a subset A in X of cardinality $\leq 2^{\tau}$ satisfying: for every family \mathcal{U} of open subsets of X there exist $\mathcal{V} \in [\mathcal{U}]^{\leq \tau}$ and $B \in [A]^{\leq \tau}$ such that $\cup \mathcal{U} \subset \operatorname{Cl}_{\theta} B \cup (\cup \overline{\mathcal{V}})$. \square

Fact 1. $sqL_{\theta}(X) \leq sqL(X) \leq d(X)$.

Fact 2. $sqL_{\theta}(X) \leq d_{\theta}(X)$.

We shall also need the following lemma which is a version of the fundamental result on spread due to Shapirovskii (see [8;T.3]).

Lemma. 3.3 ([6;Prop. 3.3]). Let X be a Urysohn space with $hs_{\theta}(X) \leq \tau$. Then there is a subset A of X such that $|A| \leq 2^{\tau}$ and $\bigcup \{Cl_{\theta}B : B \in [A]^{\leq \tau}\} = X$.

Proposition 3.4. For every Urysohn H-closed space X, we have

$$sqL_{\theta}(X) \leq hs_{\theta}(X).$$

Proof. Let $hs_{\theta}(X) = \tau$. By Lemma 3.3 there exists a set $A \subset X$ with $|A| \leq 2^{\tau}$ such that $X = \cup \{Cl_{\theta}(B) : B \in [A]^{\leq \tau}\}$. Let us show that A witnesses $sqL_{\theta}(X) \leq \tau$. Take a collection \mathcal{U} of open subsets of X. By Lemma 3.1 there exist $\mathcal{V} \in [\mathcal{U}]^{\leq \tau}$ and $M \in [\cup \mathcal{U}]^{\leq \tau}$ such that $\cup \mathcal{U} \subset Cl_{\theta}M \cup (\cup \overline{\mathcal{V}})$. For every $p \in M$ there exists some $S_p \in [A]^{\leq \tau}$ with $p \in Cl_{\theta}S_p$. Put $S = \cup \{S_p : p \in M\}$. Then $S \in [A]^{\leq \tau}$ and $M \subset \cup \{Cl_{\theta}S_p : p \in M\} \subset Cl_{\theta}(\cup \{S_p : p \in M\}) = Cl_{\theta}S$. As the θ -closure operator is idempotent in Urysohn H-closed spaces we have $Cl_{\theta}M \subset Cl_{\theta}(Cl_{\theta}S) = Cl_{\theta}S$. Hence, $\cup \mathcal{U} \subset Cl_{\theta}S \cup (\cup \overline{\mathcal{V}})$ and the proposition is proved. \square

Example. Let X be the Niemytzki plane T equipped with the topology $T = \{U \setminus C : U \text{ is open in } T \text{ and } C \subset T \text{ is countable}\}$. Then $hs_{\theta}(X) = s(T) = 2^{\omega}$ and $sqL_{\theta}(X) = sqL(T) = \omega$. \square

Theorem 3.5. For every Urysohn H-closed space X, we have $\psi_c(X) \leq 2^{sqL_{\theta}(X)}$.

Proof. Let $sqL_{\theta}(X) = \tau$ and let $A \subset X$ be a set witnessing this fact. Fix a point $x \in X$. Since X is Urysohn, for every $y \in X \setminus \{x\}$ there are neighbourhoods U_y of x and V_y of y with $\overline{U}_y \cap \overline{V}_y = \emptyset$. Applying the definition of $sqL_{\theta}(X)$ to the family $\mathcal{V} = \{V_y : y \in X \setminus \{x\}\}$ (and A) one can find sets $Y = \{y_{\alpha} : \alpha \in \tau\} \in [X \setminus \{x\}]^{\leq \tau}$ and $B \in [A]^{\leq \tau}$ such that $X \setminus \{x\} \subset Cl_{\theta}B \cup (\cup \{\overline{V}_{y_{\alpha}} : \alpha \in \tau\})$.

Put $\mathcal{U}_x = \{X \setminus Cl_{\theta}C : C \subset B, x \notin Cl_{\theta}C\} \cup \{\mathcal{U}_{y_{\alpha}} : \alpha \in \tau\}$. Then $|\mathcal{U}_x| \leq 2^{\tau}$ so that we need to check $\{x\} = \cap \{\overline{U} : U \in \mathcal{U}_x\}$.

