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ON APPROXIMATION BY ANGLE
FOR 2r PERIODIC FUNCTIONS

Milos Tomié

ABSTRACT. Approzimations by angle from singular integrals of functions belonging to
the space Lp, 1 < p < oo are estimated using best aaprozimations by angle from the
trigonometric polynomials. The applications to Riesz’s singular integrals are given.

1. Introduction

It is well known that integrable 27 periodic functions can be obtained
by different means of summation of their Fourier series. Approximations by
sums of Fourier series can be compared with the best approximations as in
paper [3] and [4]. In the paper [3] for function of one variable several inequal-
ities are established by which the approximations are compared depending
on whether p > 1 or p = 1. Those inequalities allow to compare classes of
functions which are defined by approximations. Those are classes of Nikolski
and saturation classes.

In the paper [4] we proved inequality concerning the approximation by
angle for 1 < p < oo. The aim in this paper is to prove the inequality
concerning also the approximation by angle but which concerns the space
Ly (the case p=1).

To realize this aim we use one theorem of Timan of [3] (Theorem 1,
inequality (3.11)) and one equality of [4] which in this paper we give as
Lemma 2.

The difference between the quoted result of Timan and the results of this
paper is following:

1) We generalise the result of Timan so that we consider an n-dimensional
case of approximation by angle.

2) We give a theorem in a form which is more suitable for application in
order to compare Nikolski’s classes with saturation classes.

Received 02.03.1995; Revised 28.06.1995
1991 Mathematics Subject Classification. 42A10.

39




40 M. Tomié

2. Auxiliary results

We say that f € Ly([o,27]") if f = f(x1,..., z,) is measurable on A,
and is a 27 periodic function with respect to every variable zy,...,z, for
which || f]| < oo, where

I =1st = If(zru---,-'vn)l")]/p, 1% 94 0,

n

| fllco = sup vrai| f(z)],
By = {1y oo osn )y 0 € 23 €21, 1= Ly sy )

We will use the set of all sets of indices 4;,...,4, such that 1 < i; =< 4,
1<j<m< .

Let T}, (.rl, .+%n) € L, be a trigonometrical polynomial of order ki,
with respect to varlable Ty; but with respect to all other variables Tf is a
arbitrary function.

The best approximation by m-dimensional angle for the function f to
variables z; ,...,z;  is the quantity (see [2]):

m

(2.1) Yi,. ,_n(fp_mf ZT, ol =0,1,2,...

Let X,“j(t), J=1,...,n,1; =1,2,... be the kernels such that Y (—t) =
X(t), and

l;—o00 Jp

2w 27
(2.2) / X(t)dt = 2, / \X(0)|dt < M, lim / |4, (2)] = o,
0 ] <6<t

where the constant M does not depend on ;.
A Fourier series of the kernel r"l’f, (t) can be stated in the form
2]

(2.3) x;j(t) =1+ ) 7,’;(kj)coskjt, G=1,...,n).
ki=1
For the function f € L, by these kernels we can define singular integrals

y 1 2w y
(2.4) Il:f = g ) _f((L'],...,:ITJ' - tj,...,w,t)rll‘;(tj)dtj,
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—Ji i _ gl
I, f=0L 0 . Dy f=1, ... 0 .

By these singular integrals we can determine all m-dimensional angles (1 <
i;<n, 1 <7< m< )

Al"l peeoslig f = Ili.-]1 faot Ili-':, f - Ifill-'gf - =1
4o+ (_1)1ra—~1[£i] s f

f

Tm—1 !'.m

(2.5)

"

Without loss of generality, in order to simplify the exposition, we will give
a proof for the case n = 2, i.e. for a function of two variables. In that case
we have three angles

Ayf=1I.F, A,f= IRf, Annf= I+ 1L f = L f.

two one-dimensional angles and one two-dimensional angle.
For a function f(xq,23) € L, we will use singular integrals

1 2‘.'1'
SLf=810f= = flz1 = t1,22) Dy, (t)dty
0
1 2
S, f = Sooty f = - f(@1,22 — 82) Diy(t2)dta,  Siu, f = 51,(S,f)
0

M is the Dirichlet’s kernel.

