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A Suzuki-Type Common Fixed Point Theorem
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Abstract. In this paper we establish a common fixed point theorem for two maps under the generalized
contractive condition in a complete metric spaces.

1. Introduction

Let (X, d) be a metric space and T : X → X be a mapping. If there exists a nonnegative real number α
such that α < 1 and d(Tx,Ty) ≤ α d(x, y) for all x, y ∈ X, then T is called the contraction mapping. In 1922,
Banach [1] proved a very fascinated theorem which is known as “Banach Contraction Principle” and stated
as “A contraction map on a complete metric space has a unique fixed point”. This theorem is a very important
because it is a very forceful tool in nonlinear analysis and has wide applications in various areas of study.
It has been generalized by many authors in many different directions; see ([2], [3], [4], [13], [15], [16] and
references therein). Connell [5] gave an example of a metric space such that X is not complete even every
contraction on X has a fixed point. Hence, Banach theorem cannot characterize the metric completeness of
X.

Suzuki [16] gave a very interesting result which is the weaker version of Banach contraction principle
and also characterizes the completeness of underlying metric spaces. Suzuki proved the following result.

Theorem 1.1. Let (X, d) be a complete metric space, T be a mapping on X. Define a non-increasing function
θ : [0, 1)→ ( 1

2 , 1] by

θ(r) =


1 if 0 ≤ r ≤

√
5−1
2

1−r
r2 if

√
5−1
2 ≤ r ≤ 1

√
2

1
1+r if 1

√
2
≤ r < 1.

(1)

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤ r d(x, y)

for each x, y ∈ X. Then there exists a unique fixed point z of T. Moreover, limn→∞ Tnx = z for all x ∈ X.
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Suzuki’s result gave a new direction to the subject and as a result, researchers made many important
contributions in metric fixed point theory. Several authors obtained variations and refinements of the result
due to Suzuki; see ([6], [7], [8], [9], [10], [11], [12], [14] and references therein).

Recently, Kim et al. [12] obtained a common fixed point theorem for two maps T and S on a complete
metric spaces X satisfying the following generalized contractive condition:

θ(r)min{d(x,Tx), d(x,Sx)} ≤ d(x, y) implies

max
{
d(Sx,Sy), d(Tx,Ty), d(Sx,Ty), d(Sy,Tx)

}
≤ r d(x, y).

for each x, y ∈ X, where θ is defined as in (1).
Now, we prove our main result by taking a new generalized contractive condition for two maps in

complete metric spaces.

2. Main Results

Theorem 2.1. Let (X, d) be a complete metric space. Let T,S : X → X be two self maps and θ : [0, 1) → ( 1
2 , 1] be

defined by (1). Assume that there exists r ∈ [0, 1
2 ) such that

θ(r)min{d(x,Tx), d(x,Sx)} ≤ d(x, y) implies

max
{
d(Sx,Sy), d(Tx,Ty),

1
2

[d(Sx,Ty) + d(Sy,Tx)]
}
≤ r d(x, y), (2)

for each x, y ∈ X. Then there exists a unique common fixed point of T and S.

Proof. First, we prove that if z is a fixed point of T, then it is also fixed point of S and vice versa. Let z be a
fixed point of T. Taking x = z and y = Tz in (2), we get

0 = θ(r)min{d(z,Tz), d(z,Sz)} ≤ d(z,Tz) implies

max
{
d(Sz,STz), d(Tz,T2z),

1
2

[d(Sz,T2z) + d(STz,Tz)]
}
≤ r d(z,Tz) = 0.

Hence

max{d(Sz,Sz), d(z, z),
1
2

[d(Sz, z) + d(Sz, z)]} ≤ 0

implies d(Sz, z) = 0, i.e., z is a fixed point of S also. Similarly, we can show that if z is a fixed point of S, then
it is also fixed point of T. Now to prove our theorem, it is enough to show that T or S has a fixed point.
Putting y = Sx in (2), we get,

θ(r)min{d(x,Tx), d(x,Sx)} ≤ d(x,Sx)

implies

max
{
d(Sx,S2x), d(Tx,TSx),

1
2

[d(Sx,TSx) + d(S2x,Tx)]
}
≤ r d(x,Sx) ∀x ∈ X.

Hence,

1
2

d(Sx,TSx) ≤
1
2

[d(Sx,TSx) + d(S2x,Tx)] ≤ r d(x,Sx). (3)

Now, putting y = Tx in (2), we get

θ(r)min{d(x,Tx), d(x,Sx)} ≤ d(x,Tx)
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implies

max
{
d(Sx,STx), d(Tx,T2x),

1
2

[d(Sx,T2x) + d(STx,Tx)]
}
≤ r d(x,Tx) ∀x ∈ X.

