Published by Faculty of Sciences and Mathematics,

On 2-Absorbing Quasi Primary Submodules

Suat Koc ${ }^{\text {a }}$, Rabia Nagehan Uregen ${ }^{\text {b }}$, Unsal Tekir ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Marmara University, Istanbul, Turkey
${ }^{b}$ Graduate School of Natural and Applied Sciences, Yildiz Technical University, Istanbul, Turkey

Abstract

Let R be a commutative ring with nonzero identity, and let M be a nonzero unital R-module. In this article, we introduce the concept of 2-absorbing quasi primary submodules which is a generalization of prime submodules. We define 2 -absorbing quasi primary submodule as a proper submodule N of M having the property that $a b m \in N$, then $a b \in \sqrt{\left(N:_{R} M\right)}$ or $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$. Various results and examples concerning 2-absorbing quasi primary submodules are given.

1. Introduction

It is well known that prime submodules play an important role in the theory of modules over commutative rings. So far there has been a lot of research on this issue. For various studies one can look [2-3,7-8]. One of the main interest of many researchers is to generalize the notion of prime submodule by using different ways. For instance, 2-absorbing submodule which is a generalization of prime submodules was firstly introduced and studied in [9], after that another generalization, which is called 2-absorbing primary submodule was studied in [15].

Throughout this paper all rings under consideration are commutative with nonzero identity and all modules are nonzero unital. In addition, R always denotes such a ring and M denotes such an R-module. Suppose that I is an ideal of R and N is a submodule of M. Then the radical of I, denoted by \sqrt{I}, is defined as intersection of all prime ideals containing I and equally consists of all elements a of R whose some power in I, i.e, $\left\{a \in R: a^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$. Also, the ideal $\left(N:_{R} M\right)$ is defined as $\{a \in R: a M \subseteq N\}$, and for every $a \in R$, the submodule $\left(N:_{M} a\right)$ is defined to be $\{m \in M: a m \in N\}$. Similar to radical of an ideal, radical of a submodule of a given R-module M can be identified. If there is any prime submodule P of M that contains N, then the intersection of all prime submodules containing N is denoted by $\operatorname{rad}_{M}(N)$. Otherwise, that is if there is no prime submodule containing N, say $\operatorname{rad}_{M}(N)=M$. Recall that a submodule N of M is a prime submodule if whenever $N \neq M$ and $a m \in N$, then either $a \in\left(N:_{R} M\right)$ or $m \in N$. A proper submodule N of M is defined as 2-absorbing submodule if for every $a, b \in R, m \in M$ and whenever $a b m \in N$, then either $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. Also recall that a proper submodule N of M is said to be a 2-absorbing primary submodule if the condition $a b m \in N$ implies either $a b \in\left(N:_{R} M\right)$ or $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$.

[^0]This paper is based on introducing a new class of submodules, which is called 2-absorbing quasi primary submodules, and studying its properties. We define a proper submodule N of M a 2-absorbing quasi primary submodule if whenever $a b m \in N$, then either $a b \in \sqrt{\left(N:_{R} M\right)}$ or $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$ for each $a, b \in R$ and $m \in M$. Among many other results in this paper, we show in Example 2.2 a 2-absorbing quasi primary submodule is not necessarily 2 -absorbing submodule and 2-absorbing primary submodule. In Theorem 2.4, we characterize all homogeneous 2 -absorbing quasi primary ideals of idealization of a module. We remind the reader that an R-module M is a multiplication if every submodule N of M has the form $N=I M$ for some ideal I of R [6]. In addition, it is easy to see that $N=\left(N:_{R} M\right) M$ in case $N=I M$ for some ideal I of R. Suppose that M is multiplication R-module, $N=I M$ and $K=J M$ for ideals I, J of R, then product of submodules N and K of M, designated by $N K$, is defined to be (IJ)M. In [3], it is proved that a proper submodule N of a multiplication R-module M is prime if and only if $K L \subseteq N$ implies either $K \subseteq N$ or $L \subseteq N$ for submodules K, L of M. In Corollary 2.8, for finitely generated multiplication modules, we show that a proper submodule N of M is a 2-absorbing quasi primary if and only if $N_{1} N_{2} N_{3} \subseteq N$ implies either $N_{1} N_{2} \subseteq \operatorname{rad}_{M}(N)$ or $N_{1} N_{3} \subseteq \operatorname{rad}_{M}(N)$ or $N_{2} N_{3} \subseteq \operatorname{rad}_{M}(N)$ for submodules N_{1}, N_{2} and N_{3} of M. In [6], Z, El Bast and P. Smith showed that the followings are eqivalent for a proper submodule N of a multiplication module M :
(i) N is a prime submodule.
(ii) $\left(N:_{R} M\right)$ is a prime ideal.
(iii) $N=P M$ for some prime ideal P of R such that $\operatorname{Ann}(M) \subseteq P$, where $A n n(M)=\left(0:_{R} M\right)$.

In Theorem 2.12, we prove that similar result is true for 2-absorbing quasi primary submodules in finitely generated multiplication modules. Also in Corollary 2.11, we give various characterizations of 2-absorbing quasi primary submodules of finitely generated multiplication modules. In Theorem 2.14, we study the 2-absorbing quasi primary submodules of fractional modules. Moreover, in Thoerem 2.18, we investigate the behaviour of 2-absorbing quasi primary submodules under the homorphism of modules. Finally, in Theorem 2.23, all 2-absorbing quasi primary submodules of cartesian product of finitely generated multiplication modules are determined.
The reader may consult [5],[10] and [12] for general background and terminology.

2. 2-Abdorbing Quasi Primary Submodules

Definition 2.1. A proper submodule N of an R-module M is said to be a 2 -absorbing quasi primary submodule (weakly 2-absorbing quasi primary submodule) if the condition abm $\in N(0 \neq a b m \in N)$ implies either ab $\in \sqrt{\left(N:_{R} M\right)}$ or am $\in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$ for every $a, b \in R$ and $m \in M$.