2sint/2

In order to prove our main result, we need the singular integrals of de
la Vallee-Poussin (see [2]) Vi, f = Vi,oo f, Vi f = Veolo f> Viuio f = Vi, (V1L f),
Wflief = Vhf + V;zf — Vhlzf? Ij =i0,12:00 5

The functions Vi, f, 7 = 1,2, are trigonometrical polynomials of degree
21; — 1 with respect to z; and satisfies || Vi, f|| < B||f]|, 1 < p € o0, where B
is an absolute constant.

where D)(t) =

Lemma 1 ([2], lemma 3). Let f(z1,72) € L,, 1 < p < oco. Then
(2.6) [|f = Wi f]l, < CYuL(Hps ||1f = Vi, Il < CYy (s 15 =0,1,2,...

where C' is an absolute constant.

The most important tool in the proof will be the following lemma:
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Lemma 2. Fora fe L, 1<p<ooandlj,s; = 1,"2,... the equalities

9
(2.7) f-Anf=) B

hold, where -

By = f—Wynanf, By= —I;I,Bl, By = -I. By, Bi=Iy,bB,
Bs = Vau (f = ILf = Vass f + I} Vasa f), Bs = ~I;, Bs,
Br=Vauo (f = ILf = Van f+ It Vau f), Bs =1} B,

By = Vasizee (f — Apt f)- 7

Proof.. The equality in the lemma is obtained by using the theorem of I'u-
bini. O

(2.8)

We note that similar equalities were established in the paper [4] in which
de la Vallee-Poussin sums are replaced by Dirichlet’s sums.
Now we will use the function F}(m,#) which is defined in [3]:

m—1

Fi(m,8) = 1___@ + Y [1- yi(m — k)] cos k6
(2.9) -

me=1

_ 1-9i(m) ik :
= + ,?_1 [1 —v{(k)] cos(m — k)&,
form=2,3,... and

, 1—~¥(1 ; ;
Ff(1,8)=~—;{‘—(——), F{(0,0)=1-7{(1), j=12,...,n
Lemma 3. If

Tl = Z a,cosvt + (B, sinvit
v=0
is a trigonometrical polynomial of order m in one variable t, and if the
function Fy is defined by (2.9), then the following equalities hold '
(2.10)
m §

2m
Z[l — 31(k)](ak cos kz + By sin kz) = % / Fi(m, )T, (z + 8) cosmd df
0

k=1
(2.11)
r 27
Fi(v,0)T,,(t+8)cosvf df = Fy(m, )T, (t+8)cosm@ dé, v > m.
0 0
Proof. Equality (2.10) is proved in [3] (the equality (3.11)). Equality (2.11)
can be proved in the same way. U
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3. The main result

For every kernel X;j (t), 7 = 1,...,n we can identify the quantities ¢ =
¢;(l;) > 0, 9 = ¢ (k;), K = K;(%,1;, k;), using equalities

(3.1) 1—] (ks) = S50 (Bs),  Rjidy =1,2,...,

iz ¥ (25 ~ 1 - ;)

: K = K;j(4?,1;,k;) = .
(3.2) €= K;i(v, 1, k;) = = 9@k -1

1
5 cosv;f; .

For a fixed number [; we choose the number s; such that 25 < {; < 25+1,
We will say that the quantities ¢, 9, K satisfy conditions (), (4),(7),(6) if

(@) |9, ()] < Crlwf ()], 0 <Ky < kY <29
Itfﬁf;.(l)l <Gy, (91.(1) =9 (0)),

(8) |7 (2k5)| < Calvf ()], 2k; < 2%

(7) 0< Cy < ()| (2%)],

(6) &4k, < Cs,
where the constants Cq,...,Cs don’t depend on k; and I;.
We will use symbol the [ ] such that [2¥-1] = 2¥~1 for k > 1 and [2077] =

0.

By a << b,a >0, b > 0, we will denote the inequality ¢ < Cb, where C
is some positive constant.

The following theorem gives the estimation of the approximation || f-=
A!.-l i f“ by the best approximation by angle.

Theorem 1. Let the quantities ¢, 1), K satisfy the conditions (a), (), (7),
(6) and let f € Ly, 1 < p < co. Then for all natural numbers i; and m such
that 1 <i; < m, 1 <j<m < n the following inequalities hold

m

I =y fl < € L4 [

(3 3) k; —0
' b |t (ks )|
k%oglw s "“(f)?]]

with constant C independent on f and [; = 1,2,....

