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THE GENERAL CONCEPT OF
CLEAVABILITY OF MAPPINGS

M. Bonanzinga

ABSTRACT. The aim of the paper is to give some answers to the following general ques-
tion: “If X and Y are topological spaces and f : X — Y is a continuous mapping cleavable
over the class P of topological spaces, is it true that f is a P-mapping? ”. Answers are
given for some classes of topelogical spaces.

Introduction and preliminary. In 1985 Arhangel’skii ([1], [2]), intro- ‘
duced the notion of cleavability for topological spaces. Following a general

idea ([22]) to investigate mappings instead of spaces, in this paper we want
to introduce the notion of cleavability for mappings. So, the concept of P-
mapping ([14]) is a basic notion. Let P be a topological property; a contin-
uous mapping is called a P-mapping if it satisfies a property Gp depending
on P and every continuous mapping on a P-space has the property Gp. We
want to study the P-mappings when the property P is the cleavability over
a class of topological spaces; in this way we want to obtain a more general
notion of cleavability of mappings over a class of spaces as a generalization
of the notion of cleavability of a space over the same class of spaces.

In particular we are interested in answering the following question: “If
f:X — Y is a continuous mapping cleavable over a class P of topological
spaces, is it true that f is a P-mapping?”In this paper we shall use the
following notations: (X,7) or simply X means a topological space; A, A° ‘
are the closure and the interior of A respectively, where A is a subset of X;
if A” = A (A° = A) we say that A is a regular open (regular closed) subset !
of X; C(X,Y) is the set of all continuous mappings from X to Y, where Y is |
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a topological space. For notations not explicitly mentioned here, the reader
is referred to [6], [15] and [19].

Let P be a class of topological spaces and M a class of continuous map-
pings. We recall the following

Definition 1. [1]. A space X is M-cleavable over P if for every A C X
there exist Y € P and f € M, f : X — Y, such that A = f~1f(A) (or
equivalently f(A) N f(X — A) = @).

If M is the class of all continuous mappings, we shall just say that X
is cleavable over P. If M is the class of all open, closed, perfect, quotient
mappings, we shall say that X is respectively open, closed, perfect, quotient
cleavable over P.

Remark 1 Let f be a one-to-one continous mapping of a space X into a
space Y € P. Then obviously X is cleavable over P. Note, that in the
definition of cleavability the mapping f depends on the subset 4 of X. Thus
we might say that a space X is said to be absolutely cleavable over P if there
exists a one-to-one continuous mapping of X into some space ¥ € P ([5])
Then cleavability over P may be regarded as a generahzatlon of contmuous
bijections (onto some Y € P).

Definition 2. [6]. A space X is M-pointwise cleavable over P if for every
point x € X, there exist Y € P and f e M, f: X = Y, where such that
{} = 1 f(2).

Definition 3. [6]. A space X is M-double cleavable over P if for any
subsets A and B of X, there exist Y € P and f € M, f: X — Y, such thai
A= f1f(A) and B = [~ {(B).

Remark 2 If X is absolutely cleavable over P, then X is double cleavable
over P; if X is double cleavable over P, then X is cleavable over P; moreover,
if a space X is cleavable over P, then X is pointwise cleavable over P.

Then we can give the following definitions for the cleavability of a map-
ping.

Definition 4. A continuous mapping f : X — Y is M-cleavable over P if

for everyy € Y and A C f~(y) there exist Zc P andg e M, g: X — Z,
such that A = g71g(A).

Remark 3 The previous definition is not trivial if f is onto.

If M is the class of all continuous mappings, we shall just say that f
is cleavable over P. If M is the class of all open, closed, perfect, quotient
mappings, we shall say that f is respectively open, closed, perfect, quotient
cleavable over P.
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Further f is said to be absolutely cleavable over P if the mapping ¢ is
one-to-one.

Definition 5. A continuous mapping f : X — Y is M-pointwise cleavable
over P if for every y € Y and {z} C T~ Y(y), there exist Z € P and g € M,
g:X — Z such that {z} = ¢7g(z).

Remark 4 The previous definition is equivalent to the definition of pointwise
cleavability of X over P.

Definition 6. A continuous mapping f : X — Y is M-double cleavable over
P if for every y € Y and for every subset A and B of f~!(y), there exist
ZePandge M, g: X — Z such that A = g~ 'g(A) and B = ¢~ 'g¢(B).

