Filomat 31:10 (2017), 2951–2956 https://doi.org/10.2298/FIL1710951C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Suzuki-Type Common Fixed Point Theorem

N. Chandra^a, M.C. Arya^a, Mahesh C. Joshi^a

^aDept. of Mathematics, Kumaun University, Nainital, India

Abstract. In this paper we establish a common fixed point theorem for two maps under the generalized contractive condition in a complete metric spaces.

1. Introduction

Let (X, d) be a metric space and $T : X \to X$ be a mapping. If there exists a nonnegative real number α such that $\alpha < 1$ and $d(Tx, Ty) \le \alpha d(x, y)$ for all $x, y \in X$, then T is called the contraction mapping. In 1922, Banach [1] proved a very fascinated theorem which is known as "Banach Contraction Principle" and stated as "*A contraction map on a complete metric space has a unique fixed point*". This theorem is a very important because it is a very forceful tool in nonlinear analysis and has wide applications in various areas of study. It has been generalized by many authors in many different directions; see ([2], [3], [4], [13], [15], [16] and references therein). Connell [5] gave an example of a metric space such that X is not complete even every contraction on X has a fixed point. Hence, Banach theorem cannot characterize the metric completeness of X.

Suzuki [16] gave a very interesting result which is the weaker version of Banach contraction principle and also characterizes the completeness of underlying metric spaces. Suzuki proved the following result.

Theorem 1.1. Let (X, d) be a complete metric space, T be a mapping on X. Define a non-increasing function $\theta : [0, 1) \rightarrow (\frac{1}{2}, 1]$ by

$$\theta(r) = \begin{cases} 1 & if \ 0 \le r \le \frac{\sqrt{5}-1}{2} \\ \frac{1-r}{r^2} & if \ \frac{\sqrt{5}-1}{2} \le r \le \frac{1}{\sqrt{2}} \\ \frac{1}{1+r} & if \ \frac{1}{\sqrt{2}} \le r < 1. \end{cases}$$
(1)

Assume that there exists $r \in [0, 1)$ such that

 $\theta(r)d(x,Tx) \le d(x,y)$ implies $d(Tx,Ty) \le r d(x,y)$

for each $x, y \in X$. Then there exists a unique fixed point z of T. Moreover, $\lim_{n\to\infty} T^n x = z$ for all $x \in X$.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Keywords. Fixed point, common fixed point and Suzuki-type fixed point theorem

Received: 28 September 2016; Accepted: 07 December 2016

Communicated by Dragan Djurčić

Email addresses: cnaveen329@gmail.com (N. Chandra), mcarya1986@gmail.com (M.C. Arya), mcjoshi69@gmail.com (Mahesh C. Joshi)

Suzuki's result gave a new direction to the subject and as a result, researchers made many important contributions in metric fixed point theory. Several authors obtained variations and refinements of the result due to Suzuki; see ([6], [7], [8], [9], [10], [11], [12], [14] and references therein).

Recently, Kim et al. [12] obtained a common fixed point theorem for two maps *T* and *S* on a complete metric spaces *X* satisfying the following generalized contractive condition:

 $\theta(r)min\{d(x,Tx),d(x,Sx)\} \le d(x,y)$ implies

 $max \{d(Sx, Sy), d(Tx, Ty), d(Sx, Ty), d(Sy, Tx)\} \le r d(x, y).$

for each $x, y \in X$, where θ is defined as in (1).

Now, we prove our main result by taking a new generalized contractive condition for two maps in complete metric spaces.

2. Main Results

Theorem 2.1. Let (X, d) be a complete metric space. Let $T, S : X \to X$ be two self maps and $\theta : [0, 1) \to (\frac{1}{2}, 1]$ be defined by (1). Assume that there exists $r \in [0, \frac{1}{2})$ such that

 $\theta(r)min\{d(x,Tx), d(x,Sx)\} \le d(x,y)$ implies

$$max\left\{d(Sx, Sy), d(Tx, Ty), \frac{1}{2}[d(Sx, Ty) + d(Sy, Tx)]\right\} \le r \, d(x, y),\tag{2}$$

for each $x, y \in X$. Then there exists a unique common fixed point of T and S.