In [17], a 2-absorbing quasi primary ideal is defined as a proper ideal I of R whose the radical is a 2-absorbing ideal. The authors (in Proposition 2.5) showed that a proper ideal I of R is a 2 -absorbing quasi primary ideal if and only if whenever $a b c \in I$, then $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$ for each $a, b, c \in R$. From this aspect, we can see the 2-absorbing quasi primary submodules of an R-module R are all 2-absorbing quasi primary ideals of R. In addition, by the definition 2.1, it is clear that every 2 -absorbing submodule and 2-absorbing primary submodule are also a 2 -absorbing quasi primary submodule. However, we give an example showing the converse fails as follows:

Example 2.2. Let $R_{0}=\left\{a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{n} X^{n}: a_{1}\right.$ is a multiple of 3$\} \subseteq \mathbb{Z}[X]$ and $R=R_{0} \times R_{0}$. Now, consider the R-module $R=M$ and the submodule $N=Q \times Q$, where $Q=\left\langle 9 X^{2}, 3 X^{3}, X^{4}, X^{5}, X^{6}\right\rangle$. First note that $\operatorname{rad}_{M}(N)=\sqrt{\left(N:_{R} M\right)}=\sqrt{Q} \times \sqrt{Q}$, where $\sqrt{Q}=\left\langle 3 X, X^{2}, X^{3}\right\rangle$. Since $\left(3, X^{2}\right)\left(X^{2}, 3\right)(3,3)=\left(9 X^{2}, 9 X^{2}\right) \in N$ but $\left(3, X^{2}\right)\left(X^{2}, 3\right)=\left(3 X^{2}, 3 X^{2}\right) \notin\left(N:_{R} M\right)=N$ and $\left(3, X^{2}\right)(3,3) \notin \operatorname{rad}_{M}(N)$ and $\left(X^{2}, 3\right)(3,3) \notin \operatorname{rad}_{M}(N)$, it follows that N is not a 2-absorbing primary submodule of M. Also, one can easily see that N is a 2-absorbing quasi primary submodule of M.

Theorem 2.3. For a proper submodule N of M, the following statements are equivalent:
(i) N is a 2-absorbing quasi primary submodule of M.
(ii) For every $a, b \in R,\left(N:_{M} a^{k} b^{k}\right)=M$ for some $k \in \mathbb{Z}^{+}$or $\left(N:_{M} a b\right) \subseteq\left(\operatorname{rad}_{M}(N):_{M} a\right) \cup\left(\operatorname{rad}_{M}(N):_{M} b\right)$.
(iii) For every $a, b \in R,\left(N:_{M} a^{k} b^{k}\right)=M$ for some $k \in \mathbb{Z}^{+}$or $\left(N:_{M} a b\right) \subseteq\left(\operatorname{rad}_{M}(N):_{M} a\right)$ or $\left(N:_{M} a b\right) \subseteq$ $\left(\operatorname{rad}_{M}(N):_{M} b\right)$.

Proof. (i) \Rightarrow (ii) : Suppose that N is a 2-absorbing quasi primary submodule of M. Let $a, b \in R$. If $a b \in$ $\sqrt{\left(N:_{R} M\right)}$, then $(a b)^{k}=a^{k} b^{k} \in\left(N:_{R} M\right)$ for some $k \in \mathbb{Z}^{+}$and so $\left(N:_{M} a^{k} b^{k}\right)=M$. Now, assume $a b \notin$ $\sqrt{\left(N:_{R} M\right)}$. Let $m \in\left(N:_{M} a b\right)$. Then we have $a b m \in N$, and thus $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$ since N is a 2absorbing quasi primary submodule. Hence we get the result that $\left(N:_{M} a b\right) \subseteq\left(\operatorname{rad}_{M}(N):_{M} a\right) \cup\left(\operatorname{rad}_{M}(N):_{M} b\right)$
$(i i) \Rightarrow$ (iii) : It is well known that if a submodule is contained in two submodules, then it is contained in at least one of them.
(iii) \Rightarrow (i) : Let $a b m \in N$ with $a b \notin \sqrt{\left(N:_{R} M\right)}$ for $a, b \in R$ and $m \in M$. Then we have $\left(N:_{M} a^{k} b^{k}\right) \neq M$ for every $k \in \mathbb{Z}^{+}$. Thus by (iii) we get the result that $m \in\left(N:_{M} a b\right) \subseteq\left(\operatorname{rad}_{M}(N):_{M} a\right)$ or $m \in\left(\operatorname{rad}_{M}(N):_{M} b\right)$, so we have $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$ as it is needed.

Let M be an R-module. In [16], Nagata introduced the idealization of a module. Recall that the idealization $R(+) M=\{(r, m): r \in R, m \in M\}$ is a commutative ring with the following addition and multiplication:

$$
\begin{aligned}
\left(r_{1}, m_{1}\right)+\left(r_{2}, m_{2}\right) & =\left(r_{1}+r_{2}, m_{1}+m_{2}\right) \\
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right) & =\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)
\end{aligned}
$$

for every $r_{1}, r_{2} \in R ; m_{1}, m_{2} \in M$. Suppose that I is an ideal of R and N is a submodule of M. Then $I(+) N=\{(i, n): i \in I, n \in N\}$ is an ideal of $R(+) M$ if and only if $I M \subseteq N$. In this case, $I(+) N$ is called a homogeneous ideal. Anderson (in [4]) characterizes the radical of homogeneous ideals as the following:

$$
\sqrt{I(+) N}=\sqrt{I}(+) M
$$

Theorem 2.4. Let M be an R-module. For a proper ideal I of R and submodule N of M with $I M \subseteq N, I(+) N$ is a 2-absorbing quasi primary ideal of $R(+) M$ if and only if I is a 2-absorbing quasi primary ideal of R.

