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Abstract. We examine one-sided confidence intervals for the population variance, based on the ordinary
t-statistics. We derive an unconditional coverage probability of the bootstrap-t interval for unknown
variance. For that purpose, we find an Edgeworth expansion of the distribution of t-statistic to an order
n−2. We can see that a number of simulation, B, has the influence on coverage probability of the confidence
interval for the variance. If B equals sample size then coverage probability and its limit (when B → ∞)
disagree at the level O(n−2). If we want that nominal coverage probability of the interval would be equal
to α, then coverage probability and its limit agree to order n−

3
2 if B is of larger order than the square root of

the sample size. We present a modeling application in insurance property, where the purpose of analysis is
to measure variability of a data set.

1. Introduction

Hall [10] in his paper gave some conclusions about the effect of the number of bootstrap simulations
on the bootstrap-t confidence intervals. One of that conclusions concerns coverage probability in case
of application to smooth statistics, such as the Studentized mean of a sample drawn from a continuous
distribution. He also gave an explicit formula for the second-order term in an expansion of coverage
probability for the case of Studentized mean. In this paper we shall examine one-sided confidence intervals
for the population variance based on the ordinary t statistics. We shall derive an unconditional coverage
probability of bootstrap-t confidence interval for unknown variance based on a sample from a continuous
distribution. From that formula it will be possible to make some points about the number of bootstrap
simulations required to construct a bootstrap-t confidence interval for population variance. Bootstrap-t
confidence intervals for the variance are considered in [6] and [7] and these intervals can be used for
various modeling applications.

This paper will be organized as follows. In Section 2 we shall derive an Edgeworth expansion for
one sample t-statistic (that will be used for estimation variance) to order n−2. Edgeworth expansion of
Students statistic was investigated by several authors (see [3], [5], [13], [15], [17], [18]). In Section 3 we
shall briefly mention bootstrap-t intervals. Properties of those intervals were investigated in a series of
papers ([1], [2], [14], [16]). In this section we shall give an explicit formula for the second-order term in an
expansion of coverage probability for the case of Studentized variance. In Sections 4 and 5 we shall conduct
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a simulation study to assess the coverage accuracy of presented confidence intervals. In Section 6 we shall
give concluding remarks.

2. Edgoworth Expansion for the Studentized Variance

Let X1, ...,Xn be i.i.d. from normal distribution with mean µ and variance σ2. It is known that statistic
(n−1)S2

σ2 has χ2
n−1 distribution, where S2 =

n∑
i=1

(Xi−X)2

n−1 is a sample variance. From the fact that for enough large

n χ2
n−1 distribution can be approximated by normal, follows that the distribution of the variable:

Z =

(n−1)S2

σ2 − (n − 1)√
2 (n − 1)

=
S2
− σ2√

var (S2)

converges to standardize normal distribution as n increases to infinity (for details see [7]). Let us consider
statistic

T =
S2
− σ2√

v̂ar (S2)
, (2.1)

where v̂ar
(
S2

)
is a consistent estimator of the variance of S2. We shall derive an Edgeworth expansion for

above mentioned t-statistic. Before that, let define random variables X′i =
(Xi−X)2

−
n−1

n σ2

√
V1

for i = 1, 2, ...,n,

where V1 = E
((

Xi − X
)2
−

n−1
n σ2

)2
.

Proposition 2.1. If Cramer’s condition holds (see [14]) and if EX10
i < ∞, the distribution of t statistic given in

equation (2.1) has the following expansion

P (T ≤ x) = Φ (x) +
1
√

n
q1 (x)φ (x) +

1
n

q2 (x)φ (x) +
1

n
√

n
q3 (x)φ (x) + O

(
n−2

)
, (2.2)

where functions q1 (x) , q2 (x) , q3 (x) have the form:

q1 (x) =
M′3
6

(
2x2 + 1

)
, q2 (x) =

(1
3

+
3
8

M′4 −
1
8

M′23
)

x and

q3 (x) = −
1
4

M′3 −
1
6

(3
2

M′3 −
1
4

M′33 + 3M′3M′4 +
3
4

M′5
) (

x2
− 1

)
.

φ (·) and Φ (·) are the probability density function and cumulative distribution function of standard normal variable

and M′k = E
(

1
n

n∑
i=1

X′ki

)
, (k = 3, 4, 5) . For the proof see Appendix A.