To prove this theorem we need
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Theorem 2. Let the singular integrals ,1.’[; (t), 7 = 1,2 satisfy the condition

(2.2) and let the function f(z1,22) € L,([0,27]?), 1 < p < 0. Then for
approximation by angle the following inequalities hold

I - Al < €5 ¥ (),

(34) S5 2r .
+ Z Y[2kj—1](f)p‘/0 IFI; (2“-‘;‘ - 1,9j)|d0j],
k_i:(]
”f - Ahlg.f“p <Gy [Y2’12"2(f)p+
81 27
* z Y[zkl—’]zw (f)p/ |Fl11 (le - 1:81)|d91]+
k1=0 0
(35) Sz 2o
+ 02[2 Yz,l[zh_:](f),,/ | F2 (2% - 1,92)|d92]+
ko =0 0
51 53 2 2o ]
+ CZ[Z D~ Yion=sypra=1y(f)y H/ﬂ |Fi (25 - Iaﬂj)|d95]~
k1=0 k=0 i=1

where the constants (', Cs do not depend on f and 8;,; =1,2,... (j =1,2).
Proof of Theorem 2. We have

17 = Ay 70 =17 = T £l = 1 = Vars £ 4 Vs £ = ) Vass £ 4 1 Vaos £ = 13 1|
and therefore
(3.6) £ = Ay fIl, < CaYasi (f)p + || Vaus f = ff;. Vass f|,

where the constant C3 does not depend on f,l;,s; and the numbers l; and
s; are arbitrary.
We consider

2% -1
Vas f = 1 Vis f = Gy (£,2%,2) = ¥ 627 4,
(37) k=0

gei+1_q 9si+1_y

- 2 MWET A= 3 1= 0] 4

k=0 k=1
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where Ay is the term of the Fourier series of f as a function with respect to
the variable z; and é; is a factor of a product which is determined by the
sum of Vallee-Poussin.

For G we will use the expression

5§

(3.8)  Gy(f,2%,x) =Y _[Gy(£,25,2) - G, (£,27",2)] + Gy (f,1,2).

k=1

In view of (3.7) the function G, (f, 2% ) is a trigonometrical polynomial
with respect to ;. Therefore, using Lemma 3, (2.10), we have

G[J.(f,'Zk‘,:l;) =
(3.9) 2 2w 1ok +1 aki1+1 c
= -1? d FI, (2 ™t 1,0})‘[2&-1 f(il'}l + 0],312)(:05(2 LF e 1)910781

G"f_,' (f! 2k1_.l ’ "17) =
(3.10) 9

2w
— ‘7?_/- FII‘ (2’“ = 1,91)V2k]—1f($.1 + 91,$2)C0$(2k1 & l)gldﬂl.
0

and similar equalities with respect to the variable 2,.
It follows by Lemma 3, (2.11), that holds

Gy, (f, 2", x)

3.11 =
( ) = %/ F(]] (2";1 = 1,0])‘@!:1 f(.l:] -+ gl,wg)COS(‘zkl et 1)01d91
0

The equalities (3.10) and (3.11) give

o ' 2 [ .
Gy, (f,25,2) — Gy, (f,2871 2) = ;/ FL(2M — 1,0)
0

[Vzkl f(.'L1 + 64, .'Ez) - V2k1-1 f(l] + 91,..":2)] lIiClS(?k1 — 1)31d91.

(3.12)

Since by Lemma 1
(3.13) [[Vars £ = Visa=s S| < [Voss £ = £l 11 = Vo 1] << Vi (F)
we conclude from (3.12) that

|G, (5,25, 2) — G (f,25 70, 2)|

2
<< V() [ 1FL2S - Lo0)]asy

(3.14)
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holds.
For the quantity Gy, (f, 1,2) we have
Gy(f,l,e)=Wf - Vif = 51f —I.5:f
=Aif = (DA = [L =, (V)] A f
= [1 =7, (D] [$1f = Sofl = [L = 7, (V)] Vi f — Vo f]

because Vi f = S1f, Vof = Sof. Therefore

IGL(f, L)l < Yo() |1 =, (1)]

hence, using the definition for F}l (0,8) we obtain

2
(3.15) G, 2)ly << Ya(r)p [ | (0.60)]dor.

Now, in view of (3.7), (3.8), (3.14) and (3.15) , we obtain

#1 . 27
(3.16) ||Vauu f = I Vau f]l < > th,_q(f)wl‘ |FL (25 —1,61)] dbs.

ky=0 0

From (3.6) using (3.16) it follows the inequality (3.4) for j = 1. In the
same way we establish the inequality (3.16) for j = 2. Thus, the inequality
(3.4) is proved.

To establish the inequality (3.5) concerning the approximation by two-
dimensional angle we use Lemma 2.