Proof. Suppose that I is a 2-absorbing quasi primary ideal of R. Let $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)\left(r_{3}, m_{3}\right)=\left(r_{1} r_{2} r_{3}, r_{1} r_{2} m_{3}+\right.$ $\left.r_{1} r_{3} m_{2}+r_{2} r_{3} m_{1}\right) \in I(+) N$, where $r_{i} \in R$ and $m_{i} \in M$ for $i=1,2,3$. Then we have $r_{1} r_{2} r_{3} \in I$. Since I is a 2 -absorbing quasi primary ideal of R, we conclude either $r_{1} r_{2} \in \sqrt{I}$ or $r_{1} r_{3} \in \sqrt{I}$ or $r_{2} r_{3} \in \sqrt{I}$. Thus we have $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right) \in \sqrt{I}(+) M=\sqrt{I(+) N}$ or $\left(r_{1}, m_{1}\right)\left(r_{3}, m_{3}\right) \in \sqrt{I(+) N}$ or $\left(r_{2}, m_{2}\right)\left(r_{3}, m_{3}\right) \in \sqrt{I(+) N}$. Hence $I(+) N$ is a 2-absorbing quasi primary ideal of $R(+) M$. For the converse, assume that $I(+) N$ is a 2-absorbing quasi primary ideal of $R(+) M$. Let $a b c \in I$ for $a, b, c \in R$. Then we have $\left(a, 0_{M}\right)\left(b, 0_{M}\right)\left(c, 0_{M}\right)=\left(a b c, 0_{M}\right) \in$ $I(+) N$. Since $I(+) N$ is a 2-absorbing quasi primary ideal of $R(+) M$, we conclude either $\left(a, 0_{M}\right)\left(b, 0_{M}\right) \in$ $\sqrt{I}(+) M$ or $\left(a, 0_{M}\right)\left(c, 0_{M}\right) \in \sqrt{I}(+) M$ or $\left(b, 0_{M}\right)\left(c, 0_{M}\right) \in \sqrt{I}(+) M$. Thus we have $a b \in \sqrt{I}$ or ac $\in \sqrt{I}$ or $b c \in \sqrt{I}$, this completes the proof.

Lemma 2.5. Let M be an R-module. Suppose that N is a 2-absorbing quasi primary submodule of M and abK $\subseteq N$ for $a, b \in R$ and submodule K of M. If $a b \notin \sqrt{\left(N:_{R} M\right)}$, then $a K \subseteq \operatorname{rad}_{M}(N)$ or $b K \subseteq \operatorname{rad}_{M}(N)$.

Proof. Since $K \subseteq\left(N:_{M} a b\right)$ and $\left(N:_{M} a^{k} b^{k}\right) \neq M$ for every $k \in \mathbb{Z}^{+}$, by Theorem 2.3 we have $K \subseteq\left(N:_{M}\right.$ $a b) \subseteq\left(\operatorname{rad}_{M}(N):_{M} a\right)$ or $K \subseteq\left(N:_{M} a b\right) \subseteq\left(\operatorname{rad}_{M}(N):_{M} b\right)$. Hence we get the result that $a K \subseteq \operatorname{rad}_{M}(N)$ or $b K \subseteq \operatorname{rad}_{M}(N)$.

Theorem 2.6. For a proper submodule N of M, the followings are equivalent:
(i) N is a 2-absorbing quasi primary submodule.
(ii) For $a \in R$, an ideal I_{2} of R and submodule K of M with $a I_{2} K \subseteq N$, then either $a I_{2} \subseteq \sqrt{\left(N:_{R} M\right)}$ or $a K \subseteq \operatorname{rad}_{M}(N)$ or $I_{2} K \subseteq \operatorname{rad}_{M}(N)$.
(iii) For ideals I_{1}, I_{2} of R and submodule K of M with $I_{1} I_{2} K \subseteq N$, then either $I_{1} I_{2} \subseteq \sqrt{\left(N:_{R} M\right)}$ or $I_{1} K \subseteq \operatorname{rad}_{M}(N)$ or $I_{2} K \subseteq \operatorname{rad}_{M}(N)$.