3. Coverage Probability of One-Sided Confidence Interval for the Variance

Let S2 be an esimator of a parameter σ2, based on a random sample (X1, ...,Xn). We shall consider a
bootstrap-t confidence interval for σ2 based on the statistic (2.1). After generating B bootstrap samples, in
each bootstrap sample we compute the value of statistic:

T∗ =
S2∗
− S2√

v̂ar (S2∗ )
,

where S2∗ is a bootstrap replication of S2.
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Let denote by tα the point which is the bootstrap approximation to the point xα, such that P(T ≤ xα) = α.
Let T∗1,T

∗

2, ...,T
∗

B be independent copies of statistic T∗ in B bootstrap samples, arranged in ascending order. If
we select T∗(ν+1) as an approximation to tα (0 ≤ ν ≤ B− 1) then the exact, unconditional coverage probability

of Iboot = [s2
− T∗(ν+1) ·

√
v̂ar (S2),+∞), is

α (ν,B) =
ν + 1
B + 1

−
1
n

1∫
0

Rn (τ) dυ, (2.3)

where Rn is such function that bounded uniformly in n ≥ 1 and 0 < α < 1. The point τ = τ(ν, υ) is the

solution of equation G(τ) = υ , for 0 < υ < 1, where G (u) =
ν∑

j=0

(B
j
)
u j (1 − u)B− j .Asymptotic formula for Rn (α)

follows from (see [10]):

P
(
p ≤ α

)
= α +

1
n

Rn (α) ,

where p = P (T∗ < T|X) and Hall in [11] investigated that formula in case of Studentized mean. We shall
concentrate on a case of Studentized variance to get coverage probability of the interval boot Iboot. For that
purpose we find an asymptotic formula for Rn (α) .

Whenever it exists, an Edgeworth expansion for the statistic (2.1) may be inverted to yield an expansion
of (inverse) Cornish-Fisher type (see [10]):

P
(
T ≤ x −

1
√

n
q1 (x) −

1
n

q2 (x) −
1

n
√

n
q3 (x)

)
= Φ (x) + O

(
n−2

)
.

If in functions q1(x), q2(x), q3(x) corresponding moments (M′i , i = 3, 4, 5) replaced by its estimates based on
the sample (note them by m′i , i = 3, 4, 5), we get new functions which we shall denote by q′1(x), q′2(x), q′3(x).
Asymptotic formula for Rn (α) follows from expression:

P
(
T ≤ zα −

1
√

n
q′1 (zα) −

1
n

q′2 (zα) −
1

n
√

n
q′3 (zα)

)
= P

(
p ≤ α

)
+ O

(
n−2

)
= α +

1
n

Rn (α) + O
(
n−2

)
,

where zα is the solution of Φ (zα) = α. To get this asymptotic formula we must find an Edgeworth expansion
to order n−2of the distribution P(S(α) ≤ x), where statistic S(α) is equal to:

S(α) = T +
1
√

n
q′1 (zα) +

1
n

q′2 (zα) +
1

n
√

n
q′3 (zα) . (2.4)

From the first three cumulants of the random variable S(α) (see Appendix B), we obtain an Edgeworth
expansion that admits statistic S(α) :

P (S (α) ≤ x) = Φ (x) +
1
√

n
Q1 (x) +

1
n

Q2 (x) +
1

n
√

n
Q3 (x) + O

(
n−2

)
. (2.5)

Functions Q1(x),Q2(x) and Q3(x) have the form:

Q1(x) =
M′3
3

(
x2
− z2

α

)
φ (x) .

Q2(x) =
(
−

1
8

zα −
3
8

M′4zα +
1
8

M′23 zα −
1
2

x
(1

4
M′23 + M′4

(2
3

z2
α −

5
12

)
−

1
4

))
φ (x) ,
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Q3(x) =

((1
4

M′3 −
1

24
M′33 +

1
2

M′3M′4 +
1
8

M′5
) (

z2
α − 1

)
−

(3
8

M′5 −
1
4

M′3M′4
)

zαx

−
1
6

(3
2

M′3 +
3
4

M′5 −
1
4

M′33 + M′3M′4
(
−z2

α +
5
2

)) (
x2
− 1

))
φ (x) .