Let $p \in X \setminus \{x\} \subset Cl_{\theta}B \cup (\cup \{\overline{V}_{Y_{\alpha}} : \alpha \in \tau\})$. Consider two possibilities: (i) $p \in Cl_{\theta}B$. Take neighbourhoods U_p of p and V_p of x such that $\overline{U}_p \cap \overline{V}_p = \emptyset$. It is easy to see that $p \in Cl_{\theta}(B \cap \overline{V}_p) \subset Cl_{\theta}\overline{V}_p = \overline{V}_p$ (in Urysohn H-closed spaces it holds $Cl_{\theta}\overline{G} = \overline{G}$ for each open set G). Therefore, $C = B \cap \overline{V}_p$ provides a subset of B with $\overline{U}_p \cap Cl_{\theta}C = \emptyset$, hence $\overline{U}_p \subset X \setminus Cl_{\theta}C = \emptyset$ and thus $\overline{U}_p \subset \overline{X} \setminus Cl_{\theta}C$ which gives $\{x\} = \bigcap \{\overline{\emptyset} : U \in \mathcal{U}_x\}$.

(ii) $p \in \bigcup \{\overline{V}_{y_{\alpha}} : \alpha \in \tau\}$. Then $x \in \cap \{\overline{U}_{y_{\alpha}} : \alpha \in \tau\}$, but $p \notin \cap \{\overline{U}_{y_{\alpha}} : \alpha \in \tau\}$. \square

The following theorem is an improvement of Lemma 3.3.

Theorem 3.6. Let X be a Urysohn H-closed space with $sqL_{\theta}(X) \leq \tau$. Then there is a subset A of X such that $|A| \leq 2^{\tau}$ and $\cup \{Cl_{\theta}B : B \in [A]^{\leq \tau}\} = X$.

Proof. Let S be a set in X witnessing $sqL_{\theta}(X) \leq \tau$. According to Theorem 3.5, for every $x \in X$ one can choose a collection \mathcal{U}_x of neighbourhoods of x such that $|\mathcal{U}_x| \leq 2^{\tau}$ and $\cap \{\overline{\mathcal{U}} : \mathcal{U} \in \mathcal{U}_x\} = \{x\}$. By transfinite induction we shall construct a sequence $\{M_{\alpha} : \alpha < \tau^+\}$ of subsets of X and a sequence $\{\mathcal{U}_{\alpha} : \alpha < \tau^+\}$ of families of open subsets of X satisfying the following conditions:

- (a) $|M_{\alpha}| \leq 2^{\tau}, \, \alpha < \tau^{+};$
- (b) $\mathcal{U}_{\alpha} = \bigcup \{\mathcal{U}_x : x \in \bigcup \{M_{\beta} : \beta < \alpha\}\}\$ (so $|\mathcal{U}_{\alpha}| \leq 2^{\tau}$), $\alpha < \tau^+$;
- (c) If $T \in [S]^{\leq \tau}$, $V \in [U_{\alpha}]^{\leq \tau}$ and $Cl\theta T \cup \cup \overline{V} \neq X$, then $M_{\alpha} \setminus (Cl_{\theta}T \cup \cup \overline{V}) \neq \emptyset$.

Suppose we have already defined all M_{β} and \mathcal{U}_{β} for $\beta < \alpha$. Let us define M_{α} and \mathcal{U}_{α} . For every $T \in [S]^{\leq \tau}$ and every $\mathcal{V} \in [\mathcal{U}_{\beta}]^{\leq \tau}$ choose a point $x(T,\mathcal{V}) \in X \setminus (Cl_{\theta}T \cup \cup \overline{\mathcal{V}})$ whenever the last set is not empty (otherwise the construction has been finished). Let

$$M_{\alpha} = \{x(T, \mathcal{V}) : T \in [S]^{\leq \tau} \text{ and } \mathcal{V} \in [U_{\beta}]^{\leq \tau}\}$$

$$\mathcal{U}_{\alpha} = \cup \{\mathcal{U}_x : x \in \cup \{M_{\beta} : \beta < \alpha\}\}.$$