Proof. (i) \Rightarrow (ii) : Suppose that $a I_{2} K \subseteq N$ with $a I_{2} \nsubseteq \sqrt{\left(N:_{R} M\right)}$ and $I_{2} K \nsubseteq \operatorname{rad}_{M}(N)$. Then there exist $b_{2}, b_{2}^{\prime} \in I_{2}$ such that $a b_{2} \notin \sqrt{\left(N:_{R} M\right)}$ and $b_{2}^{\prime} K \nsubseteq \operatorname{rad}_{M}(N)$. Now, we show that $a K \subseteq \operatorname{rad}_{M}(N)$. Assume that $a K \nsubseteq \operatorname{rad}_{M}(N)$. Since $a b_{2} K \subseteq N$, by previous lemma we conclude that $b_{2} K \subseteq \operatorname{rad}_{M}(N)$ and so $\left(b_{2}+b_{2}^{\prime}\right) K \nsubseteq$ $\operatorname{rad}_{M}(N)$. By using previous lemma we have $a\left(b_{2}+b_{2}^{\prime}\right)=a b_{2}+a b_{2}^{\prime} \in \sqrt{\left(N:_{R} M\right)}$, because $a\left(b_{2}+b_{2}^{\prime}\right) K \subseteq N$. Since $a b_{2}+a b_{2}^{\prime} \in \sqrt{\left(N:_{R} M\right)}$ and $a b_{2} \notin \sqrt{\left(N:_{R} M\right)}$, we get $a b_{2}^{\prime} \notin \sqrt{\left(N:_{R} M\right)}$. As $a b_{2}^{\prime} K \subseteq N$, by previous lemma we get the result that $b_{2}^{\prime} K \subseteq \operatorname{rad}_{M}(N)$ or $a K \subseteq \operatorname{rad}_{M}(N)$, which is a contradiction.
(ii) \Rightarrow (iii) : Assume that $I_{1} I_{2} K \subseteq N$ with $I_{1} I_{2} \nsubseteq \sqrt{\left(N:_{R} M\right)}$ for ideals I_{1}, I_{2} of R and submodule K of M. Then we have $a I_{2} \nsubseteq \sqrt{\left(N:_{R} M\right)}$ for some $a \in I_{1}$. Now, we show that $I_{1} K \subseteq \operatorname{rad}_{M}(N)$ or $I_{2} K \subseteq \operatorname{rad}_{M}(N)$. Suppose not. Since $a I_{2} K \subseteq N$, by (ii) we get the result that $a K \subseteq \operatorname{rad}_{M}(N)$. Also there exists an element a_{1} of I_{1} such that $a_{1} K \nsubseteq \operatorname{rad}_{M}(N)$ because of the assumption $I_{1} K \nsubseteq \operatorname{rad}_{M}(N)$. As $a_{1} I_{2} K \subseteq N$, we get the result that $a_{1} I_{2} \subseteq \sqrt{\left(N:_{R} M\right)}$ and so $\left(a+a_{1}\right) I_{2} \nsubseteq \sqrt{\left(N:_{R} M\right)}$. Since $\left(a+a_{1}\right) I_{2} K \subseteq N$, we have $\left(a+a_{1}\right) K \subseteq \operatorname{rad}_{M}(N)$ and hence $a_{1} K \subseteq \operatorname{rad}_{M}(N)$, which is a contradiction.
(iii) $\Rightarrow(i):$ Let $a b m \in N$ for $a, b \in R$ and $m \in M$. Put $I_{1}=a R, I_{2}=b R$ and $K=R m$, the rest is easy.

Lemma 2.7. Let M be a finitely generated multiplication R-module and N a submodule of M. Then $\left(\operatorname{rad}_{M}(N): M\right)=$ $\sqrt{\left(N:_{R} M\right)}$.

Proof. It follows from [15, Lemma 2.4].
Corollary 2.8. Let M be a finitely generated multiplication R-module and N a proper submodule of M. Then the followings are equivalent:
(i) N is a 2-absorbing quasi primary submodule.
(ii) $N_{1} N_{2} N_{3} \subseteq N$ implies either $N_{1} N_{2} \subseteq \operatorname{rad}_{M}(N)$ or $N_{1} N_{3} \subseteq \operatorname{rad}_{M}(N)$ or $N_{2} N_{3} \subseteq \operatorname{rad}_{M}(N)$ for submodules N_{1}, N_{2} and N_{3} of M.

Proof. (i) \Rightarrow (ii) : Suppose that N is a 2-absorbing quasi primary submodule and $N_{1} N_{2} N_{3} \subseteq N$ for submodules N_{1}, N_{2} and N_{3} of M. Since M is multiplication, $N_{i}=I_{i} M$ for ideals I_{i} of R_{i} and $1 \leq i \leq 3$. Then we have $N_{1} N_{2} N_{3}=I_{1} I_{2}\left(I_{3} M\right) \subseteq N$. By Theorem 2.6, we get $I_{1} I_{2} \subseteq \sqrt{\left(N:_{R} M\right)}=\left(\operatorname{rad}_{M}(N): M\right)$ or $I_{1} I_{3} M \subseteq \operatorname{rad}_{M}(N)$ or $I_{2} I_{3} M \subseteq \operatorname{rad}_{M}(N)$. Thus we have $N_{1} N_{2} \subseteq \operatorname{rad}_{M}(N)$ or $N_{1} N_{3} \subseteq \operatorname{rad}_{M}(N)$ or $N_{2} N_{3} \subseteq \operatorname{rad}_{M}(N)$.
(ii) \Rightarrow (i) : Suppose that $I_{1} I_{2} K \subseteq N$ for ideals I_{1}, I_{2} of R and submodule K of M. Put $N_{1}=I_{1} M, N_{2}=$ $I_{2} M$ and $N_{3}=K$. Then we have $N_{1} N_{2} N_{3} \subseteq N$. By (ii), we get the result that $N_{1} N_{2}=I_{1} I_{2} M \subseteq \operatorname{rad}_{M}(N)$ or $N_{1} N_{3}=I_{1} K \subseteq \operatorname{rad}_{M}(N)$ or $N_{2} N_{3}=I_{2} K \subseteq \operatorname{rad}_{M}(N)$. Hence we have $I_{1} I_{2} \subseteq \sqrt{\left(N:_{R} M\right)}$ or $I_{1} K \subseteq \operatorname{rad}_{M}(N)$ or $I_{2} K \subseteq \operatorname{rad}_{M}(N)$, as needed.

Theorem 2.9. Let M an R-module and N a submodule of M. Then the followings are satisfied:
(i) If M is a multiplication module and $\left(N:_{R} M\right)$ is a 2-absorbing quasi primary ideal of R, then N is a 2-absorbing quasi primary submodule of M.
(ii) If M is a finitely generated multiplication module and N is a 2-absorbing quasi primary submodule of M, then $\left(N:_{R} M\right)$ is a 2-absorbing quasi primary ideal of R.