If we set x = zα in (2.5) we get:

P (S (α) ≤ zα) = α −
1
6

1
n

M′4zα
(
2z2

α + 1
)
φ (zα)

+
1

n
√

n

(
−

3
8

M′5z2
α +

1
6

M′3M′4
(
z4
α + z2

α −
1
2

))
φ (zα) + O

(
n−2

)
. (2.6)

From (2.6) follows asymptotic formula for Rn (α) :

Rn (α) = ϕ1 (zα)φ (zα) +
1
√

n
ϕ2 (zα)φ (zα) + O

(
n−1

)
,

where ϕ1 (zα) = − 1
6 M′4zα

(
2z2

α + 1
)
, ϕ2 (zα) = − 3

8 M′5z2
α + 1

6 M′3M′4
(
z4
α + z2

α −
1
2

)
. Now we have

P
(
p ≤ α

)
= α +

1
n

Ψ1 (α) +
1

n
√

n
Ψ2 (α) + O

(
n−2

)
,

where Ψi (α) = ϕi (zα)φ (zα) , i = 1, 2. From (2.3) follows:

α (ν,B) =
ν + 1
B + 1

+
1
n

1∫
0

Ψ1 (τ) dυ +
1

n
3
2

1∫
0

Ψ2 (τ) dυ + O
(
n−2

)
,

for 0 ≤ ν ≤ B − 1 and B ≥ 1. Value τ can be find from equation G(τ) = υ and is of order o
(
B−1

)
. If we apply

the mean-value theorem for integrals, we get a coverage probability of one-sided bootstrap−t interval for
variance, which is equals to:

α (ν,B) = α′ +
1
n

Ψ1 (α′) +
1

n
√

n
Ψ2 (α′) + O

(
n−1B−1 + n−2

)
,

where α′ = ν+1
B+1 is the nominal coverage probability of the confidence interval Iboot.

4. A Simulation Study

In this Section we investigate the coverage accuracy of one-sided bootstrap-t confidence intervals for
population variance. The distributions that we consider are Normal and one-parameter Weibull. The
whole approach can be applied on any other distribution. For each sample size (10, 20, 50, 80, 100, 200,
500), we decided to generate a fixed number of bootstrap samples (1000, 5000). Results of coverage of 95%
confidence intervals are presented in Table 1.
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Table 1: Coverage probability of 95% one-sided confidence intervals
for the variance of different distributions

Distribution
n B N(0,1) Weibull(0.5) Weibull(1) Weibull(2) Weibull(5)

1000 0.929 0.994 0.975 0.940 0.931
10 5000 0.938 0.993 0.968 0.941 0.929

1000 0.937 0.987 0.968 0.941 0.932
20 5000 0.939 0.985 0.977 0.942 0.936

1000 0.945 0.985 0.959 0.956 0.933
50 5000 0.941 0.984 0.957 0.943 0.937

1000 0.948 0.982 0.958 0.944 0.942
80 5000 0.943 0.976 0.956 0.947 0.938

1000 0.948 0.979 0.957 0.945 0.942
100 5000 0.949 0.971 0.954 0.944 0.940

1000 0.951 0.969 0.944 0.944 0.942
200 5000 0.950 0.970 0.954 0.947 0.946

1000 0.949 0.959 0.950 0.951 0.943
500 5000 0.949 0.959 0.948 0.949 0.953

From Table 1 it can be seen that the bootstrap-t interval for the population variance gives good coverage
when sample comes from Normal distribution. If we have sample from Weibull distribution, this method
gives good coverage when parameter of Weibull distribution is greater than 1, even for small sample size.
Method is implemented using programming language Fortran.

5. A Real Example

Here, we analyze risk management of losses in tariff glass breakage insurance. Actually, we estimate the
variance by using real data set about incurred losses. We got data from one insurance company in Serbia
for 2014. The descriptive statistics for the data set are given in the Table 2. Figure 1 shows the histogram

Table 2: Descriptive statistics for the data set

Data set N Mean Std. deviation Skewness coef.
Tariff glass breakage insurance 552 4438.92 6555.923 4.05

of losses.

Figure 1: Histogram of data set
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By measuring loss variability we will be able to derive precious conclusions and to determine adequate
premium principle. Frequently used premium principle in property is Standard Deviation Premium Prin-
ciple (see [4]), which includes a risk load that is proportional to the standard deviation of the risk (see [4]
and [7]). Because of that, it is very important to estimate variance of data. For that purpose we investigate
the coverage accuracy of one-sided bootstrap-t confidence intervals for population variance. From the
above-mentioned data set from we generated samples of size 10, 20, 50, and 100 and from each sample we
generated 1000 bootstrap samples. Results are presented in Table 3.