Hence, we have

d(Tx,T2x) ≤ r d(x,Tx), (4)

and

1
2

d(Tx,STx) ≤
1
2

[d(Sx,T2x) + d(STx,Tx)] ≤ r d(x,Tx). (5)

Now let us take an arbitrary x0 ∈ X. Construct a sequence {xn} such that x2n+1 = Sx2n and x2n+2 = Tx2n+1
for n ∈N ∪ {0}. From (5), we get

d(x2n, x2n+1) = d(Tx2n−1,STx2n−1)
≤ 2r d(x2n−1,Tx2n−1)
= 2r d(x2n−1, x2n)

And also, from (3), we get

d(x2n+1, x2n+2) = d(Sx2n,TSx2n)
≤ 2r d(x2n,Sx2n)
= 2r d(x2n, x2n+1)

Therefore, for each n ∈N ∪ {0}, we have

d(xn, xn+1) ≤ 2r d(xn−1, xn). (6)

For each m ≥ n, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xm−1, xm)
≤ (2r)nd(x0, x1) + (2r)n+1d(x0, x1) + . . . + (2r)m−1d(x0, x1)
= (2r)n(1 + 2r + . . . + (2r)m−n−1)d(x0, x1)

≤
(2r)n

1 − 2r
d(x0, x1)→ 0 as n→∞.

Hence {xn} is a Cauchy sequence. Since X is a complete metric space, there exists z ∈ X such that {xn}

converges to a point z ∈ X, i.e.

lim
n→∞

Sx2n = lim
n→∞

x2n+1 = z

and lim
n→∞

Tx2n+1 = lim
n→∞

x2n+2 = z.

Now we consider x, z ∈ X such that x , z. As limn→∞ d(x2n+1,Tx2n+1) = 0 and limn→∞ d(x2n+1, x) , 0,
therefore there exists some x2nk+1 ∈ X such that

θ(r)min{d(x2nk+1,Sx2nk+1), d(x2nk+1,Tx2nk+1)} ≤ d(x2nk+1, x)

implies

max{d(Sx2nk+1,Sx), d(Tx2nk+1,Tx),
1
2

[d(Sx2nk+1,Tx) + d(Sx,Tx2nk+1)]} ≤ r d(x2nk+1, x)

⇒ d(Tx2nk+1,Tx) ≤ r d(x2nk+1, x).

Taking the limit as n→∞, we have

d(z,Tx) = lim
n→∞

d(Tx2nk+1,Tx) ≤ r limn→∞d(x2nk+1, x) = r d(z, x).
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Therefore, for each x , z,

d(z,Tx) ≤ r d(z, x). (7)

Now by induction, we prove that

d(Tnz, z) ≤ d(Tz, z) ∀ n ∈N. (8)

For n = 1, the inequality is obvious. Suppose, the inequality (8) is true for some m ∈ N, i.e., d(Tmz, z) ≤
d(Tz, z). Now, for n = m + 1, if Tmz = z, then

d(Tm+1z, z) = d(Tz, z). (9)

If Tmz , z, then by (7),

d(Tm+1z, z) ≤ r d(Tmz, z) ≤ r d(Tz, z) < d(Tz, z). (10)

Thus, (9) and (10) imply

d(Tm+1z, z) ≤ d(Tz, z).

Hence, the inequality (8) holds for each n ∈N.
Let us assume that Tz , z. Now, we prove the following inequality by the principle of mathematical

induction,

d(Tnz,Tz) ≤ r d(Tz, z) (11)

for each n ∈N. For n = 1, it is obvious. Further, from (4) inequality (11) holds for n = 2. Suppose (11) holds
for some n > 2, then we have

d(Tz, z) ≤ d(z,Tnz) + d(Tnz,Tz)
≤ d(z,Tnz) + r d(Tz, z)

⇒

(1 − r)d(z,Tz) ≤ d(z,Tnz). (12)

Since 0 ≤ r < 1
2 , so θ(r) ≤ 1−r

r2 . Hence,

θ(r)min{d(STnz,Tnz), d(Tnz,Tn+1z)} ≤
1 − r

r2 d(Tnz,Tn+1z)

≤
1 − r

rn d(Tnz,Tn+1z).

