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bIzmir Katip Celebi University, Department of Engineering Sciences, Izmir, Turkey

cDepartment of Computer Science, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia

Abstract. Recently the concept of mixed norm spaces was generalized to that of the mixed paranorm
spaces [`(r), `p]<k(ν)>. Here we determine the classes of matrix transformations from [`(r), `p]<k(ν)> into the
spaces of bounded, convergent and null sequences, and into the spaces of all bounded, convergent and
absolutely convergent series. We also obtain many correponding known results for mixed norm spaces as
special cases and visualize some neighbourhoods in the spaces [`(r), `p]<k(ν)>.

1. Introduction and Notations

Throughout the paper, let r = (rν)∞ν=0 be a bounded sequence of positive reals rν with M(r) = supν rν and
H(r) = max{1,M(r)}, 1 ≤ p ≤ ∞ , and sν for rν > 1 and q denote the conjugate exponents of rν and p, that is,
sν = rν/(rν − 1) (ν = 0, 1, . . . ) and q = ∞ for p = 1, q = p/(p − 1) for 1 < p < ∞ and q = 1 for p = ∞.

As usual, we write e = (ek)∞k=1 and e(n) = (e(n)
k )∞n=1 for n ∈ IN for the sequences with ek = 1 for all k , and

e(n)
n = 1 and e(n)

k = 0 for k , n. We also denote by `∞, c, c0 and φ the sets of all bounded, convergent, null and
finite sequences, respectively, and consider the set

`(r) =

x ∈ ω :
∞∑

k=1

|xk|
rk < ∞

 ,
which reduces to the well–known set `r when (rν)∞ν=1 = r · e for some constant r ≥ 1. Furthermore, let cs and
bs be the sets of all convergent and bounded sequences.

For any subset X of ω, let Xβ = {a ∈ ω :
∑
∞

k=1akxk converges for all x ∈ X} denote the β–dual of X. Given
any infinite matrix A = (ank)∞n,k=1 of complex entries and any sequence x = (xk)∞k=1 ∈ ω, we write An for the
sequence in the nth row of A, Anx =

∑
∞

k=1ankxk, Ax = (Anx)∞n=1 (provided the series Anx converge for all n),
and XA = {a ∈ ω : Ax ∈ X} for the matrix domain of A in X. Finally, if X and Y are subsets of ω, then (X,Y)
denotes the class of all infinite matrices A for which X ⊂ YA, that is, A ∈ (X,Y) if and only if An ∈ Xβ for all
n and Ax ∈ Y for all x ∈ X.
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An infinite matrix T = (tnk)∞n,k=1 is called a triangle, if tnk = 0 for k > n and tnn , 0 for all n. Let
B = (bnk)∞n,k=1 be a positive triangle and X ⊂ ω. We write Bn|x| =

∑n
k=1 bnk|xk| (x ∈ ω) for each n and

X[B] = {x ∈ ω : B|x| = (Bn|x|)∞n=1 ∈ X} for the strong matrix domain of B in X.
A subset X of ω is said to be normal if x ∈ X and |yk| ≤ |xk| (k = 1, 2, . . . ) imply y = (yk)∞k=1 ∈ X.
An FK space X is a Fréchet sequence space with continuous coordinates Pn : X→ Cwhere Pn(x) = xn for

all x = (xk)∞k=1 ∈ X and n = 1, 2, . . . . We say that an FK space X ⊃ φ has AK if x[m] =
∑m

k=1 xke(k)
→ x (m→∞);

x[m] is called the m–section of the sequence x. A normable FK space is said to be a BK space. For instance,
`(r) is an FK space with respect to its total paranorm h(r) defined by

h(r)(x) =

 ∞∑
k=1

|xk|
rk


1/H(r)

for all x ∈ `(r);

`p (1 ≤ p ≤ ∞), c and c0 are BK spaces with their natural norms ‖ · ‖p (1 ≤ p < ∞) and ‖ · ‖∞ defined by

‖x‖p =

 ∞∑
k=1

|xk|
p


1/p

for x ∈ `p and ‖x‖∞ = sup
k
|xk| for x ∈ c0, c, `∞;