Table 3: Coverage probability of 95% confidence intervals for the variance

Sample size 10 20 50 100
Coverage probability 0.678 0.835 0.902 0.975

From Table 3 it is obvious (because of skewed distribution) that bootstrap-t intervals have the good
coverage accuracy for large sample size. Therefore, for measuring variability in insurance property we
recommend using of these intervals.

6. Concluding Remarks

In this paper we have shown how can be constructed confidence intervals for unknown population
variance, using ordinary t-statistic. It is possible for large sample size, because in that case χ2 distribution
can be approximated by normal distribution. Based on the t statistic is possible to construct bootstrap-
t interval for the variance which is second-order accurate (see [16]) and has a lot of nice characteristics.
Bootstrap-t procedure, by now, has been almost appllied to location statistics, like the sample mean, median,
trimmed mean or a sample percentile. We suggested its applying to sample variance. For that purpose,
we found an Edgeworth expansion of the distribution of mentioned t statistic (to order n−2) and used that
expansion to find an explicit formula for coverage probability of one-sided bootstrap-t interval. We saw
that a number of simulation, B, had the influence on coverage probability of one-sided confidence interval
for population variance. If B equals sample size then α(ν,B) and its limit P(p ≤ α) (when B→ ∞ ) disagree
at the level O(n−2). If we want that nominal coverage probability of Iboot would be equal to α, then α(ν,B)
and its limit P(p ≤ α) agree to order n−

3
2 if B is of larger order than the square root of the sample size. Those

conclusions, about the number of bootstrap simulation, are the same with conclusions that made Hall[11]
in case of one-sided confidence interval for population mean.

Appendix A.

Here we prove Proposition 1. We kept some notations from [7] and [18]. The t-statistic is given by

T = S2
−σ2

√
v̂ar(S2)

. Let we define random variables: X
′

= 1
n

n∑
i=1

X′i ,Y1 = X
′

,Y2 = 1
n

n∑
i=1

X′2i ,S
′2 = 1

n−1

n∑
i=1

(
X′i − X

′
)2
,

where X′i , i = 1, 2, ...,n, are defined in Section 2. Then statistic T becomes:

T =
Y1
√

V1 ·
n

n−1
√

V1 ·
√

n
n−1 ·

√

S′2
=
√

n − 1
Y1√

Y2 − Y2
1

=
√

n − 1 · 1 (Y) ,

where 1 (Y) = Y1√
Y2−Y2

1

. Let Y ≡ (Y1,Y2) and EY ≡ U ≡ (U1,U2) = (0, 1) . We define statistic Wn as follows:

Wn =
√

n − 1
(
∂1

∂Y1
(U) · (Y1 −U1) +

∂1

∂Y2
(U) · (Y2 −U2)

+
1
2

 ∂21

∂Y2
1

(U) · (Y1 −U1)2 + 2
∂21

∂Y1∂Y2
(U) · (Y1 −U1) (Y2 −U2) +

∂21

∂Y2
2

(U) · (Y2 −U2)2

 .
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After some calculations it becomes: Wn =
√

n − 1
(

3
2 Y1 −

1
2 Y1Y2

)
.

If we used
√

n − 1 =
√

n − 1
2
√

n
+ o

(
n−

1
2

)
,than the first three moments of statistic Wn are:

EWn = −
1
2

1
√

n
M′3 +

1
4

1
n
√

n
M′3 + O

(
n−2

)
,EW2

n = 1 −
3
4

M′4
n

+
1
2

M′23
n
−

1
4

1
n

+ O
(
n−2

)
,

EW3
n = −

7
2

1
√

n
M′3 +

1
n
√

n

(21
8

M′3 +
33
8

M′3M′4 +
3
4

M′5 −
3
4

M′33
)

+ O
(
n−2

)
.

Let ψn (t) be the characteristic function of Wn. Then

ψn (t) = exp
{

K1n (it) +
K2n (it)2

2
+

K3n (it)3

6
+ · · ·

}
,

where the first three cumulants of statistic Wn are :

K1n = −
1
2

1
√

n
M′3 +

1
4

1
n
√

n
M′3 + O

(
n−2

)
,

K2n = EW2
n − (EWn)2 = 1 +

1
4

1
n

(
−1 − 3M′4 + M′23

)
+ O

(
n−2

)
,

K3n = E (Wn − EWn)3 = −
2
√

n
M′3 +

1
n
√

n

(3
2

M′3 −
1
4

M′33 + 3M′3M′4 +
3
4

M′5
)

+ O
(
n−2

)
.