It is clear that

(317) ”B_;,” << Yaerge2 (f)p, i=1,2,3,4,

holds.
To estimate the quantity By we will write

(318) B5 p— V‘251(I) = II-II %51@

where

oy

We consider the function By as a function of the variable z1 and apply
the metod by which we estimated the expression Gy, (f,2°',z). S0 we derive




On Approximation by Angle for 27 Periodic Functions 47

S1

(3.8) Bs = B; (2") = Y [Bs (2") — Bs (2571)] + Bs (1),

k‘1=1

Bs (2F) — Bs (2M71) =
2

2m
(3.12%) - ;j FL (25 = 1,01) [Var, ® (21 + 61, 20) —
1]

— %kl—lq) (.'171 + 91,.'1’32)] cos (Q.kl == 1) 9]0‘191,

Vors @ = Vay @]] < [|Vyer @ = 8[| + 1@ — Vs, 18]

Since
Vi, @ — @ = —[f — (Voro f + Vasa f — Varages f)]
we obtain
||V2k1 (I) - (b”p << }fgkl_?’sg (f);ﬂ?
“(I' - VQ'L:I_l@”p << ngl—lgaz (f)P'
Thus 7.
(3.19) [|Vaor, & — Vzh—l‘l’”p K Yari-1902 (f)p-

For Bs(1) we have
Bs(1)=Vi® - I,® = [1 -7} (1)] 41@ = [1— 7 (1)] "1 @ - Vo ®].

Since

[Vie - Vo?| < ||[V1® - @]+ ||® - Vo 2|,
Vi@ — || = ||f — (Vif 4+ Vaez f — Vigea f)|| << Yi2e2(f),
1@ = Vo] = ||f = (Vof + Vauz f — Vieo f)|| < YD‘”Z’(f)
‘1 ’Yz ”l = |F.!1 (0, 91)|

we derive

2
(3.20) “Bg,(l)” << qusz(f) / “7111 (_0,91)| db.
40




48 M. Tomié

In view of (3.18) , (3.8") , (3.12") , (3.19) , (3.20) it follows that
(3.21) IBs” << Z Y[ok,—llgsq (f)/ |Fl11 (2"'[ — 1,01)| déy.
kl—O

It is clear that

(3.22) [| Bsll << || Bs]| -
In the same way we obtain
(3.23)
82 2
| Bzl < Z Yg,llm-l,(f)fn |FZ (2% - 1,6,) ] d6>
k2=0

(3.24)
| Bsll << || B+]|-

To estimate By we use the equality
Bg:ngP'—%.-,I}IP, P = ngf—[?g%azf.

In the same way as we obtained the expression for Bs; we derive

51

Bo= S [Ba (P,2%) — By (P, [2471])]
Ll—O
3.25 9
( J) - Z {V‘JHP(II+91,$2)—V[2k1-1]P(.’1:1 +91._.’1:2)}'
ky _0

F1 (2"’1 -1 61) cos (2 ) 6, dé;.
We consider the function P as a function with respect to z; and obtain

P(z1 + 61,22) = Vasa f(a1 + 01, 22) = Voo I}, 21 + 01,22) =

i {37 (f,‘zkz) — B, (f, [ka—l])} _

(3.26) "°
Z "/ {Vara f (1 + 01,20 4 02) —
ka=0
Vigk, 1]f(.’l‘1-|-31,.'ﬂ2+02 } F[ (-2-‘62 -1, err) COS( )Bgdg')
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Using (3.25) and (3.26) we get

b= 5[ et Vg i

k1=0 kg""ﬂ
(3.27) - V[gkl—llzsz + ‘/[2k1—1][2k2—1]f}‘ |

2
J1Fi (2%~ 1,6;) cos (25 - 1) 0;d8;. |

j=1 J
Since [

Q = V2k12k2f - V2’“1[2*‘2—1]f - V[gk —1]2k2.f + 1/[2k1—1][2k2—]]f

3.28

( ) = Warigma f — 11[212 l]f W[zk, 1]21.2f + W[zh 1 [:,Lz 1]f !
we obtain ‘ .
(3.29) QN < Yty i)

From (3.27) , in view of (328) and (3.29) it follows that |

(3.30) ||Bs]| <« Z Z Yighs- 1][”’_‘]“)1_[/0 4 Ipf (2% - 1,oj)|daj. |

k] =0 kz 0

Finally, using Lemma 2 and the inequalities (3.17), (3.2),(3.22), (3.23),
(3.24), (3.30) we obtain the inequality (3.5). The proof of Theorem 2 is
complete .