`(r), `p (1 ≤ p < ∞) and c0 have AK.
The mixed paranorm spaces [`(r), `p]<k(ν)> were defined in [7] as follows: Let (k(ν))∞ν=0 be a sequence of

integers with 1 = k(0) < k(1) < · · · . By K<k(ν)> (ν = 0, 1, . . . ), we denote the set of all integers k that satisfy the
inequality k(ν) ≤ k ≤ k(ν + 1) − 1 and we write

∑
ν =

∑
k∈K<k(ν)> and maxν = maxk∈K<k(ν)> . Given any sequence

x = (xk)∞k=1 ∈ ω, we define the K<k(ν)> blocks of x by x<ν> =
∑
νxke(k) for ν = 0, 1, . . . , and put

[`(r), `p]<k(ν)> =

x ∈ ω : h̃(r),p(x) =

∞∑
ν=0

‖x<ν>‖rνp < ∞

 (the sequence r may be unbounded).

We also write [`∞(r), `p]<k(ν)> = {x ∈ ω : supν ‖x
<ν>
‖

rν
p < ∞}. If (rν)∞ν=1 = r · e for some constant r ≥ 1, then

the spaces [`(r), `p]<k(ν)> reduce to the mixed norm spaces `(r, p) introduced by Hedlund [2]. The Cesàro
sequence spaces cesp [1, 3] can also obtained as special cases of the spaces [`(r), `p]<k(ν)>.

In this paper, we characterize the classes ([`(r), `p]<k(ν)>,Y), that is, we determine necessary and sufficient
conditions on the entries of an infinite matrix A to map [`(r), `p]<k(ν)> into Y, when Y is any of the spaces
`∞, c0, c, `1, bs or cs. Our new results yield many known results as special cases. Finally, we visualize certain
neighbourhoods in several of the spaces [`(r), `p]<k(ν)>.

2. Some Known Results

For the reader’s convenience, we list the results on mixed paranorm spaces from [7] which are needed
in the sequel.

The sets [`(r), `p]<k(ν)> are FK spaces with AK with their natural total paranorms h(r),p defined by

h(r),p(x) =
(
h̃(r),p

)1/H(r)
=

 ∞∑
ν=0

‖x<ν>‖rνp


1/H(r)

for all x ∈ [`(r), `p]<k(ν)>

if and only if the sequence r is bounded ([7, Corollary 2.6]).
LetU be the set of all complex sequences u such that uk , 0 for all k. Then we write u−1

∗ X = {y ∈ ω :
u · y = (ukyk)∞k=1 ∈ X}. We put

M((r), p) =


⋃

N>1

( 1
N

e
)−1

∗ [`(s), `q]<k(ν)> =
⋃

N>1

{
a ∈ ω :

∞∑
ν=0
‖a<ν>‖sνq ·N−sν < ∞

}
if rν > 1 for all ν

[`∞(r), `q]<k(ν)> if rν ≤ 1 for all ν.
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Since sν = 1 + sν/rν when rν > 1 for all ν, we have a ∈ M((r), p) if and only if
∑
∞

ν=0 ‖a<ν>‖
sν
q ·N−sν/rν < ∞, and

so ([`(r), `p]<k(ν)>)β = M((r), p) by [7, Theorem 3.2].
Let X ⊂ ω be a linear metric space with respect to the metric d and a ∈ X. Then we denote the closed ball

of radius δ > 0 and centre in 0 by B̄δ(0) = {y ∈ X : d(x, 0) ≤ δ}, and write ‖a‖∗δ = sup{|
∑
∞

k=1akxk| : x ∈ B̄δ(0)}
provided the expression on the left hand side exists and is finite, which is the case whenever X is an FK
space and a ∈ Xβ ([11, Theorem 7.2.9]. It is known that if X is an FK space then A ∈ (X, `∞) if and only if

‖A‖∗δ = sup
n
‖An‖

∗

δ < ∞ for some δ > 0 ([9, Theorem 1.23 (b)]). (1)

We also need the following result.