Remark 5 If f : X — Y is absolutely cleavable over P, then f is double
cleavable over P; if f is double cleavable over P, then f is cleavable over P;
moreover, if f is cleavable over P, then f is pointwise cleavable over P.

We have

Proposition 1. A space X is M-cleavable {M-pointwise cleavable, ... )
over P iff every continuous mapping f : X — Y is M-cleavable (M -poniwise

cleavable, ... ) over P.

Proof. (=) Let f: X — Y be a continuous mapping, y € Y and A C f~!(y).
As X is M-cleavable over P, then thereexist Ze Pandge M,g: X — 7
such that g7'g(A) = A; this proves that f is M-cleavable over P. (&)
Now suppose thal every continuous mapping with domain X is M-cleavable
over P. Let A C X and let Y = (Y, 7) be Sierpinski’s 2-point space (i.e.,
Y = {0,1} and 7 = {@,Y,{1}}. Define f : X — Y by f(4) = {0},
F(X — A) = {1}; then f is continuous. Since A C f~1(0) and f is a M-
cleavable mapping, there exist Z € P and ¢ € M, g : X — Z such that
g 1g(A) = A. Thus X is M-cleavable over P. O

So we have the following natural question

Question - A. Does there exist a continuous mapping f that is M-cleavable
over P such that its domain X is not M-cleavable over P?

We have the following

Proposition 2. A space X is M-pointwise cleavable over P iff every con-
tinuous one-to-one mapping f : X — Y is M-cleavable over P.

Proof. (=) Let f : X — Y be a continuous one-to-one mapping. Then,
for every y € Y the fiber f~!(y) is a single point of X. So, if X is M-
pointwise cleavable over P we have that f is M-cleavable over P. (<) Now
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suppose that every continuous one-to-one continuous mapping with domain
X is M-cleavable over P. Let z € X. By hypothesis, the identity mapping
on X, idx, is M-cleavable over P; since {2} = idx (2), X is M-pointwise
cleavable over P. O

Note that if a space X is M-pointwise cleavable but not M-cleavable
over P, then the identity mapping on X, idx, is M-cleavable over P; this
shows that the notion of cleavability of a mapping is more general than the
notion of cleavability of a space, in fact there exist mappings f: X — ¥V
M-cleavable over P such that X is uot M-cleavable over P. Then we have
an aflirmative answer to the question A as the following example show

Example 1. If P = {R}, the circumference S is not cleqvable over P ([4])
while the mapping id : S1 — §7 is cleavable over P. 0O

Now we have the following natural question

Question - B. Does there exist a continuous mapping f that is M -pointwise
cleavable over P such that its domain is not M-pointwise cleavable over P ?

By the definitions, the answer to the previous question is the following:

”A continuous mapping f: X — Y is M-pointwise cleavable over P iff X is
pointwise cleavable over P”,

Some particular forms of cleavability of mappings imply particular forms
of cleavability of spaces, as show the following four results

Proposition 3. A constant mapping f : X — Y is M-cleavable (M-
pointwise cleavable, ...) over P iff X is M-cleavable (M -pointwise cleay-
able, ... ) over P.

Proposition 4. If f : X — Y is cleavable over P, where P is a card(Y)-
productive class of spaces, then X is cleavable over P.

Proof. Let AC X and y € f(A). By hypothesis, there exist a space Z,eP
and a continuous mapping ¢, : X — Zy such that gy“gy(Aﬂ 1 (y)=An
f™'(y). Let Z= T Z,; then, by hypothesis, Z € P. Define a mapping
yeS(A)
g:X — Z, by g(z) = {gy(2)}yesa), for all £ € X. We will show that
97'9(ANf1(y)) = AN f~1(y). Only need to show that g7 g(ANf1(y)) C
ANf~(y). Let z € g~ g(AN f~1(y); so, g(z) € g(AN f~1(y)). Then, there
exists a € AN f~1(y) such that 9(z) = g(a); in particular, f(a) =y. Then,
for every z € f(A), we have that g,(z) = gz(a). So x = g;'g.(a), for all
z € f(A), and then, by hypothesis, 2 € AN f~1(y). Thus 97lg(A)=A. O

Remark 6 In the case in which P is a card(Y)-productive class of spaces,
the previous property gives a negative answer to the question A.
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Definition 7. If f is @ mapping from the space X to a space Y, the cardi-
nality of f is defined as the number

card(f) = card(f(X)) x Sup{card(f~(y)):y € Y}.