Proof. (i) Suppose that M is a multiplication module, $\left(N:_{R} M\right)$ is a 2-absorbing quasi primary ideal of R and $I_{1} I_{2} K \subseteq N$ for ideals I_{1}, I_{2} of R and submodule K of M. We have $K=I_{3} M$ for some ideal I_{3} of R since M is multiplication. Then we get $I_{1} I_{2} K=I_{1} I_{2} I_{3} M \subseteq N$ and so $I_{1} I_{2} I_{3} \subseteq\left(N:_{R} M\right)$. As $\left(N:_{R} M\right)$ is a 2-absorbing quasi primary ideal of R, by [17, Theorem 2.21] we conclude that $I_{1} I_{2} \subseteq \sqrt{\left(N:_{R} M\right)}$ or $I_{1} I_{3} \subseteq \sqrt{\left(N:_{R} M\right)} \subseteq\left(\operatorname{rad}_{M}(N): M\right)$ or $I_{2} I_{3} \subseteq \sqrt{\left(N:_{R} M\right)} \subseteq\left(\operatorname{rad}_{M}(N): M\right)$. Thus we have $I_{1} I_{2} \subseteq \sqrt{\left(N:_{R} M\right)}$ or $I_{1} K \subseteq \operatorname{rad}_{M}(N)$ or $I_{2} K \subseteq \operatorname{rad}_{M}(N)$. By Theorem 2.6, it follows that N is a 2-absorbing quasi primary submodule of M.
(ii) Suppose that N is a 2-absorbing quasi primary submodule of a finitely generated multiplication R module M. Let $a, b, c \in R$ such that $a b c \in\left(N:_{R} M\right)$ with $a b \notin \sqrt{\left(N:_{R} M\right)}$. Then we have $a b(c m) \in N$ for every $m \in M$. Since N is a 2-absorbing quasi primary submodule of M and $a b \notin \sqrt{\left(N:_{R} M\right)}$, we conclude that $a c m \in \operatorname{rad}_{M}(N)$ or $b c m \in \operatorname{rad}_{M}(N)$ for all $m \in M$. Thus we get the result that $\left(\operatorname{rad}_{M}(N):_{M} a c\right) \cup\left(\operatorname{rad}_{M}(N): M\right.$
$b c)=M$ and so $\left(\operatorname{rad}_{M}(N):_{M} a c\right)=M$ or $\left(\operatorname{rad}_{M}(N):_{M} b c\right)=M$. Hence we get $a c \in\left(\operatorname{rad}_{M}(N): M\right)=\sqrt{\left(N:_{R} M\right)}$ or $b c \in \sqrt{\left(N:_{R} M\right)}$.

Theorem 2.10. Let M be a finitely generated multiplication R-module. For any submodule N of M, the followings are equivalent:
(i) N is a 2-absorbing quasi primary submodule of M.
(ii) $\operatorname{rad}_{M}(N)$ is a 2-absorbing submodule of M.

Proof. (ii) \Rightarrow (i) : Suppose that $\operatorname{rad}_{M}(N)$ is a 2-absorbing submodule of M. Let $a b m \in N$ for $a, b \in R$ and $m \in M$. Then we have $a b m \in \operatorname{rad}_{M}(N)$, because $N \subseteq \operatorname{rad}_{M}(N)$. Since $\operatorname{rad}_{M}(N)$ is a 2-absorbing submodule of M, we conclude that $a b \in\left(\operatorname{rad}_{M}(N): M\right)=\sqrt{\left(N:_{R} M\right)}$ or $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$, and so N is a 2-absorbing quasi primary submodule of M.
$(i) \Rightarrow(i i)$: Suppose that N is a 2 -absorbing quasi primary submodule of M. Then by previous theorem and [17, Theorem 2.15], we conclude that $\sqrt{\left(N:_{R} M\right)}=P$ is a prime ideal of R or $\sqrt{\left(N:_{R} M\right)}=P_{1} \cap P_{2}$, where P_{1}, P_{2} are distinct prime ideals minimal over $\left(N:_{R} M\right)$. If $\sqrt{\left(N:_{R} M\right)}=P$, then $\operatorname{rad}_{M}(N)=P M$ is a prime submodule by [6, Corollary 2.11] and so it is a 2 -absorbing submodule of M. In other case, we have $\operatorname{rad}_{M}(N)=\left(P_{1} \cap P_{2}\right) M$. Also it is easy to see that $\operatorname{Ann}(M) \subseteq P_{1}, P_{2}$. Thus we have $\operatorname{rad}_{M}(N)=\left(\left(P_{1}+\operatorname{Ann}(M) \cap\right.\right.$ $\left(P_{2}+\operatorname{Ann}(M)\right) M=P_{1} M \cap P_{2} M$, which is the intersection of two prime submodule, is also a 2-absorbing submodule of M.

In view of Theorem 2.9 and 2.10, we have the following useful corollary to determine the 2-absorbing quasi primary submodules of a finitely generated multiplication module.

Corollary 2.11. For any submodule N of a finitely generated multiplication R-module M, the followings are equivalent:
(i) N is a 2-absorbing quasi primary submodule of M;
(ii) $\operatorname{rad}_{M}(N)$ is a 2-absorbing submodule of M;
(iii) $\operatorname{rad}_{M}(N)$ is a 2-absorbing primary submodule of M;
(iv) $\operatorname{rad}_{M}(N)$ is a 2-absorbing quasi primary submodule of M;
(v) $\sqrt{\left(N:_{R} M\right)}$ is a 2-absorbing ideal of R;
(vi) $\sqrt{\left(N:_{R} M\right)}$ is a 2-absorbing primary ideal of R;
(vii) $\sqrt{\left(N:_{R} M\right)}$ is a 2-absorbing quasi primary ideal of R;
(viii) $\left(N:_{R} M\right)$ is a 2-absorbing quasi primary ideal of R.

Theorem 2.12. Let M be a finitely generated multiplication R-module. For a proper submodule N of M, the followings are equivalent:
(i) N is a 2-absorbing quasi primary submodule of M.
(ii) $\left(N:_{R} M\right)$ is a 2-absorbing quasi primary ideal of R.
(iii) $N=I M$ for some 2-absorbing quasi primary ideal of R with $\operatorname{Ann}(M) \subseteq I$.