Proposition 2.1. ([8, Theorem 2 (b)]) Let B be a positive triangle, X be an arbitary subset of ω, and Y be a normal
set of sequences. For every m ∈ IN, let Nm ⊂ {1, 2, . . . ,m}, N = (Nm)∞m=1 and N be the set of all such sequences.
Given an infinite matrix A = (ank)∞n,k=1, we define the matrix SN(A) for every N ∈ N by

SN
m(A) =

∑
n∈Nm

bmnAn, that is, sN
mk(A) =

∑
n∈Nm

bmnank (m, k = 1, 2, . . . ).

Then we have A ∈ (X,Y[B]) if and only if SN(A) ∈ (X,Y) for all sequences N ∈ N .

Finally we observe that∑
ν|akxk| = ‖a<ν>‖q · ‖x<ν>‖p for all ν and all sequences x, y ∈ ω. (2)

Using (2) and applying the well–known inequality |bνyν| ≤ |bν|sν + |yν|rν with bν = ‖a<ν>‖q N−1/rν and y =

‖x<ν>‖p N1/rν (ν = 0, 1, . . . ) where N , 0, we obtain

∑
ν|akxk| ≤

∥∥∥a<ν>
∥∥∥

q ·
∥∥∥x<ν>

∥∥∥
p ≤

∥∥∥a<ν>
∥∥∥sν

q N−sν/rν + N
∥∥∥x<ν>

∥∥∥rν
p = N

(∥∥∥a<ν>
∥∥∥sν

q N−sν +
∥∥∥x<ν>

∥∥∥rν
p

)
for ν = 0, 1, . . . . (3)

3. Matrix Transformations

In this section, we establish the main results, namely the characterizations of the classes ([`(r), `p]<k(ν)>,Y)
when Y is any of the spaces `∞, c0, c , `1, bs and cs. First we characterize the class ([`(r), `p]<k(ν)>, `∞).

Theorem 3.1. (a) Let rν > 1 for all ν. Then we have A ∈ ([`(r), `p]<k(ν)>, `∞) if and only if

‖A‖B = sup
n

h̃(s),q(An/B) = sup
n

∞∑
ν=0

∥∥∥A<ν>
n

∥∥∥sν
q B−sν < ∞ for some integer B > 1. (4)

(b) Let rν ≤ 1 for all ν. Then we have A ∈ ([`(r), `p]<k(ν)>, `∞) if and only if

‖A‖ = sup
n,ν

∥∥∥A<ν>
n

∥∥∥rν
q < ∞. (5)

Proof. (a) Let rν > 1 for all ν.
(i) First we prove the sufficiency of the condition in (4).
It follows from (4) and [7, Theorem 3.2] that An ∈ ([`(r), `p]<k(ν)>)β for all n. Also (3) yields for all x ∈
[`(r), `p]<k(ν)> and all n

|An(x)| ≤
∞∑
ν=0

∑
ν|akxk| ≤ B

 ∞∑
ν=0

(∥∥∥A<ν>
n

∥∥∥sν
q B−sν +

∥∥∥x<ν>
∥∥∥rν

p

) = B
(
h̃(s),q(An/B) + h̃(r),p(x)

)
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≤ B
(
‖A‖B + h̃(r),p(x)

)
< ∞,

hence Ax ∈ `∞.
Thus we have shown the sufficiency of the condition in (4).

(ii) Now we show the necessity of the condition in (4). We assume that A ∈ ([`(r), `p]<k(ν)>, `∞), but

‖A‖B = ∞ for all B > 1. (6)

Since A ∈ ([`(r), `p]<k(ν)>, `∞), it follows by (1) that

‖A‖∗δ < ∞ for some δ with 0 < δ < 1. (7)

We choose an integer B0 such that B0δH(r) > ‖A‖∗δ.
Case 1. Sn(B0) = h(s),q(An/B0) < ∞ for all n. By (6), there exists an integer m such that Sm(B0) > 2, and so
there exists ν0 > 0 such that

∑
∞

ν=ν0+1

∥∥∥A<ν>
m

∥∥∥sν
q B−sν

0 < 1, hence

S(0)
m (B0) =

ν0∑
ν=0

∥∥∥A<ν>
m

∥∥∥sν
q B−sν

0 > 1. (8)