Proof of Theorem 1. First we establish the inequality (3.3) for m = 1,
n = 2. We will use the inequality (3.4), (Theorem 2), and the conditions of
Theorem 1.

In view of (3.1) and (3.2) we derive

(3.31) FL (2% - 1,61) = 1 (9], (2% = 1) Ky (91,0, k) ‘

hence, using the condition (), it follows that

(3.32) | FL (29 = 1,8)) || < ¢u(hr) |¢,‘1 (28 —1)]. ‘
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From (3.4) by (3.32) we obtain
(3833)  I1f — Aufll < You () + () Y |9l (25 = 1) Yipeyorg ().
k1=0 -

Now, from (3.33) using the condition (7) it follows that
If = A fll < ga(B) [y @) Yauu ()
+ 0 [k 297 Yy (D)

.‘1:1 =0

(3.34)

hence by the conditions («) and (/3) we derive

81 +1

(3.35) |f = A fll << 1 (l) Z [l ( ?k‘_l |Y211 1](f)

k1=0

We conclude, using the conditions (), (a) that ( see [4]):
ot o~ ()
(3.36) > | (29)| Ve < _‘-VM*YV
k=1 p=2

Finally, from (3.35) by (3.36) we obtain the inéquality (3.3) for the case
n =2, m = 1 (with respect'to the variable z1). ‘

In the same way using the inequality {3.5) of Theorem 2 and the conditions
of Theorem 1 (see the proof of the corresponding theorem in [4]), we obtain
the inequality (3.3) for m =n = 2. ‘

The proof of Theorem 1 is complete .

4. Applications

The obtained result (Theorem 1) we apply to Riesz’s singular integrals.-
Riesz’s singular integral is given by the kernel ( see [1] )

‘ (AJ
4.1 , -—1—|— g (l— )Cm 't
(4.1) Ayt <

where the sequence A, [ = 1,2,... satisfies following conditions: (i) 0 <
A< A1+1, (U) /\[ — ©OQ, [ — o0, (111) Az < 0or AzA >0, (IV) Ay = O()\ )
it Ayd; > 0. '
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For this singular integral ( this method of summation of Fourier series of
functions ) we have : : ; : |

)“j' ‘

A Ny o- .
¥ () = 1,7V =1~ [ =) N B

A’

G =0, F=14+1,142

77 0)=0,i=1+11+2,.... |

The quantities ¢, 1, I are M
|

pGY = Aq G = 1,2,00,1
1

ap (J)H/\H_],jZl*I*l,(ﬁ (l)——,l—l,z,...
(4.3) ! o Al41
=™
- — (M) L = § , 228 —1-v
K=K (1,: ,A,,G) 5 + > Nor s cos .

We will prove that the quantities ¢, 1, K satisfy the conditions (a), (8),
(7), (6) of Theorem 1.

Since (i) and (4.3) the condition («) holds for .

To prove that the condition (/) is satisfied we use the inequality

' A
Mep1 — A < oLk, (C = constant), ,

which is proved in the paper [1] of Aljancic ( if AsA > 0 the condition (3) is
obviously satisfied, the condition (iv)). From this inequality it follows that

Akl 1
——= <1+ 0.
A T T k

Putting &,k + 1,...,2k — 1 in this inequality, by multiplication we derive

/\2}\_ C”)k
<114+ -
Ap T ( * k Ly

/

and then Agp = O(Ap).
The condition (+y) is equivalent to the condition

Al

28

<C, 2 << 25,

We have
_A!_ < }125«}1

S C‘r'f

/\23 - Ags
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that means that condition (7) is satisfied.
Now we will prove that the function K satisfies the condition (4).
By applying Abel’s identity we have

2% _3

Z Adge_y_, V(g)

(44) K (1/1(’",1;, 9) — Dy (6)

2*—1

where D is Dirichlet’s kernel.
To estimate the free term in (4.4) we introduce the new condition

(4.5) -{-i-— < C (C = constant),
]

independent on [.
In view of (4.5) we have

2k 3
(8) K (¥N,k0) = 5 LS Ags1,Du(8) + 0(1).