Proof. (i) \Rightarrow (ii) : It follows from Corollary 2.11.
(ii) \Rightarrow (iii) : It is clear.
$($ iii $) \Rightarrow(i)$: Suppose that $N=I M$ for some 2-absorbing quasi primary ideal I of R with $\operatorname{Ann}(M) \subseteq I$. Then we have $\sqrt{\left(N:_{R} M\right)}=\sqrt{\left(I M:_{R} M\right)}=\left(\operatorname{rad}_{M}(I M):_{R} M\right)=\left(\operatorname{rad}_{M}(\sqrt{I M}):_{R} M\right)$. By [17, Theorem 2.15] and [13, Result 2], we conclude that either $\sqrt{\left(N:_{R} M\right)}=\left(\operatorname{rad}_{M}(\sqrt{I} M):_{R} M\right)=\left(P M:_{R} M\right)=P$ is a 2-absorbing quasi primary ideal of R or $\sqrt{\left(N:_{R} M\right)}=\left(\left(P_{1} \cap P_{2}\right) M:_{R} M\right)=\left(P_{1} M \cap P_{2} M:_{R} M\right)=\left(P_{1} M:_{R} M\right) \cap\left(P_{2} M:_{R} M\right)=$ $P_{1} \cap P_{2}$ is a 2-absorbing quasi primary ideal of R. Accordingly, by Corollary 2.11, N is a 2-absorbing quasi primary submodule of M.

Remark 2.13. In Theorem 2.12 (iii) if we release the assumption $\operatorname{Ann}(M) \subseteq I$, then (iii) does not imply (i). To illustrate this, consider the finitely generated multiplication \mathbb{Z}-module \mathbb{Z}_{180}. Note that $I=\langle 0\rangle$ is a 2-absorbing quasi primary ideal of the ring of integers and $\operatorname{Ann}\left(\mathbb{Z}_{180}\right)=180 \mathbb{Z} \nsubseteq I$. Let $N=\langle 0\rangle \mathbb{Z}_{180}=\langle\overline{0}\rangle$. Then by Corollary 2.11,
N is not a 2-absorbing quasi primary submodule because $\sqrt{\left(N:_{R} M\right)}=30 \mathbb{Z}$ is not a 2-absorbing quasi primary ideal of \mathbb{Z}.

Theorem 2.14. Let S be a multiplicatively closed subset of R and M an R-module. If N is a 2-absorbing quasi primary submodule of M with $S^{-1} N \neq S^{-1} M$, then $S^{-1} N$ is a 2-absorbing quasi primary submodule of $S^{-1} M$.
Proof. Assume that N is a 2-absorbing quasi primary submodule of M with $S^{-1} N \neq S^{-1} M$. Let $\frac{a}{s_{1}} \frac{b}{s_{2}} \frac{m}{s_{3}} \in$ $S^{-1} N$ for $a, b \in R ; s_{i} \in S$ and $m \in M$. Then we have $a b(u m) \in N$ for some $u \in S$. Since N is a 2-absorbing quasi primary submodule of M, we get either $a b \in \sqrt{\left(N:_{R} M\right)}$ or uam $\in \operatorname{rad}_{M}(N)$ or $u b m \in \operatorname{rad}_{M}(N)$. Thus we have $\frac{a}{s_{1}} \frac{b}{s_{2}} \in S^{-1}\left(\sqrt{\left(N:_{R} M\right)}\right) \subseteq \sqrt{\left(S^{-1} N: S_{S^{-1} R} S^{-1} M\right)}$ or $\frac{a}{s_{1}} \frac{m}{s_{3}}=\frac{u a m}{u s_{1} s_{3}} \in S^{-1}\left(\operatorname{rad}_{M}(N)\right) \subseteq \operatorname{rad}_{S^{-1} M}\left(S^{-1} N\right)$ or $\frac{b}{s_{2}} \frac{m}{s_{3}}=\frac{u b m}{u s_{2} s_{3}} \in S^{-1}\left(\operatorname{rad}_{M}(N)\right) \subseteq \operatorname{rad}_{S^{-1} M}\left(S^{-1} N\right)$. Hence, it follows that $S^{-1} N$ is a 2 -absorbing quasi primary submodule of $S^{-1} M$.

Lemma 2.15. Let M be a multiplication R-module and L, K be submodules of M. Then $\operatorname{rad}_{M}(L \cap K)=\operatorname{rad}_{M}(L) \cap$ $\operatorname{rad}_{M}(K)$.

Proof. See [15, Proposition 2.14].
Theorem 2.16. Let M be a multiplication R-module. Suppose that $N_{1}, N_{2}, \ldots, N_{n}$ are 2-absorbing quasi primary submodules of M with $\operatorname{rad}_{M}\left(N_{i}\right)=\operatorname{rad}_{M}\left(N_{j}\right)$ for every $1 \leq i, j \leq n$. Then $N=\bigcap_{i=1}^{n} N_{i}$ is a 2-absorbing quasi primary submodule of M.