Case 2. There exists an integer m such that Sm(B0) = ∞. Then we can also choose ν0 > 0 such that (8) holds.
Thus we have (8) in either case.
We write S0 = S(0)

m (B0), for short, put

Dν =

δH(r)/rνB−sν/rν
0 S−1

0 (0 ≤ ν ≤ v0)
0 (ν > ν0)

,

and define the matrix Â((s), q) = (âmk((s), q))∞m,k=1 and the sequences x(p) = (xk(p))∞k=1 by

âmk((s), q) =



sgn(amk)|amk|
q−1

∥∥∥A<ν>
m

∥∥∥sν−q

q (k ∈ K<k(ν)>) (1 < p ≤ ∞)

sgn(amk0(ν))‖A<ν>
m ‖

sν−1
∞ , where k0(ν)

is the smallest integer in K<k(ν)>

such that |amk0(ν)| = ‖A<ν>
m ‖∞

(k = k0(ν)) (p = 1; q = ∞)

(0 ≤ ν ≤ ν0)

0 (otherwise)

and xk(p) = Dνâ((s), q)mk for k ∈ K<k(ν)> (ν = 0, 1, . . . ).
Since S0 > 1 and rν > 1 for all ν, we have S−rν

0 ≤ S−1
0 , hence

Drν
ν ≤ δ

H(r)S−1
0 B−sν

ν for 0 ≤ ν ≤ ν0. (9)

If 1 < p < ∞ then qp − p = q and rν(sν − q + q/p) = sν, and if p = 1,∞, then rν(sν − 1) = sν for all ν, and so

‖Âm((s), q)<ν>‖rνp ≤
(∑

ν|amk|
qp−p)rν/p

∥∥∥A<ν>
m

∥∥∥rν(sν−q)

q =
∥∥∥A<ν>

m

∥∥∥rν(sν−q+q/p)

q =
∥∥∥A<ν>

m

∥∥∥sν
q if 1 < p < ∞,

‖Âm((s),∞)<ν>‖rν1 = (
∑
ν|âmk|)

rν
≤ ‖A<ν>

m ‖
rν(sν−1)
∞ = ‖A<ν>

m ‖
sν
∞ if p = 1,

‖Âm((s), 1)<ν>‖rν∞ = (maxν|âmk|)
rν
≤ ‖A<ν>

m ‖
rν(sν−1)
1 = ‖A<ν>

m ‖
sν
1 if p = ∞,

hence

‖Âm((s), q)<ν>‖rνp ≤
∥∥∥A<ν>

m

∥∥∥sν
q for 1 ≤ p ≤ ∞ and 0 ≤ ν ≤ ν0. (10)
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Now it follows from (9) and (10) that

h̃(r),p(x(p)) =

∞∑
ν=0

‖xk(p)<ν>‖rνp ≤ δ
H(r)S−1

0

ν0∑
ν=0

‖Â<ν>
m ‖

rν
q B−sν

0 ≤ δH(r)S−1
0

ν0∑
ν=0

∥∥∥A<ν>
m

∥∥∥sν
q B−sν

0 ≤ δH(r),

that is,

x(p) ∈ B̄δ(0) for 1 ≤ p ≤ ∞. (11)

But on the other hand we have,∑
νamkâmk((s), q) =

∑
ν|amk|

q
∥∥∥A<ν>

m

∥∥∥sν−q

q =
∥∥∥A<ν>

m

∥∥∥sν
q if 1 < p ≤ ∞,∑

νamkâmk((s),∞) = |amk0(ν)|‖A<ν>
m ‖

sν−1
∞ = ‖A<ν>

m ‖
sν
∞ if p = 1,

hence∑
νamkâmk((s), q) =

∥∥∥A<ν>
m

∥∥∥sν
q for 1 ≤ p ≤ ∞ and 0 ≤ ν ≤ ν0. (12)