Proof. First, we prove that if z is a fixed point of T, then it is also fixed point of S and vice versa. Let z be a fixed point of T. Taking x = z and y = Tz in (2), we get

 $0 = \theta(r)min\{d(z, Tz), d(z, Sz)\} \le d(z, Tz) \text{ implies}$

$$max\left\{d(Sz, STz), d(Tz, T^2z), \frac{1}{2}[d(Sz, T^2z) + d(STz, Tz)]\right\} \le r d(z, Tz) = 0.$$

Hence

$$max\{d(Sz, Sz), d(z, z), \frac{1}{2}[d(Sz, z) + d(Sz, z)]\} \le 0$$

implies d(Sz, z) = 0, i.e., z is a fixed point of S also. Similarly, we can show that if z is a fixed point of S, then it is also fixed point of T. Now to prove our theorem, it is enough to show that T or S has a fixed point. Putting y = Sx in (2), we get,

$$\theta(r)min\{d(x,Tx),d(x,Sx)\} \le d(x,Sx)$$

implies

$$max\left\{d(Sx, S^2x), d(Tx, TSx), \frac{1}{2}[d(Sx, TSx) + d(S^2x, Tx)]\right\} \le r d(x, Sx) \qquad \forall x \in X.$$

Hence,

$$\frac{1}{2}d(Sx, TSx) \le \frac{1}{2}[d(Sx, TSx) + d(S^2x, Tx)] \le r \, d(x, Sx).$$

(3)

Now, putting y = Tx in (2), we get

 $\theta(r)min\{d(x,Tx),d(x,Sx)\} \le d(x,Tx)$

implies

$$max\left\{d(Sx,STx),d(Tx,T^2x),\frac{1}{2}[d(Sx,T^2x)+d(STx,Tx)]\right\} \le r\,d(x,Tx) \qquad \forall x \in X.$$

Hence, we have

$$d(Tx, T^2x) \le r \, d(x, Tx),\tag{4}$$

and

$$\frac{1}{2}d(Tx, STx) \le \frac{1}{2}[d(Sx, T^2x) + d(STx, Tx)] \le r \, d(x, Tx).$$
(5)

Now let us take an arbitrary $x_0 \in X$. Construct a sequence $\{x_n\}$ such that $x_{2n+1} = Sx_{2n}$ and $x_{2n+2} = Tx_{2n+1}$ for $n \in \mathbb{N} \cup \{0\}$. From (5), we get

$$d(x_{2n}, x_{2n+1}) = d(Tx_{2n-1}, STx_{2n-1})$$

$$\leq 2r d(x_{2n-1}, Tx_{2n-1})$$

$$= 2r d(x_{2n-1}, x_{2n})$$

And also, from (3), we get

$$d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, TSx_{2n})$$

$$\leq 2r d(x_{2n}, Sx_{2n})$$

$$= 2r d(x_{2n}, x_{2n+1})$$

Therefore, for each $n \in \mathbb{N} \cup \{0\}$, we have

$$d(x_n, x_{n+1}) \le 2r \, d(x_{n-1}, x_n). \tag{6}$$

For each $m \ge n$, we have

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\leq (2r)^n d(x_0, x_1) + (2r)^{n+1} d(x_0, x_1) + \dots + (2r)^{m-1} d(x_0, x_1)$$

$$= (2r)^n (1 + 2r + \dots + (2r)^{m-n-1}) d(x_0, x_1)$$

$$\leq \frac{(2r)^n}{1 - 2r} d(x_0, x_1) \to 0 \quad \text{as } n \to \infty.$$

Hence $\{x_n\}$ is a Cauchy sequence. Since X is a complete metric space, there exists $z \in X$ such that $\{x_n\}$ converges to a point $z \in X$, i.e.

 $\lim_{n \to \infty} Sx_{2n} = \lim_{n \to \infty} x_{2n+1} = z$ and $\lim_{n \to \infty} Tx_{2n+1} = \lim_{n \to \infty} x_{2n+2} = z.$

Now we consider $x, z \in X$ such that $x \neq z$. As $\lim_{n\to\infty} d(x_{2n+1}, Tx_{2n+1}) = 0$ and $\lim_{n\to\infty} d(x_{2n+1}, x) \neq 0$, therefore there exists some $x_{2n_k+1} \in X$ such that

 $\theta(r)\min\{d(x_{2n_k+1}, Sx_{2n_k+1}), d(x_{2n_k+1}, Tx_{2n_k+1})\} \le d(x_{2n_k+1}, x)$

implies

$$max\{d(Sx_{2n_{k}+1}, Sx), d(Tx_{2n_{k}+1}, Tx), \frac{1}{2}[d(Sx_{2n_{k}+1}, Tx) + d(Sx, Tx_{2n_{k}+1})]\} \le r d(x_{2n_{k}+1}, x)$$

$$\Rightarrow \quad d(Tx_{2n_{k}+1}, Tx) \le r d(x_{2n_{k}+1}, x).$$

Taking the limit as $n \to \infty$, we have

$$d(z, Tx) = \lim_{n \to \infty} d(Tx_{2n_k+1}, Tx) \le r \lim_{n \to \infty} d(x_{2n_k+1}, x) = r d(z, x).$$