Proof. Suppose that $N_{1}, N_{2}, \ldots, N_{n}$ are 2-absorbing quasi primary submodule of M with $\operatorname{rad}_{M}\left(N_{i}\right)=\operatorname{rad}_{M}\left(N_{j}\right)$ for every $1 \leq i, j \leq n$. By the previous lemma, we have $\operatorname{rad}_{M}(N)=\operatorname{rad}_{M}\left(N_{j}\right)$ for $1 \leq j \leq n$. Let $a b m \in N$ for $a, b \in R$ and $m \in M$. If $a b \in \sqrt{\left(N:_{R} M\right)}$, we are done. Now, assume that $a b \notin \sqrt{\left(N:_{R} M\right)}=\bigcap_{i=1}^{n} \sqrt{\left(N_{i}:_{R} M\right)}$. Then we have $a b \notin \sqrt{\left(N_{j}:_{R} M\right)}$ for some $1 \leq j \leq n$. Since N_{j} is a 2 -absorbing quasi primary submodule and $a b m \in N_{j}$, we conclude either $a m \in \operatorname{rad}_{M}\left(N_{j}\right)=\operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}\left(N_{j}\right)=\operatorname{rad}_{M}(N)$. Hence N is a 2-absorbing quasi primary submodule of M.
Lemma 2.17. Let $f: M \rightarrow M^{\prime}$ be an R-module epimorphism. If N is a submodule of M with $\operatorname{Ker}(f) \subseteq N$, then $f\left(\operatorname{rad}_{M}(N)\right)=\operatorname{rad}_{M^{\prime}}(f(N))$.

Proof. See [14, Corollary 1.3].
Theorem 2.18. Let $f: M \rightarrow M^{\prime}$ be a homomorphism of R-modules. Then the following statements hold:
(i) If N^{\prime} is a 2-absorbing quasi primary submodule of M^{\prime} with $f^{-1}\left(N^{\prime}\right) \neq M$, then $f^{-1}\left(N^{\prime}\right)$ is a 2-absorbing quasi primary submodule of M.
(ii) If f is epimorphism and N is a 2-absorbing quasi primary submodule of M with $\operatorname{Ker}(f) \subseteq N$, then $f(N)$ is a 2-absorbing quasi primary submodule of M^{\prime}.
Proof. (i) Suppose that N^{\prime} is a 2-absorbing quasi primary submodule of M^{\prime} with $f^{-1}\left(N^{\prime}\right) \neq M$. Let $a b m \in$ $f^{-1}\left(N^{\prime}\right)$ for $a, b \in R$ and $m \in M$. Then we have $f(a b m)=a b f(m) \in N^{\prime}$. Since N^{\prime} is a 2 -absorbing quasi primary submodule of M^{\prime}, we conclude either $a b \in \sqrt{\left(N^{\prime}:_{R} M^{\prime}\right)} \subseteq \sqrt{\left(f^{-1}\left(N^{\prime}\right):_{R} M\right)}$ or $a f(m)=f(a m) \in \operatorname{rad}_{M^{\prime}}\left(N^{\prime}\right)$ or $b f(m)=f(b m) \in \operatorname{rad}_{M^{\prime}}\left(N^{\prime}\right)$. Since $f^{-1}\left(\operatorname{rad}_{M^{\prime}}\left(N^{\prime}\right)\right) \subseteq \operatorname{rad}_{M}\left(f^{-1}\left(N^{\prime}\right)\right)$, we get the result that $a b \in \sqrt{\left(f^{-1}\left(N^{\prime}\right):_{R} M\right)}$ or $a m \in \operatorname{rad}_{M}\left(f^{-1}\left(N^{\prime}\right)\right)$ or $b m \in \operatorname{rad}_{M}\left(f^{-1}\left(N^{\prime}\right)\right)$. Hence $f^{-1}\left(N^{\prime}\right)$ is a 2 -absorbing quasi primary submodule of M.
(ii) Let $a b m^{\prime} \in f(N)$ for $a, b \in R$ and $m^{\prime} \in M^{\prime}$. Since f is epimorphism, there exists $m \in M$ such that $f(m)=m^{\prime}$ and so $a b m^{\prime}=a b f(m)=f(a b m) \in f(N)$. As $\operatorname{Ker}(f) \subseteq N$, we have $a b m \in N$. Then we get the result that $a b \in \sqrt{\left(N:_{R} M\right)} \subseteq \sqrt{\left(f(N):_{R} M^{\prime}\right)}$ or $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$, because N is a 2-absorbing quasi primary submodule of M. By Lemma 2.17, we get $a b \in \sqrt{\left(f(N):_{R} M^{\prime}\right)}$ or $a m^{\prime} \in f\left(\operatorname{rad}_{M}(N)\right)=\operatorname{rad}_{M^{\prime}}(f(N))$ or $b m^{\prime} \in \operatorname{rad}_{M^{\prime}}(f(N))$ as required.

As an immediate consequences of previous theorem, we have the following result.
Corollary 2.19. Let M be an R-module and L a submodule of M. Then the followings hold:
(i) If N is a 2-absorbing quasi primary submodule of M with $L \nsubseteq N$, then $L \cap N$ is a 2-absorbing quasi primary submodule of L.
(ii) If N is a 2-absorbing quasi primary submodule of M with $L \subseteq N$, then N / L is a 2-absorbing quasi primary submodule of M / L.

Theorem 2.20. Suppose that L, N are submodules of M with $L \subseteq N$. If L is a 2-absorbing quasi primary submodule of M and N / L is a weakly 2-absorbing quasi primary submodule of M / L, then N is a 2 -absorbing quasi primary submodule of M.

Proof. Let $a b m \in N$ for $a, b \in R$ and $m \in M$. If $a b m \in L$, then $a b \in \sqrt{\left(L:_{R} M\right)} \subseteq \sqrt{\left(N:_{R} M\right)}$ or $a m \in \operatorname{rad}_{M}(L) \subseteq$ $\operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(L) \subseteq \operatorname{rad}_{M}(N)$. Now assume that $a b m \notin L$. Then we have $0 \neq a b(m+L) \in N / L$. Since N / L is a weakly 2 -absorbing quasi primary submodule of M / L, we conclude that $a b \in \sqrt{(N / L: M / L)}$ or $a(m+L) \in \operatorname{rad}_{M / L}(N / L)=\frac{\operatorname{rad}_{M}(N)}{L}$ or $b(m+L) \in \operatorname{rad}_{M / L}(N / L)=\frac{\operatorname{rad}_{M}(N)}{L}$. Thus we get the result that $a b \in$ $\sqrt{\left(N:_{R} M\right)}$ or $a m \in \operatorname{rad}_{M}(N)$ or $b m \in \operatorname{rad}_{M}(N)$, this completes the proof.