Proposition 5. If f : X — Y is pointwise cleavable over P, where P is a
card( f)-productive class of spaces, then X is absolutely cleavable over P.

Proof. Let y € Y and = € f~1(y); then there exist a space Z, € P and
a continuous mapping g, : X — Z, such that {2} = 97 gx(z). Let
Zy= Il  Z; by hypothesis, Z, € P. Define the mapping Gy X — Z,,
v€f~y)
by gy(2) = {92(2)}zes-1(y) for all z € X. The mapping g, is continuous:
recall that g, is continuous iff p,g, is continuous, for s € f~(y), where
ps: Il Zy — Z, is the s' projection mapping; since Ps9s(t) = gs(t) for
z€f~Hy)
all t € X, we have that p,g, is a continuous mapping. Further gyl (w) :
F~Yy) — y 15 one-to-ome: let 5,2 € f~1(y) such that s # t. By hypothe-
sis, gs(t) # gs(s); then ‘{gI(S)}mef—l(y) # {gw(t)}wef_l(y), or equivalentely,
aylf~1(s) # gyl f712). Let Z = ] Zy; by hypothesis, Z € P. Define
yeJ(X)
the mapping g : X — Z, by g(z) = {{92(2)}ees-1(y) }ves(x)- The mapping
g is continuous: let p; :  [] Z, — Z, the t** projection mapping (recall
yES(X)
that Z, = [[ Z.); since pyg(s) = gi(s), for all s € X and we have
Tef-1(t)

proved that g, is continuous for all + € Y, we have that Ppig is continuous
for all ¢ € f(X) and then g is continuous. Since g,|f~(y): f~"(y) — 2, is
one-to-one, for all y € ¥, we have that ¢ is one-to-one. Then X is absolutely
cleavable over P. 0O

Remark 7 In the case in which P is a card(f)-productive class of spaces,
the previous property gives a negative answer to the question A.

Proposition 6. If f: X — Y is closed pointwise cleavable over P, where P
is a card( f)-productive class of spaces, then X can be embedded as subspace
into some space of P.

Proof. The proof is similar to the proof of Proposition 5 noting that, by
hypothesis, every continuous mapping g, : X — Zy is closed and then
g:X — g(X)is a closed mapping. Now we prove this fact. Let A C X
be closed. We want to prove that g(4) = J] I g(4)Nng(X),
yef(X) ref~y)
where ] Il 92(A) is a closed subset of Z. The inclusion g(A) C
yEf(X) z€f~1(y)
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1T II  g9.(A)N g(X) is obvious. Let t € ][ [T g=(4)N
yef(X) zef~(y) ‘ yef(X) zef~ (v)
g(X) and s € X such that g(s) = ¢. Then gy(s) = {9(5)}ves—1(s) €
[T  gz(A), forall y € f(X). Let ¥ = f(s). Then g,(s) € gz(A), for all
€[~ 1(y)
z € f71(y). Since s € f~1(7), we have that g;(s) € gs(A); so, there exists
a € A such that gs(s) = gs(a). Then, by hypothesis, s € A and the proof is
complete. O

Remark 9 If P is a card(f)-productive and hereditary class of spaces, the
previous property is equivalent to say that if X is pointwise cleavable over
P, then X is closed absolutely cleavable over P.

Remark 10 In the following we will use the terms e-cleavable mapping or
e-cleavable space over P to indicate that cleavability, pointwise cleavability,
double cleavability and absolute cleavability of a mapping or of a space over
P are equivalent.

By Propositions 5 and 6 we have the following:

Theorem 1. Let f : X — Y be a continuous mapping and let P be a
card( f)-productive class of spaces. The following conditions are equivalent:
(i) f is e-cleavable over P;
(it) X is e-cleavable over P;

Theorem 2. Let f : X — Y be a continuous mapping and let P be «
card( f)-productive and hereditary class of spaces. The following conditions
are equivalent:

(i) f is closed e-cleavable over P;

(i1) X is closed e-cleavable over P.

1. Cleavability over Ty, T}, T3, functionally
Hausdorff and Urysohn spaces.

Note that, by the previous results, in the case in which P is a productive
class of spaces, we have that the classic problem on cleavability: “If X is
{closed) e-cleavable over the class P, is it true that X belongs to P?”, can
be reformulated in the following way:“If f : X — Y is (closed) e-cleavable
over P, is it true that X € P 7”7, Further, in the case in which the answer is
affirmative, the mapping f is a P-mapping.

