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A NUMERICAL PROCEDURE FOR COEFFICIENTS IN
GENERALIZED GAUSS-TURAN QUADRATURES

Gradimir V. Milovanovié¢* and Miodrag M. Spalevi¢

ABSTRACT. A numerical procedure for the coefficients in the generalized Gauss-Turdn
quadrature formulas is presented. The corresponding nodes as the zeros of s-orthogonal
polynomials can be determined by a stable algorithm given in [10]. A numerical example
is included.

1. Introduction

We consider the generalized Gauss-Turdn quadrature formula (see [17]) ‘
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(L1) [ 1130 = 23 A ) + Rl

Li=0 v=1

where dA(t) is a nonnegative measure on the real line R, with compact or
infinite support, for which all moments

}LkI/tde(t), =01y s ow
R

exist and are finite, and pg > 0. The formula (1.1) is exact for all polynomials
of degree at most 2(s + 1)n — 1, i.e.,

Rn(f) =0 for f € p2(3+1)n—1'

The knots 7, (¥ = 1,...,n) in (1.1) are the zeros of the monic polynomial
n(t), which minimizes the following integral
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where 7,(t) = t" + 11" 1 +---+ayt+ag. This polynomial 77 is known as
s-orthogonal (or s-self associated) polynomial with respect to the measure
d\(t) (for some details see [2-7], [11-13]). For s = 0, we have the standard
case of orthogonal polynomials, and (1.1) then becomes well-known Gauss-
Christoffel formula.

In [10] one of us gave a stable method for numerical constructing s-ortho-
gonal polynomials and obtaining the nodes of the generalized Gauss-Turan
quadrature formula (1.1). It was an iterative method with quadratic conver-
gence based on a discretized Stieltjes procedure and the Newton-Kantorovic
method.

In this paper, in Section 2, we give a numerical procedure for finding the
coefficients 4;, in (1.1). An alternative method was given by Stroud and
Stancu [16] (see also [15]). A numerical example is given in Section 3.

2. The Coefficients in the Generalized
Gauss-Turdan Quadrature

Let 7, = 1,(s,n), ¥ = 1,...,n, be the zeros of the s-orthogonal polyno-
mial m,(1) (= pi(t)). If we define w, by

then the coefficients 4;, in the generalized Gauss-Turdn quadrature (1.1)
can be expressed in the form (see [15])

A- = 1 _ \VDQS_«;] l / W?i(m)23+1 - W?L(t)zs_!-l dt\{’l‘)

W= 25— ) wo(t) Jg z—1 by
where D is the standard differentiation operator. Especially, for 1 = 2, we
have (2ot

1 o le)™®
Agg = : — - dM(x),
2o = (28) (! (7, ) )25+ /R ey e
e,
B (s)
A = = g v o
O TCATY R

where B,() are the Christoffel numbers of the following Gaussian quadrature
(with respect to the measure du(t) = w2*(1)dA(t)),

/ g(t) dl""’(t) == Z Bz(/s)g(ru) + R?L(g)a Rn(lp‘lnfi.} = 0.
R v=1
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Since B( 2 > 0, we conclude that Ay, , > 0. The expressions for the other
coefficients (t < 28) become very complicated. For the numerical calculation
we can use a tringular system of linear equations obtained from the formula
(1.1) by replacing fw1th the Newton polynomials: 1,t—7, ..., ({—71)**!,
(t o )25+1(t _ T}.) (f _ T1)23+1(t T2)2s+1 . (t — P )25

Hete, we give a method for the numerical calculation of coefficients of
the generalized Gauss-Turdn quadrature formula (1.1), startmg from the
Hermite interpolation problem

H'ﬂl ( ) f(i)( )

wherev=1,...,n;:1=0,1,... ,a, — L,a3 4+ -+, =m+ 1L
Taking a; = 2s + 1,4 = 1,... ,n and integrating f(t) — Ha(t) = r(f31),
we obtain

9, dA( 5 () (7 L i(1)dA(t) + Ry
COR FOUOR ZLf 7) [ L0 + Rl ),
where
1 ¥ [E=npem® )
lu,i(t) - ;T k=0 ;h1 [ Q’(t) }tz‘r,, (t - Ty)zs_ui_k-l—l ’

Qt) = [(il — )t —Tg) - (t _ .;,.n)]?sﬂ ’

and Rn(f) = [ r(f;1)dA(t) is the corresponding remainder term.

Hence, (2.1) becomes the generalized Gauss-Turdn quadrature formula
(1.1), where A4;, are the Cotes numbers of higher order and given by

Aiy= ]le,_f(t)d)\(t),

TN 95417 (k)
% [ (t gT(r)) 4] ) /FQU!Z_HC(t_)d)\(t),

ie.,

14
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where t = 0,1,...,25, v = 1,...,n and

(2:2) Q,,i(1) = m’%:_?ﬁ = (t—n ) JJ (e =)

i#v
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For i + k < 2s, we can see that (2, ;4.(t) is a polynomial of degree at most
(n=1)2s+1)+2s=2s4+1)n-1<2(s+1)n—-1=2N -1,

where N = (s + 1)n.

Hence, the problem of determining of the coefficients of the Gauss-Turan
quadrature formula (1.1) is reduced to determination of integrals in (2.2).
All of the above integrals in can be found exactly, except for rounding errors,

by using a Gauss-Christoffel quadrature formula with respect to the measure
dA(t),

N
(2.3) f oty dre) = 3 AN (™) + Bilg),
R k=1

taking N = (s + 1)n knots. This formula is exact for all polynomials of
degree at most 2N — 1 = 2(s+ 1)n — 1.