Since δ < 1 and rν > 1, we have δH(r)/rν > δH(r), and it follows from (12) that

|Amx(p)| =
ν0∑
ν=0

Dν
∑
νâmk((s), q) > δH(r)S−1

0

ν0∑
ν=0

∥∥∥A<ν>
m

∥∥∥sν
q B−sν/rν = δH(r)S−1

0 B0

ν0∑
ν=0

∥∥∥A<ν>
m

∥∥∥sν
q B−sν = δH(r)B0 > ‖A‖∗δ,

which, in view of (11), is a contradiction to the definition of ‖A‖∗δ.
Thus the assumption that the condition in (4) is not satisfied, has led to a contradiction for all p with
1 ≤ p ≤ ∞. Therefore (4) has to hold. This completes the proof of the necessity of (4).
Thus we have shown Part (a) of the theorem.

(b) Now let rν ≤ 1 for all ν.
(i) First we prove the sufficiency of the condition in (5).
It follows from (4) and [7, Theorem 3.2] that An ∈ ([`∞(r), `p]<k(ν)>)β for all n. We choose N ∈ IN such that
N > ‖A‖. Then we have for all x ∈ B̄1/N(0) by the inequality in (2)

(
∑
ν|ankxk|)

rν
≤

∥∥∥A<ν>
n

∥∥∥rν
q

∥∥∥x<ν>
∥∥∥rν

p ≤ 1 for all n and all ν,

and so, since rν ≤ 1 for all ν,

|Anx| =
∞∑
ν=0

∑
ν|ankxk| ≤

∞∑
ν=0

(
∑
ν|ankxk|)

rν
≤

∞∑
ν=0

∥∥∥A<ν>
n

∥∥∥rν
q

∥∥∥x<ν>
∥∥∥rν

p

≤ sup
n,ν

∥∥∥A<ν>
n

∥∥∥rν
q

∞∑
ν=0

∥∥∥x<ν>
∥∥∥rν

p = ‖A‖ · h(r),p(x) ≤ 1 for all n, (13)

hence Ax ∈ `∞ for all x ∈ B̄1/N(0).
Now let x be an arbitrary sequence in [`∞(r), `p]<k(ν)>. Since the space [`∞(r), `p]<k(ν)> is paranormed, the set
B̄1/N is absorbing, and consequently there exists a positive real C > 0 such that y = C−1x ∈ B̄1/N, and (13)
yields |Anx| = C|Any| ≤ C for all n, hence Ax ∈ `∞.
Thus we have shown the sufficiency of the condition in (5).
(ii) Finally we show the necessity of the condition in (5).
We assume that A ∈ ([`(r), `p]<k(ν)>, `∞) but

‖A‖ = ∞. (14)
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Again, A ∈ ([`(r), `p]<k(ν)>, `∞) implies by [9, Theorem 1.23 (b)] that (7) holds. By (14), there exist m ∈ IN and
µ ∈ IN0 such that

‖A<µ>
m ‖

rµ
q · δ > ‖A‖

∗

δ + 1 = S.

We define the sequence x(p) = (xk(p))∞k=1 by

xk(p) =



sgn(amk)|amk|
q−1
‖A<µ>

m ‖
−q
q S1/rµ (k ∈ K<µ>) (1 < p ≤ ∞)

sgn(amk0(µ))‖A
<µ>
m ‖

−1
∞ , where k0(µ)

is the smallest integer in K<µ>

such that |amk0(ν)| = ‖A
<µ>
m ‖∞

(k = k0(µ)) (p = 1; q = ∞)

(ν = µ)

0 (otherwise).

Then we obtain

h(r),p(x(p)) =

∞∑
ν=0

‖x(p)<ν>‖rνp ≤ S
(∑

µ|amk|
q
)rµ(q/p−q)

= S‖A<µ>
m ‖

−rµ
q < δ for 1 < p < ∞,

h(r),∞(x(∞)) =

∞∑
ν=0

‖xk(∞)<ν>‖rν∞ ≤ S‖A<µ>
m ‖

−rµ
1 < δ for p = ∞,

h(r),1(x(∞)) =

∞∑
ν=0

‖xk(1)<ν>‖rν1 ≤ S‖A<µ>
m ‖

−rµ
∞ < δ for p = 1,

hence x(p) ∈ B̄δ(0) for 1 ≤ p ≤ ∞, that is, (11) again holds.
But on the other hand, since S > 1 and rµ ≤ 1, it follows that S1/rµ ≥ S, and so

|Am(x(p))| =
∣∣∣∑µxk(p)