Since inequality (11) holds for n = 2, so by (12), we have

θ(r)min{d(STnz,Tnz), d(Tnz,Tn+1z)} ≤
1 − r

rn .rnd(z,Tz) = (1 − r)d(z,Tz) ≤ d(z,Tnz).

Which implies

max{d(STnz,Sz), d(Tn+1z,Tz),
1
2

[d(STnz,Tz) + d(Sz,Tn+1z)]} ≤ r d(z,Tnz).

Using (8), we obtain

d(Tn+1z,Tz) ≤ r d(Tnz, z) ≤ r d(Tz, z).

So, the inequality (11) holds for each n ∈ N. Now Tz , z and (11) implies that Tnz , z (if Tnz = z, then we
find d(Tnz,Tz) ≤ r d(z,Tz) implies d(z,Tz) ≤ r d(z,Tz) < d(z,Tz), which is not possible).
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Hance, (7) implies that

d(z,Tn+1z) ≤ r d(z,Tnz) ≤ r2d(z,Tn−1z) ≤ . . . ≤ rnd(z,Tz).

Hence, limn→∞ d(z,Tn+1z) = 0 ⇒ Tnz→ z. From this and (11), we have

d(z,Tz) = lim
n→∞

d(Tnz,Tz) ≤ lim
n→∞

r d(z,Tz) = r d(Tz, z)

⇒ d(Tz, z) = 0.

Which is contrary to our assumption. Hence, Tz = z. As already proved z is fixed point of S also. Hence,
Tz = Sz = z.
Finally, we prove the uniqueness of the fixed point. Let z and z′ be two common fixed points of T and S,
such that z , z′. Taking x = z and y = z′ in (2), we get

0 = θ(r)min{d(z,Tz), d(z,Sz)} ≤ d(z, z′)

implies

max
{
d(Sz,Sz′), d(Tz,Tz′),

1
2

[d(Sz,Tz′) + d(Tz,Sz′)]
}
≤ r d(z, z′)

⇒ max
{
d(z, z′), d(z, z′),

1
2

[d(z, z′) + d(z, z′)]
}
≤ r d(z, z′)

⇒ d(z, z′) ≤ r d(z, z′) < d(z, z′)

which is not possible. Hence z = z′. This completes the proof.

Taking S = T, we get following Suzuki type result [16]:

Corollary 2.2. Let (X, d) be a complete metric space. If T : X → X be a self mapping and θ : [0, 1) → ( 1
2 , 1] is

defined by (1). Assume that there exists r ∈ [0, 1
2 ) such that for each x, y ∈ X,

θ(r)d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤ r d(x, y).

Then T has a unique fixed point z ∈ X.

In place of two maps taking three maps in our main result, we obtain the following result as a consequence
of Theorem 2.1 with commutativity as an extra condition imposed on maps.

Corollary 2.3. Let (X, d) be a complete metric space. If f ,S,T : X → X be three maps and θ : [0, 1) → ( 1
2 , 1] be

defined by (1). Assume that there exists r ∈ [0, 1
2 ) such that for each x, y ∈ X,

θ(r) min{d(x, f Tx), d(x, f Sx)} ≤ d(x, y)

implies

max{d( f Sx, f Sy), d( f Tx, f Ty),
1
2

[d( f Sx, f Ty) + d( f Sy, f Tx)]} ≤ r d(x, y). (13)

And, if f is one-one, f S = S f and f T = T f , then f ,T and S have a unique common fixed point z ∈ X.

Proof. Considering f S and f T as two maps in the given contractive condition of Theorem 2.1, we get a
unique common fixed point for f S and f T, i.e., f Sz = f Tz = z. Since f is one-one,

f Sz = f Tz = z ⇒ Sz = Tz. (14)

From (13), we get

0 = θ(r)min{d(z, f Tz), d(z, f Sz)} ≤ d(z,Tz)
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implies

max{d( f Sz, f STz), d( f Tz, f T2z),
1
2

[d( f Sz, f T2z) + d( f STz, f Tz)]} ≤ r d(z,Tz)

⇒ max{d( f Sz,S f Tz), d( f Tz,T f Tz),
1
2

[d( f Sz,T f Tz) + d(S f Tz, f Tz)]} ≤ r d(z,Tz)

⇒ max{d(z,Sz), d(z,Tz),
1
2

[d(z,Tz) + d(z,Sz)]} ≤ r d(z,Tz)

⇒ d(z,Tz) ≤ r d(z,Tz)
⇒ d(Tz, z) = 0.

Hence z is a common fixed point of f ,S and T.
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