2953

Therefore, for each $x \neq z$,

$$d(z,Tx) \le r \, d(z,x). \tag{7}$$

Now by induction, we prove that

$$d(T^n z, z) \le d(T z, z) \quad \forall \ n \in \mathbb{N}.$$
(8)

For n = 1, the inequality is obvious. Suppose, the inequality (8) is true for some $m \in \mathbb{N}$, i.e., $d(T^m z, z) \le d(Tz, z)$. Now, for n = m + 1, if $T^m z = z$, then

$$d(T^{m+1}z,z) = d(Tz,z).$$
(9)

If $T^m z \neq z$, then by (7),

$$d(T^{m+1}z,z) \le r \, d(T^m z,z) \le r \, d(Tz,z) < d(Tz,z).$$
⁽¹⁰⁾

Thus, (9) and (10) imply

 $d(T^{m+1}z,z) \le d(Tz,z).$

Hence, the inequality (8) holds for each $n \in \mathbb{N}$.

Let us assume that $Tz \neq z$. Now, we prove the following inequality by the principle of mathematical induction,

$$d(T^n z, Tz) \le r d(Tz, z) \tag{11}$$

for each $n \in \mathbb{N}$. For n = 1, it is obvious. Further, from (4) inequality (11) holds for n = 2. Suppose (11) holds for some n > 2, then we have

$$d(Tz,z) \leq d(z,T^nz) + d(T^nz,Tz)$$

$$\leq d(z,T^nz) + r d(Tz,z)$$

 \Rightarrow

$$(1-r)d(z,Tz) \le d(z,T^n z). \tag{12}$$

Since $0 \le r < \frac{1}{2}$, so $\theta(r) \le \frac{1-r}{r^2}$. Hence,

$$\begin{aligned} \theta(r)min\{d(ST^{n}z,T^{n}z),d(T^{n}z,T^{n+1}z)\} &\leq \frac{1-r}{r^{2}}d(T^{n}z,T^{n+1}z)\\ &\leq \frac{1-r}{r^{n}}d(T^{n}z,T^{n+1}z). \end{aligned}$$

Since inequality (11) holds for n = 2, so by (12), we have

$$\theta(r)\min\{d(ST^{n}z,T^{n}z),d(T^{n}z,T^{n+1}z)\} \le \frac{1-r}{r^{n}} \cdot r^{n}d(z,Tz) = (1-r)d(z,Tz) \le d(z,T^{n}z).$$

Which implies

$$max\{d(ST^{n}z, Sz), d(T^{n+1}z, Tz), \frac{1}{2}[d(ST^{n}z, Tz) + d(Sz, T^{n+1}z)]\} \le r d(z, T^{n}z).$$

Using (8), we obtain

 $d(T^{n+1}z,Tz) \leq r d(T^nz,z) \leq r d(Tz,z).$

So, the inequality (11) holds for each $n \in \mathbb{N}$. Now $Tz \neq z$ and (11) implies that $T^n z \neq z$ (if $T^n z = z$, then we find $d(T^n z, Tz) \leq r d(z, Tz)$ implies $d(z, Tz) \leq r d(z, Tz) < d(z, Tz)$, which is not possible).

Hance, (7) implies that

$$d(z, T^{n+1}z) \leq r d(z, T^n z) \leq r^2 d(z, T^{n-1}z) \leq \ldots \leq r^n d(z, Tz).$$

Hence, $\lim_{n\to\infty} d(z, T^{n+1}z) = 0 \implies T^n z \to z$. From this and (11), we have

$$d(z, Tz) = \lim_{n \to \infty} d(T^n z, Tz) \leq \lim_{n \to \infty} r d(z, Tz) = r d(Tz, z)$$

$$\Rightarrow \quad d(Tz, z) = 0.$$

Which is contrary to our assumption. Hence, Tz = z. As already proved z is fixed point of S also. Hence, Tz = Sz = z.