Following [15], we give
Definition 1.1. A class P of topological spaces is said to be expansive if the

ezistence of a continuous bijection f : Y — X from a space Y onto a space
X € P umplies Y € P.




The general concept of cleavability of mappings 27

By Corollary 1.1 in [10] in the case in which P is a productive, hereditary
and expansive class of spaces, we have that if f: X — Y is e-cleavable over
P, then X € P, and f is a P-mappings. In particular, the previous result
is true for the classes P of Ty, Ty, Ty, functionally Hausdorff or Urysohn
spaces. Recall the definitions of P-mapping in these cases.

Definition 1.2 [14].

- f e C(X,Y) is Ty if for every pair of distinct points x,y € X such that
f(z) = f(y), there exists some neighbourhood U of x which not contains
y or some neighborhood V' of y which not contains z;

- [ € C(X,Y) s Ty if for every pair of distinct points z,y € X such
that f(z) = f(y), there exist two neighbourhoods U and V of z and y
respectively, such that U does not contains y and V' does not contains z;

- feC(X,Y) is Ty if for every pair of distinct points x,y € X such that
flz) = f(y), there ezist two disjoint open neighbourhoods U and V of x
and y respectively;

- fe C(X,Y) is Urysohn if for every pair of distinet points x,y such that
f(z) = f(y), there ezist a neighbourhood W of f(2) and two open subsets
U,V of f7Y (W) such that x € U, y € V and UNV = @, where the
closures are in f~1(W).

Further we give the following:

Definition 1.3.

- f e C(X,Y) is functionally Hausdorff if for every pair of distinct points
x,y € X such that f(x) = f(y), there exists a continuous mapping g :
X — [0,1] such that g(2) = 0 and g(y) = 1;

2. Cleavability over regular, completely regular,
semiregular and almost regular spaces.

Now we consider the classes of regular and completely regular spaces.

Definition 2.1 [14].

- f e C(X,Y) is reqular if for every point z € X and every closed ' C X
such that « ¢ C there exist an open neighbourhood W of f(z) and two
open subsets U,V of f~Y(W) such that € U, Cn f~Y (W) C V and
rnv=ua.

Further we give the following

Definition 2.2.

- f € C(X,Y) is completely regular if for every point x € X and every
closed C' C X such that x ¢ C and f(z) € f(C), there czists a continuous
mapping g : X — [0, 1] such that g(x) = 0 and g(C') = {1}.




28 M. Bonanzinga

Note that we can not consider the previous remarks for the classes of
regular and completely regular spaces because they are not expansive. How-
ever, e-cleavability of a mapping f : X — Y over the class P of regular
or completely regular spaces does not imply that X belongs to P, and, in
particular, that f is a P-mapping; in fact there exists the following

Example 2. Let 7* be a topology on R generated by adding to the natural
topology T on the real line the set of rational numbers. (R,T) is regular
(completely regular) while (R, 7*) is not regular (completely regular). Since
id : (R, 7*) — (R,7) is a continuous bijection, (R,7*) is absolutely cleavable
over the class P of reqular (completely regular) spuces; so id is absolutely
cleavable over P. However id is not regular (completely regular); in fuct
if id would be regular (completely regular), then (R,T*) would be regular
(completely regular), o contadiction. 0O

By Corollary 1.3 in [10] in the case in which P is a productive and hered-
itary class of spaces, we have that if f : X — Y is closed e-cleavable over
P, then X € P, and f is a P-mapping. In particular, the previous result is
true for the classes P of regular or completely regular spaces.

Now we consider the classes of semiregular ([23]) and almost regular ([24])
spaces.

Definition 2.3 [14].

- f € C(X,Y) is semiregular if for every open A C X and every point
r € A there exist an open neighbourhood W of f(z) and a regular open
subset R of f~1(W) such that x € R C (AN FHw)).

- f e C(X,Y) is almost regular if for every point x € X and every regular
closed ' C X such that x ¢ C and f(z) € f(C), there exist an open
netghbourhood W of f(z) and two disjoint open subsets U,V of f~Y(W)
such thatz € U, C C V.