The characteristic function ψn (t) has the form:

ψn (t) = exp
(
−

t2

2

)
·

[
1 +

1
√

n

(
−

1
2

M′3 (it) −
2
6

M′3 (it)3
)

+
1
n

(
−

1
8
−

3
8

M′4 +
1
8

M′23
)

(it)2

+
1

n
√

n

(1
4

M′3 (it) +
1
6

(3
2

M′3 −
1
4

M′33 + 3M′3M′4 +
3
4

M′5
)

(it)3
)]

+ O
(
n−2

)
.

Since we have ψn (t) =
+∞∫
−∞

eitxdP (Wn ≤ x) and e−
t
2 =

+∞∫
−∞

eitxdΦ (x) ,above expression becomes:

P (Wn ≤ x) = Φ (x) +
1
√

n
R1 (x) +

1
n

R2 (x) +
1

n
√

n
R3 (x) + O

(
n−2

)
.

Function Ri (x) , i = 1, 2, 3 can be calculated from integrals:
+∞∫
−∞

eitxdRi (x) = ri (it) e−
t2
2 , where

r1 (it) = −
1
2

M′3 (it) −
2
6

M′3 (it)3 , r2 (it) =
(
−

1
8
−

3
8

M′4 +
1
8

M′23
)

(it)2 ,

r3 (it) =
1
4

M′3 (it) +
1
6

(3
2

M′3 −
1
4

M′33 + 3M′3M′4 +
3
4

M′5
)

(it)3 .

Since, T = Wn + O
(
n−1

)
, we have: P (T ≤ x) = Φ (x) + 1

√
n

R1 (x) + 1
n R2 (x) + 1

n
√

n
R3 (x) + O

(
n−1

)
, where

R1 (x) =
M′3
6

(
2x2 + 1

)
φ (x) ,R2 (x) =

(1
8

+
3
8

M′4 −
1
8

M′23
)

xφ (x) ,

R3 (x) =

(
−

M′3
4
−

1
6

(3
2

M′3 −
1
4

M′33 + 3M′3M′4 +
3
4

M′5
) (

x2
− 1

))
φ (x) .
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Appendix B.

The first three moments of the statistic S(α) given in equation (2.4) are:

E (S (α)) =
1
3

1
√

n
M′3

(
z2
α − 1

)
+

1
n

(1
8

zα +
3
8

M′4zα −
1
8

M′23 zα
)

+
1

n
√

n

(
−

1
4

M′3
(
z2
α − 1

)
+

1
24

M′33
(
z2
α − 1

)
−

1
2

M′3M′4
(
z2
α − 1

)
−

1
8

M′5
(
z2
α − 1

))
+ O

(
n−2

)
,

E (S (α))2 = 1 +
1
n

(
M′23

(1
9

z4
α −

2
9

z2
α +

13
36

)
+ M′4

(2
3

z2
α −

5
12

)
−

1
4

)
+

1
n
√

n

(3
4

zαM′5 +
1

12
M′3

(
z3
α − zα

)
−

1
12

M′33
(
z3
α − zα

)
+ M′3M′4

(1
4

z3
α −

3
4

zα
))

+ O
(
n−2

)
,

E (S (α))3 =
1
√

n
M′3

(
z2
α − 3

)
+

1
n

(3
8

zα +
9
8

zαM′4 −
3
8

zαM′23
)

+
1

n
√

n

(
M′3

(5
2
− z2

α

)
+ M′5

(9
8
−

3
8

z2
α

)
+ M′33

( 1
27

z6
α −

1
9

z4
α +

35
72

z2
α −

143
216

)
+ M′3M′4

(2
3

z4
α −

43
12

z2
α +

53
12

))
+ O

(
n−2

)
.

From this moments is easy to find the cumulants of the variable S(α) and then use that cumulants to obtain
an Edgeworth expansion of P(S(α) ≤ x) . Procedure is the same like in appendix A.
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[6] V. Ćojbašić, D. Lončar, One-sided confidence intervals for population variances of skewed distributions, Journal of Statistical

Planning and Inference 141 (2011), 1667–1672.
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