∣∣∣ = S1/rµ ≥ S > ‖A‖∗δ for 1 < p ≤ ∞,

|Am(x(1))| =
∣∣∣∑µxk(1)

∣∣∣ = |amk0 (µ)|
∥∥∥A<µ>

m

∥∥∥−1

∞
S1/rµ ≥ S > ‖A‖∗δ for p = 1,

which, in view of (11), is a contradiction to the definition of ‖A‖∗δ.
Thus the assumption that the condition in (5) is not satisfied, has led to a contradiction for all p with
1 ≤ p ≤ ∞. Therefore (5) has to hold.
This completes the proof of the necessity of (5).
Thus we have shown Part (b) of the theorem.
This completes the proof of the theorem.

Using Theorem 3.1 and applying [11, 8.3.6] and Proposition 2.1 we obtain the characterizations of the
classes ([`(r), `p]<k(ν)>, c), ([`(r), `p]<k(ν)>, c0) and ([`(r), `p]<k(ν)>, `1).

Corollary 3.2. (a) We have A ∈ ([`(r), `p]<k(ν)>, c) if and only if in addition to the conditions in (4) or (5) the following
holds

lim
n→∞

ank = αk exists for each k. (15)

(b) We have A ∈ ([`(r), `p]<k(ν)>, c0) if and only if in addition to the conditions in (4) or (5) the following holds

lim
n→∞

ank = 0 for each k. (16)

(c) Let rν > 1 for all ν. Then we have A ∈ ([`(r), `p]<k(ν)>, `1) if and only if

‖ΣA‖B = sup
N ⊂ IN
N finite

h̃(s),q

∑
n∈N

An/B


 = sup

N ⊂ IN
N finite

∞∑
ν=0

∥∥∥∥∥∥∥
∑

n∈N

An


<ν>∥∥∥∥∥∥∥

sν

q

B−sν < ∞ for some integer B > 1. (17)
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(d) Let rν ≤ 1 for all ν. Then we have A ∈ ([`(r), `p]<k(ν)>, `1) if and only if

‖ΣA‖ = sup
N ⊂ IN
N finite

sup
ν

∥∥∥∥∥∥∥
∑

n∈N

An


<ν>∥∥∥∥∥∥∥

rν

q

 < ∞. (18)

Proof. (a) and (b) Since ([`(r), `p]<k(ν)> is a BK space with AK, and c and c0 are closed subspaces of `∞, the
statements in (a) and (b) are immediate consequences of [11, 8.3.6] and Theorem 3.1.

(c) and (d) Let Σ = (σnk)∞n,k=1 denote the positive triangle with σnk = 1 for k = 1, 2, . . .n and all n ≥ 1. Then
`1 = (`∞)[Σ] and `∞ is normal, and applying Proposition 2.1, we obtain A ∈ ([`(r), `p]<k(ν)>, `1) if and only if
SN(A) ∈ ([`(r), `p]<k(ν)>, `∞) where

(SN(A))m =
∑

n∈Nm

σmnAn, that is, (sN(A))m,k =
∑

n∈Nm

ank for all n and k.

Now it follows by (4) and (5) that SN(A) ∈ ([`(r), `p]<k(ν)>, `∞) if and only if

‖SN(A)‖B = sup
m

 max
Nm⊂{1,...,m}

h̃(s),q

∑
n∈Nm

An/B





= sup
m

 max
Nm⊂{1,...,m}

∞∑
ν=0

∥∥∥∥∥∥∥
∑

n∈Nm

An


<ν>∥∥∥∥∥∥∥

sν

q

B−sν

 < ∞ for some integer B > 1, when rν > 1 for all ν

and

‖ΣA‖ = sup
m

 max
Nm⊂{1,...,m}

sup
ν

∥∥∥∥∥∥∥
∑

n∈Nm

An


ν∥∥∥∥∥∥∥

rν

q


 < ∞, when rν ≤ 1 for all ν.