Since every space can be embedded as a closed subspace into a semiregular
space ([16]), every space is e-cleavable over the class of semiregular spaces
and then every continuous mapping is e-cleavable over that class of spaces.
Note that the classes of semiregular and almost regular space are productive
but not hereditary, so we can not consider the previous remarks for these
classes of spaces. However, the closed e-cleavability of a mapping f: X — Y
over the classes P of semiregular or almost regular spaces does not imply
that X € P and, in particular, that f is a P-mapping. In fact for the class
of semiregular spaces we can consider Example 2 noting that the mapping
id is closed, while for the class of almost regular we have the following

Example 3. Let ** be a topology on R generated by adding to the natural
topology T on the real line the sets Qq and Qy such that {Qy,Qy} is a par-
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tition of Q. By Ezample 4 in [10], we have that (R, 7**) is absolutely closed
cleavable over the class P of almost regular spaces, but it does not belongs to
P. Then every constant mapping f on (R, 7**) is absolutely closed cleavable
over the class P but it is net almost regular; in fact if f would be almost
regular then (R, 7**) would be almost regular, a contradiction. O

3. Cleavability over H-closed spaces.
Now we consider the class of H-closed spaces (see [23],[15]).

Definition 3.1 [12].

- Let X,Y,Z,W be spaces and f : X — Y and g : Z — W be continuous
mappings. [ is said to be embedded in g if Y = W, X is a subspace of Z
and the restriction g|X is equal to f.

- A mapping f : X — Y is called H-closed if it is a Hausdorff mapping
and for every embedding of f into a Hausdorff mapping g : 7 — Y, X is
closed in Z.

We will need the following known result

Proposition 3.1. Every Hausdorff space can be embedded as a closed sub-
space into a H-closed space.

Theorem 3.1. Let H be the class of H-closed spaces and let f: X — Y be
a contonuous mapping. The following conditions are equivalent

(1) X is e-cleavable over H;

(2) f is e-cleavable over H;

(3) X is Hausdor(f;

(4) X is closed absolutely cleavable over H;

(5) X is closed double cleavable over H;

(6) X is closed cleavable over H;

(7) X is closed pointwise cleavable over H;

(8) f is closed absolutely cleavable over H;

(9) f is closed double cleavable over H;

(10) f is closed cleavable over H;

(11) f is closed pointwise cleavable over H.

Proof. The equivalence (1)4(2) follows by Theorem 1. Now we prove that
(1)(3). Let P the class of Hausdorff spaces and suppose that X is e-
cleavable over H. Since H C P, X is e-cleavable over P; then, by Corollary
1.2 in [10], X € P. Now suppose that X is Hausdorff; then , by Proposition
3.1, X can be embedded as a closed subspace into a H-closed space, that is X
is closed absolutely cleavable over H and then X is absolutely cleavable over
H. Now we prove the equicalences (3)-(6). By Proposition 3.1, (3)=(4);
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the implications (4)=(5)=(6)=-(7) are obvious. Further, (7) implies that
X is pointwise cleavable over H and then, by the equivalence (1)(3), X is
Hausdorff. Now we prove the equivalences (7)-(11). We know that (7)<(4)
and the implications (4)=(9)=(10)=-(11) are obvious. But (11) implies that
X is closed pointwise cleavable over H, so the proof is complete. [l

Note that the class H is productive but not hereditary, so we can not
consider the previous remarks for that class of spaces. However, the closed
e-cleavability of a mapping f : X — Y over the class H does not imply that
X € 'H and, in particular, that f is a H-mapping. In fact there exists the
following

Example 4. Let X be an Hausdor[f but not an H-closed space. Then X
can be embedded as a closed subspace into a H-closed space, that is X is
closed absolutely cleavable over H. So by Proposition 3, every conlinuous and
constant mapping f on X is closed absolutely cleavable over H. However, f
is not an H-closed mapping, because otherwise we would have that X € H,
a contradiction. U

4. Open questions. -
Note that all the classes of spaces we have considered are productive.

Question - 1. Do there exist not-productive classes P of spaces such that the
cleqvability of @ mapping [ : X — Y over P is equivalent to the cleavability
of the space X over P¥. !

Note that a metrizable separable space need not be cleavable over P =
{R}; so we have the following natural question:“Does there exist a space ¥’
and a continuous mapping f : X — Y such that X is a metrizable separable
space and [ is cleavable over P7”. However it is known that every metrizable
space X is pointwise cleavable over {R} or, equivalently, if X is a metrizable
space, then the mapping idx is cleavable over {R}.

Question - 2. What classic results about cleavability of spaces can be gen-
eralized to cleavability of mapping?
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