Finally, we prove the uniqueness of the fixed point. Let *z* and *z'* be two common fixed points of *T* and *S*, such that $z \neq z'$. Taking x = z and y = z' in (2), we get

$$0 = \theta(r)min\{d(z, Tz), d(z, Sz)\} \le d(z, z')$$

implies

$$\max \left\{ d(Sz, Sz'), d(Tz, Tz'), \frac{1}{2} [d(Sz, Tz') + d(Tz, Sz')] \right\} \le r d(z, z')$$

$$\Rightarrow \max \left\{ d(z, z'), d(z, z'), \frac{1}{2} [d(z, z') + d(z, z')] \right\} \le r d(z, z')$$

$$\Rightarrow d(z, z') \le r d(z, z') < d(z, z')$$

which is not possible. Hence z = z'. This completes the proof. \Box

Taking S = T, we get following Suzuki type result [16]:

Corollary 2.2. Let (X, d) be a complete metric space. If $T : X \to X$ be a self mapping and $\theta : [0, 1) \to (\frac{1}{2}, 1]$ is defined by (1). Assume that there exists $r \in [0, \frac{1}{2})$ such that for each $x, y \in X$,

 $\theta(r)d(x,Tx) \le d(x,y)$ implies $d(Tx,Ty) \le r d(x,y)$.

Then T has a unique fixed point $z \in X$ *.*

In place of two maps taking three maps in our main result, we obtain the following result as a consequence of Theorem 2.1 with commutativity as an extra condition imposed on maps.

Corollary 2.3. Let (X, d) be a complete metric space. If $f, S, T : X \to X$ be three maps and $\theta : [0, 1) \to (\frac{1}{2}, 1]$ be defined by (1). Assume that there exists $r \in [0, \frac{1}{2})$ such that for each $x, y \in X$,

$$\theta(r)\min\{d(x, fTx), d(x, fSx)\} \le d(x, y)$$

implies

$$\max\{d(fSx, fSy), d(fTx, fTy), \frac{1}{2}[d(fSx, fTy) + d(fSy, fTx)]\} \le r d(x, y).$$
(13)

And, if f is one-one, fS = Sf and fT = Tf, then f, T and S have a unique common fixed point $z \in X$.

Proof. Considering fS and fT as two maps in the given contractive condition of Theorem 2.1, we get a unique common fixed point for fS and fT, i.e., fSz = fTz = z. Since f is one-one,

$$fSz = fTz = z \implies Sz = Tz. \tag{14}$$

From (13), we get

$$0 = \theta(r)min\{d(z, fTz), d(z, fSz)\} \le d(z, Tz)$$

implies

$$\begin{aligned} \max\{d(fSz, fSTz), d(fTz, fT^2z), \frac{1}{2}[d(fSz, fT^2z) + d(fSTz, fTz)]\} &\leq r \, d(z, Tz) \\ \Rightarrow \max\{d(fSz, SfTz), d(fTz, TfTz), \frac{1}{2}[d(fSz, TfTz) + d(SfTz, fTz)]\} &\leq r \, d(z, Tz) \\ \Rightarrow \max\{d(z, Sz), d(z, Tz), \frac{1}{2}[d(z, Tz) + d(z, Sz)]\} &\leq r \, d(z, Tz) \\ \Rightarrow d(z, Tz) &\leq r \, d(z, Tz) \\ \Rightarrow d(Tz, z) &= 0. \end{aligned}$$

Hence *z* is a common fixed point of *f*, *S* and *T*. \Box

References

- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. math., 3(1922), 133-181.
- [2] D. W. Boyd and J. S. Wong, on nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458-469.
- [3] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 45(1976), 241-251.
- [4] Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
- [5] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10(1959), 974-979.
- [6] D. Dorić and R. Lazović, Some Suzuki-type fixed point theorem for generalized multivalued mappings and applications, Fixed Point Theory and Appl. 2011, 2011:40, doi:10.11861687-1812-2011-40.
- [7] D. Dorić, Z. Kadelburg and S. Radenović, Edelstein- Suzuki-type fixed point results in metric and abstract metric spaces, Nonlinear Anal. TMA, 75(2012), 1927-1932.
- [8] N. Hussain, D. Dorić, Z. Kadelburg and S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., doi:10.1186/1687-1812-2012-126, 2012.
- [9] M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl., vol. 2008, Article ID 649749, 8 pp.
- [10] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. TMA, 69(2008), 2942-2949.
- [11] M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, Bull. of the Kyushu Institute of Technology, Pure and Applied mathematics, 56(2009), 11-18.
- [12] J. K. Kim, S. Sedghi and N. Shobkolaei, Suzuki-type of common fixed point theorems in metric spaces, J. Non. Conv. Anal., 16(2015), 1779-1786.
- [13] A. Meir and E, Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326-329.
- [14] O. Popescu, "Two fixed point theorems for generalized contractions with constants ij complete metric spaces, Central European Journal of Mathematics, 7(2008), 529-538.
- [15] P. V. Subrahmanyam, Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phy. Sci., 8(1974), 445-457.
- [16] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.