It is easy to check that M_{α} and \mathcal{U}_{α} satisfy (a), (b) and (c). Put $M=\bigcup\{M_{\alpha}:\alpha<\tau^{+}\}$, $A=M\cup S$ and prove that A is the set we are looking for. First of all $|A|\leq 2^{\tau}$. Let $x\in X$. If $x\in A$ there is nothing to prove. Let $x\in X\setminus A$. Then $x\notin M$ so that for every $y\in M$ one can find a neighbourhood $V_{y}\in\mathcal{U}_{y}$ of y such that $x\notin \overline{V}_{y}$. So, $x\notin \cup\{\overline{V}_{y}:y\in M\}$. By the properties of S one can choose $B\in [S]^{\leq \tau}$ and $\{y_{\gamma}:\gamma\in\tau\}\in [M]^{\leq \tau}$ such that $M\subset \cup\{V_{y}:y\in M\}\subset Cl_{\theta}B\cup (\cup\{\overline{V}_{y_{\gamma}}:\gamma\in\tau\})$. Let us prove $x\in Cl_{\theta}B$. Suppose not. Then $Cl_{\theta}B\cup (\cup\{\overline{V}_{y_{\gamma}}:\gamma\in\tau\})\neq X$. Since τ^{+} is regular, there exists some $\delta<\tau^{+}$ such that $\{y_{\gamma}:\gamma\in\tau\}\subset M_{\delta}$. Then $\{V_{y_{\gamma}}:\gamma\in\tau\}\in [\mathcal{U}_{\delta}]^{\leq \tau}$. By (c), $M_{\delta+1}\setminus (Cl_{\theta}B\cup (\cup\{\overline{V}_{y_{\gamma}}:\gamma\in\tau\}))\neq \emptyset$. But this contradicts the fact $Cl_{\theta}B\cup (\cup\{\overline{V}_{y_{\gamma}}:\gamma\in\tau\})\supset M\supset M_{\delta+1}$. The theorem is proved. \square

The next two theorems improve Theorems 3.4 and 3.5, respectively, from [6]. The first of them is an immediate corollary of the previous theorem.

Theorem 3.7. For every Urysohn H-closed space X we have
$$d_{\theta}(X) \leq 2^{sqL_{\theta}(X)}$$
. \square

Theorem 3.8. For every Urysohn H-closed space X we have

$$|X| \le 2^{sqL_{\theta}(X)bt_{\theta}(X)}.$$

Proof. Theorem 2.3 in [6] states that for every Urysohn space X, $|X| \leq [d_{\theta}(X)]^{bt_{\theta}(X)}$. Using now Theorem 3.7 we have $|X| \leq (d_{\theta}(X))^{bt_{\theta}(X)} \leq (2^{sqL_{\theta}(X)})^{bt_{\theta}(X)} = 2^{sqL_{\theta}(X)bt_{\theta}(X)}$. \square

The famous theorem of Hajnal-Juh'asz says: if X is a Hausdorff space, then $|X| \leq 2^{2^{s(X)}}$ [3], [4], [5]. In [9], it was shown that for a Urysohn space X this inequality can be improved to $|X| \leq 2^{2^{s_{\theta}(X)}}$. Our next result is an improvement of the last estimation for Urysohn H-closed spaces.

Theorem 3.9. For every Urysohn H-closed space X we have $|X| \leq 2^{2^{sqL_{\theta}(X)}}$.

Proof. By Theorem 2.6 in [6], $|X| \leq 2^{d_{\theta}(X)\psi_{c}(X)}$ so that, by Theorems 3.5 and 3.7, one obtains $|X| \leq 2^{d_{\theta}(X)\psi_{c}(X)} \leq 2^{2^{sqL_{\theta}(X)}} \cdot 2^{sqL_{\theta}(X)} = 2^{2^{sqL_{\theta}(X)}}$. \square

REFERENCES

- F. CAMMAROTO, LJ. KOČINAC, On θ-tightness, Facta Universitatis (Niš), Ser. Math. Inform. 8(1993), 77-85.
- [2] R. ENGELKING, General Topology, PWN, Warszawa, 1977.
- [3] A. Hajnal, I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29(1967), 343-356.
- [4] R. HODEL, Cardinal functions I, In: K. Kunen, J.E. Vaughan (eds.), Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, 1-61.
- [5] I. Juhász, Cardinal functions in topology ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980.
- [6] LJ. KOČINAC, On the cardinality of Urysohn spaces, Q & A in General Topology, 13(1995), 211-216.
- [7] X.S. Liu, Two topological cardinal functions, Acta Math. Sinica 29 (1987), 494-497 (In Chinese).
- [8] B. Shapirovskii, On discrete subspaces of topological spaces. Weight, tightness and the Souslin number, Doklady AN SSSR 202(1972), 779-782 (In Russian).
- [9] J. Schröder, Urysohn cellularity and Urysohn spread, Math. Japonica 38(1993), 1129-1133.
- [10] S.H. Sun, K.G. Choo, Some new cardinal inequalities involving a cardinal function less than the spread and the density, Comment. Math. Univ. Carolinae 31(1990), 395-401.
 - 29. NOVEMBRA 132, 37230 ALEKSANDROVAC, YUGOSLAVIA