It is easy to see that these conditions are equivalent to those in (17) and (18), respectively.

Finally, we characterize the classes A ∈ ([`(r), `p]<k(ν)>, bs) and A ∈ ([`(r), `p]<k(ν)>, cs).

Example 3.3. We observe that bs = (`∞)Σ and cs = cΣ. Applying [6, Theorem 1] with T = Σ we obtain
A ∈ ([`(r), `p]<k(ν)>, bs) and A ∈ ([`(r), `p]<k(ν)>, cs) if and only if C = Σ · A ∈ ([`(r), `p]<k(ν)>, `∞) and C ∈
([`(r), `p]<k(ν)>, c), where cnk =

∑n
j=1 a jk for all n and k. The characterizations of the classes A ∈ ([`(r), `p]<k(ν)>, bs)

and A ∈ ([`(r), `p]<k(ν)>, cs) are given by replacing the entries of the matrix A in (4), (5) and (15) by the entries of the
matrix C.

4. Applications, Special Cases and Visualizations

First, we apply the results of Section 3 to obtain some known results as special cases.

Example 4.1. If 1 < m = infν rν ≤ rν ≤ M = supν rν < ∞ for all ν, then the conditions in (4) for A ∈
([`(r), `p]<k(ν)>, `∞), A ∈ ([`(r), `p]<k(ν)>, c) and A ∈ ([`(r), `p]<k(ν)>, c0), and in (17) for A ∈ ([`(r), `p]<k(ν)>, `1) can
be replaced by

‖A‖1 = sup
n

(
h̃(s),q(An)

)
= sup

n

∞∑
ν=0

‖A<ν>
n ‖

sν
q < ∞

and

‖ΣA‖1 = sup
N ⊂ IN
N finite

h̃(s),q

∑
n∈N

An


 = sup

N ⊂ IN
N finite

∞∑
ν=0

∥∥∥∥∥∥∥
∑

n∈N

An


<ν>∥∥∥∥∥∥∥

sν

q

< ∞,

respectively.
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Proof. Since

t =
m

M − 1
≤ sν =

rν
rν − 1

≤
M

m − 1
= t for all ν,

it follows that

‖A<ν>
n ‖

sν
q B−t

≤ ‖A<ν>
n ‖

sν
q B−sν ≤ ‖A<ν>

n ‖
sν
q B−t for every integer B > 1, and for all ν and n,

and the statement of the example is an immediate consequence.

Example 4.2. (a) Let rν = r ≥ 1 (ν = 0, 1, . . . ) and 1 ≤ p ≤ ∞. Then the spaces [`(r), `p]<k(ν)> reduce to the mixed
norm spaces `(r, p) = [`r, `p]<ν> ([7, Example 2.8 (a)]).
We obtain the characterizations of the classes (`(1, p), `∞), (`(1, p), c) and (`(1, p), c0) by replacing the condition in (5)
by

‖A‖ = sup
n

∥∥∥∥(‖A<ν>
n ‖q

)∞
ν=0

∥∥∥∥
∞

= sup
n,ν
‖A<ν>

n ‖q < ∞,

and of the class (`(1, p), `1) by replacing the condition in (18) by

‖ΣA‖ = sup
N ⊂ IN
N finite

∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥
∑

n∈N

An


<ν>∥∥∥∥∥∥∥

q


∞

ν=0

∥∥∥∥∥∥∥∥
∞

= sup
N ⊂ IN
N finite

sup
ν

∥∥∥∥∥∥∥
∑

n∈N

An


<ν>∥∥∥∥∥∥∥

q

 < ∞.
For r > 1 and s = r/(r − 1), we obtain the characterizations of the classes (`(r, p), `∞), (`(r, p), c) and (`(r, p), c0) by
replacing the condition in (4) by