&
2 -1 v=0

If we apply Abel’s idenfity again, from (4.6) we obtain

2k 4
K (@bpﬂ,k, 9) Z A2’\”"—1 UZD (9)
2k 1 =0 j=0
(4.7) o _a
] -
+ —A—-A/\z Z D;(8) + O(1).
i=0
Since
> Di(8) = (v + 1)F,(6)
j=0
where F, is Fejer’s kernel , it follows that
1 2k 4
K ($0,5,0) = —— 3 (v + DFAO) A dor 10t
(48) v=0
1 : ‘
+ AN (2% - 2) Fi(8) + 0(1).
PLIS |

-
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The equality (4.8) implies

2k _4

(4.9) “K (1,(1()‘), k,ﬂ) H1 % Agk _q ;ﬁ (v+ 1) |AsAge_q_,

Using (4.5) from (4.9) we obtain

2* 4
1
ey |
(4.10) ||1; (qp ,k,o)H] S 1;)(:/+1)|A2,\2;_1_,,| +0(1)
where A), = A, — Aug1, Az = A(AN).

Since

; _
(411) D+ Ddopy =20 — pr + (is2 — ijs1) (G + 1) = i

v=0 _
then, putting p, = Age_q_,, j =25 — 4 we derive

2F—4 -
(4.12) Z (v +1)|AzAgr 1| = 2Xg6 1 = A2+ (A — A2) (28 = 3) = o
v=0
Finally, from (4.10) in view of (4.12) we obtain that ||K|l; < C. This
means that the function K of Riesz’s singular integrals satisfies the condition
().

In this way we prove the following

Theorem 3. Let the sequences /\ﬁk), kE=1,...,n, 1 = 1,2,..., satisfy
the conditions (i) - (iv) and (v) | = O(N), | — oo. Let AP . [ be

m-dimensional angles which are obtained from singular integmlé which are
associated with the given sequences .

Then, for f € Ly, 1 < p < 00, and all natural numbers i; and m such
that 1 < ¢; < n, 1 <3 < m < n, the following inequalities hold

-1
m liy

AR 1)1 7 I IR
=1

(4.13)




54 M. Tomié

where the constant C does not depend on f and [; =1,2,....

Particularly we consider the sequences

|

\

(414) Aj £= )\gr’s) = Aj("", ‘S) = JrlOgS(J + 2)1 j= Li2ps s ' ]
where the real numbers r and s satisfy » > 0, s > 0.
Conditions (i) - (iv) of Theorem 3 are satisfied. Condition (iii) is satisfied {1
because the function A(z) = z"log® z has derivative A"(2) > 0 for r > 1, |
8 >0,z > b where b is the base of the logarithm.
Thus, we can apply Theorem 3 and obtain

19)

Theorem 4. Let A(

f be an m- dzmemmnul angle from singular in-
tegrals which are dftf,mnned by the sequences Aj(r,s) = j"log’(j + 2),

§= L2 Jorr 21,8 20 ThenforfeL([Ozﬂ']“)l_épgoo,
the followmg inequalities hold

|- 48 o] < C‘HQ”" log™% (I, +2)
(418) .,
DI ]'[ (ki, + 1) og®s (ki +2) Vi, ks, (F)
k,‘l=0 k.m =0 J—
where the constant C does not depend on f and l; = 1,2,..., 1 < ¢; < m,

1<j<m<n.

Puting s; = 0, j = 1,...n we obtain from (4.15) the following inequalities

(ERE | <c1’[z Z
(4.16) L Fn =0
z"j TT ki, + )™ ™ Ve, i ()
=0i=1

‘ "

where f € L, ([0,27]"), 1<p< o0, 7 2 1,1<4; <, 1<j<m<n
For n = 1 we have the case of a functlon of one variable. Then ¥ = E
and from (4.16) we obtain :

l
| <O (k+ 1) Bl
r k=0

(4.17) ”f - Af
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where 1 <p<oo,r>1,1=1,2,... and

i
k‘."

Af?") :ﬂ'_ﬂ . S s i

i°f 5 +§ 1 G (@) cos kz + by sin k),

ak, b are the Fourier coeficients of the function f.

The theorem proved above make it possible to compare the classes of func-
tions which are defined by the approximations. We will show that comparing
the following classes.

Let the numbers rq,...7,, ri21,j=1,...,n, be given. We identify the
classes

S5H =0 € Ly Vi (D= 0(T[57),

i=1

lj=1,2,...,lgian,ISjgmgn}

where A(") are angles which are determined by the sequances A;(ry) = j™,
k=1,...,m,j=1,2,....
Then in view of the inequalities (4.16) we conclude that

S;THC VIR C STH, 1<p<oo,

where 7 + ¢ is determined by numbers riteprizle;>0,i=1,....n
The classes S7 H are the classes of Nikolski which are defined by the mixed
dominated modulus of smoothness (see [2]).
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