In order to calculate the derivatives

i — 2s+1 (k)_ 7
(2.4) [(——;—("Q)—] (k=0,1,...,28 v=1,...,n),

t=T,

we need the following auxiliary result:

Lemma 2.1. Ifge CU(E), m € Ny, E CR, then

P
_1
(YO =et, (NP =3 (I;— l)g(”(eﬂ)(r’-”, B Ly s

=1

Proof. Since (&%) = g'e9, applying the Leibnitz’s formula for the derivative
of the product of functions, we have

p—
9P = (g'e? (p—l) _ (p ) (1) ed)(p=i=1)
(¢*) Z ; ()

‘-.i

zp:( ) (O (eoy (=D,

=1

where p=1,...,m. O
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Leta=m <7 < <7y < Tygy = b, where [@, b] is the smallest closed

interval containing supp(dA), or @ = —o0, b = +o0. For t € (1,_1,7,41) We
define w, by
w(t) = ] (8= 1)~ = (—1)" exp|~(2s + 1) Y log |t - ],
iFy ity

ie., u,(t) = (=1)"*e" ) where

ho(t) = =(2s+1) > gi(t),  gilt) = log |t — 7.
ity

Since g(”")(fu) = (=115 - D7, = )74, j > 1, we have

R (7,) = (25 + 1)(=1 (G = 1D (r, — 7).
' i#v
It is clear that the derivatives in (2.4) are exactly the derivatives of u, () in

the point ¢ = 7,. Thus, usmg Lemma 2.1, we can express they in terms of
h(J)(TI,)

This numerical method forcalculating the coefficients A4;, can be sum-
marized in the following form:

Proposition 2.2. Let7,, v = 1,...,n, be zeros of the s-orthogonal polynom
7 (), with respect to the measure dA(t) on R. Then, coefficients of the
generalized Gauss-Turdn quadrature formula,

2s 'n

L1030 =33 40500+ (),
i=0 v=1
can be expressed in the form
1 ) 25—~1 1 (%) N ™) ~)
5 = ﬂ(__l)n—u Z R;[ h.,(i) t . ZA Qu1+k(7' ),
k=0 =1 )
where AgN) and TJ(-N) are weights and nodes of the Gauss-Christoffel quad-

rature formula (2.3) in N = (s + 1)n points, the polynomial Q, ;(1) is given
by (2.2), and [ b (1) ]52_ s determined by Lemma 2.1.

To conclude this section we mention a particulary interesting case of the
Chebyshev mesure d\(t) = (1 — #2)~"/2dt. In 1930, S. Bernstein [1] showed
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that the monic Chebyshev polynomial T,(t) = Ty(t)/2"~" minimizes all
integrals of the form

1 k+1
|ma(2)] " 1

Thus, the Chebyshev-Turdn formula

, 1 f(t) B 25 mn | @
(25) [ = 23 At + Bal,

with 7, = cos (2—"2:51)3 v=1,...,nis exact for all polynomials of degree at

most 2(s + 1)n — 1. Turdn has stated a problem of explicit determination
of A;, and its behavior as n — +oo (see Problem XXVI in [18]). Some
characterizations and solution for s = 2 were obtained by Micchelli and
Rivlin [9], Riess [14], and Varma [19]. One simple answer to Turdn question
was given by Kis [9].

3. Numerical Example

In this section we give an example when is preferable to use a formula of
Turan type instead of the standard Gaussian formula

(3.1) [ 1000 =3 4s) + R,

for which R, (Ra2n-1) = 0. All computations were done on the MICROVAX
3400 computer in Q-arithmetic (machine precision = 1.93 x 1073%).

Consider the following simple numerical example
1
I= f e'V1—t2dt = 1.7754996392121809468785765372. .. .
-1

Here we have f(t) = e' and dA(t) = v/1 — t2dt on [—1, 1] (the Chebyshev
measure of the second kind). Notice that f((t) = f(t) for every ¢ > 0.

The Gaussian formula (3.1) and the corresponding Gauss-Turdn formula
(1.1) give

(3.2) I=If=5" A
p=1
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and

(3.3) Il = LC‘ e

2s '
respectively, where C,'l(,s) = 5 A

Table 3.1 shows the relative errors |(IT, — I)/ IT,| for m = 1(1)5 and

n,8
s = 0(1)5. (Numbers in parentheses indicate decimal exponents and m.p. is
the machine precision.)

TasLE 3.1
Relative errors in quadrature sums 1;{.3

n s=10 8 = s =2 =3 s =4 s=25
1| 115(=1) 471(=3) 9.72(=5)  1.21(~6)  1.0I1(—8)  5.98(—11)
2 | 2.38(—-3)  2.05(=7)  3.06(—12) 1.36(—17) 2.40(—23) 1.88(—29)
3 | 1.97(=5)  1.15(—12) 4.02(—=21) 9.26(—31) m.p. m.p.
4 | 8.76(—8) 1.71(—18)  4.68(—31) m.p. m.p. m.p.
5 | 2.43(—10) 9.40(-25) m.p. m.p. m.p. m.p.

I

For s = 0 the quadrature formula (3.3) reduces to (3.2), ie., T
I¢. Notice that Turdn formula (3.3) with n nodes has the same degree of
exactness as Gaussian formula with (s + 1)n nodes. '
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