‖A‖ = sup
n

∥∥∥∥(‖A<ν>
n ‖q

)∞
ν=0

∥∥∥∥s

s
= sup

n

∞∑
ν=0

‖A<ν>
n ‖

s
q < ∞

and of the class (`(r, p), `1) by replacing the condition in (17) by

‖ΣA‖ = sup
N ⊂ IN
N finite

∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥
∑

n∈N

An


<ν>∥∥∥∥∥∥∥

q


∞

ν=0

∥∥∥∥∥∥∥∥
s

s

= sup
N ⊂ IN
N finite

 ∞∑
ν=0

∥∥∥∥∥∥∥
∑

n∈N

An


<ν>∥∥∥∥∥∥∥

s

q

 < ∞.
The characterizations of the classes (`(r, p), `∞), (`(r, p), c0) and (`(r, p), `1) for 1 < r < ∞ and 1 < p ≤ ∞ were given
in [4, Corollary 4.5 (1.), (2.) and (3.)].
(b) Let rν > 1, k(ν) = 2ν for ν = 0, 1, . . . and u = (uk)∞k=1 be the sequence with uk = 2−ν/sν (k ∈ Kν; ν = 0, 1, . . . ). We
consider the sets

ces(r) = u−1
∗ [`(r), `1]<k(ν)> =

x ∈ ω :
∞∑
ν=0

2ν(1−rν)

2ν+1
−1∑

k=2ν
|xk|


rν

< ∞

 ,
which reduce to the Cesàro sequence spaces cesr for rk = r > 1 (k = 1, 2, . . . ) [3]. Since, for all v ∈ U and all X,Y ⊂ ω,
obviously A ∈ (v−1

∗ X,Y) if and only if C ∈ (X,Y), where cnk = ank/vk for all n and k, the characterizations of the
classes (ces(r),Y) for Y ∈ {`∞, c.c0, `1} can immediately be obtained from the corresponding ones for ([`(r), `1]<k(ν)>,Y).

Example 4.3. Let r = (rν)∞ν=0 be any bounded sequence of positive real numbers and 1 ≤ p ≤ ∞. If k(ν) = ν + 1 for
ν = 0, 1, . . . , then we have [`(r), `p]<k(ν)> = `(r) ([7, Example 2.9]). The characterizations of the classes (`(r), `∞),
(`(r), c) and (`(r), c0) can be obtained by replacing the conditions in (4) for rν > 1 and in (5) for rν ≤ 1 by

‖A‖B = sup
k

(
h̃(s)(An/B)

)
= sup

k

∞∑
k=1

|ank|
sk B−sk < ∞ for some integer B > 1
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and ‖A‖ = supn,k |ank|
rk < ∞, respectively. The characterizations of these classes can be found in ([5, Theorem 1 and

Corollary]). Finally, the characterization of the class (`(r), `1) can be obtained by replacing the conditions in (17) for
rν > 1 and in (18) for rν ≤ 1 by

‖ΣA‖B = sup
N ⊂ IN
N finite

h̃(s)

∑
n∈N

(An/B)


 = sup

N ⊂ IN
N finite

∞∑
k=1

∣∣∣∣∣∣∣∑n∈N ank

∣∣∣∣∣∣∣
sk

B−sk < ∞ for some integer B > 1

and

‖A‖ = sup
N ⊂ IN
N finite

sup
k

∣∣∣∣∣∣∣∑n∈N ank

∣∣∣∣∣∣∣
rk < ∞,

respectively.

Finally, we visualize the projections on the first three coordinates of some neighbourhoods B̄1(0) in
several spaces [`(r), `p]<k(ν)>.

Figure 1: Left r0 = 3/4, r1 = 4/5, p = 7/5. Right (dual) r0 = 3, r1 = 5, p = 7/2.

Figure 2: Left r0 = 1/2, r1 = 2, p = 3. Right r0 = 2, r1 = 1/2, p = 3.
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Figure 3: Left r0 = 1/2, r1 = 1, p = 3. Right r0 = 1, r1 = 1/2, p = 3. Bottom r0 = 1/2, r1 = 1/2, p = 3
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[7] E. Malkowsky, F. Özger, V. Veličković, Some Mixed Paranorm Spaces, Filomat, in press.
[8] E. Malkowsky, V. Rakočević, The measure of noncompactness of linear operators between certain sequence spaces, Acta Sci.

Math. (Szeged), 64 (1998), 151–170.
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