Recall from [11] a proper ideal Q of R is a quasi primary ideal if whenever \sqrt{Q} is a prime ideal of R. Also a proper submodule N of M is called a quasi primary submodule preciesly when $\left(N:_{R} M\right)$ is a quasi primary ideal of R [1].

Lemma 2.21. Let M be a multiplication R-module. Suppose that N_{1}, N_{2} are quasi primary submodules of M. Then $N_{1} \cap N_{2}$ are 2-absorbing quasi primary submodule of M.

Proof. Suppose that N_{1}, N_{2} are quasi primary submodules of M. Then we have $\left(N_{1}: M\right)$ and $\left(N_{2}: M\right)$ are quasi primary ideal of R. Thus we get $\left(N_{1}: M\right) \cap\left(N_{2}: M\right)=\left(N_{1} \cap N_{2}: M\right)$ are 2-absorbing quasi primary ideal by [17, Theorem 2.17]. Therefore, by Theorem 2.9, $N_{1} \cap N_{2}$ is a 2-absorbing quasi primary submodule of M.

Let M_{1} be an R_{1}-module and M_{2} be an R_{2}-module. Then the set $M=M_{1} \times M_{2}$ becomes an $R=R_{1} \times R_{2}-$ module with component-wise addition and multiplication. Also, all submodules of M has the form $N_{1} \times N_{2}$, where N_{1} is a submodule of M_{1} and N_{2} is a submodule of M_{2}. Further, If M_{1} is a multiplication R_{1-} module and M_{2} is a multiplication R_{2}-module, then M is a multiplication R-module. In addition, $\operatorname{rad}_{M}\left(N_{1} \times\right.$ $\left.N_{2}\right)=\operatorname{rad}_{M_{1}}\left(N_{1}\right) \times \operatorname{rad}_{M_{2}}\left(N_{2}\right)$ holds for every submodule N_{1} of M_{1} and N_{2} of M_{2}.

Theorem 2.22. Suppose that M_{1} is a multiplication R_{1}-module and M_{2} is a multiplication R_{2}-module. Let $R=$ $R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$. Then the followings hold:
(i) $N=K_{1} \times M_{2}$ is a 2-absorbing quasi primary submodule of $M=M_{1} \times M_{2}$ if and only if K_{1} is a 2-absorbing quasi primary submodule of M_{1}.
(ii) $N=M_{1} \times K_{2}$ is a 2-absorbing quasi primary submodule of $M=M_{1} \times M_{2}$ if and only if K_{2} is a 2-absorbing quasi primary submodule of M_{2}.
(iii) If K_{1} is a quasi primary submodule of M_{1} and K_{2} is a quasi primary submodule of M_{2}, then $N=K_{1} \times K_{2}$ is a 2-absorbing quasi primary submodule of M.

Proof. (i) Suppose that K_{1} is a 2-absorbing quasi primary submodule of M_{1}. Let $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\left(m_{1}, m_{2}\right)=$ $\left(a_{1} b_{1} m_{1}, a_{2} b_{2} m_{2}\right) \in K_{1} \times M_{2}$, where $a_{i}, b_{i} \in R_{i}$ and $m_{i} \in M_{i}$ for $i=1,2$. Then we have $a_{1} b_{1} m_{1} \in K_{1}$ and so $a_{1} b_{1} \in \sqrt{\left(K_{1}:_{R_{1}} M_{1}\right)}$ or $a_{1} m_{1} \in \operatorname{rad}_{M_{1}}\left(K_{1}\right)$ or $b_{1} m_{1} \in \operatorname{rad}_{M_{1}}\left(K_{1}\right)$. Thus we get the result that $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in$ $\sqrt{\left(N:_{R} M\right)}$ or $\left(a_{1}, a_{2}\right)\left(m_{1}, m_{2}\right) \in \operatorname{rad}_{M}(N)$ or $\left(b_{1}, b_{2}\right)\left(m_{1}, m_{2}\right) \in \operatorname{rad}_{M}(N)$. For the converse, assume that $K_{1} \times M_{2}$ is a 2-absorbing quasi primary submodule of M. Let $a b m \in K_{1}$ for $a, b \in R_{1}$ and $m \in M_{1}$. Then we have $(a, 0)(b, 0)\left(m, 0_{M}\right) \in K_{1} \times M_{2}$ and so $(a, 0)(b, 0)=(a b, 0) \in \sqrt{\left(K_{1} \times M_{2}:_{R} M_{1} \times M_{2}\right)}=\sqrt{\left(K_{1}:_{R_{1}} M_{1}\right)} \times R_{2}$ or $(b, 0)\left(m, 0_{M}\right)=\left(b m, 0_{M}\right) \in \operatorname{rad}_{M_{1}}\left(K_{1}\right) \times M_{2}$ or $(a, 0)\left(m, 0_{M}\right)=\left(a m, 0_{M}\right) \in \operatorname{rad}_{M_{1}}\left(K_{1}\right) \times M_{2}$. Thus we get the result that $a b \in \sqrt{\left(K_{1}: R_{1} M_{1}\right)}$ or $a m \in \operatorname{rad}_{M_{1}}\left(K_{1}\right)$ or $b m \in \operatorname{rad}_{M_{1}}\left(K_{1}\right)$, as needed.
(ii) The proof is similar to (i)
(iii) Suppose that K_{1}, K_{2} are quasi primary submodules of M_{1} and M_{2}, respectively. Then $N_{1}=K_{1} \times M_{2}$ and $N_{2}=M_{1} \times K_{2}$ are quasi primary submodules of M and so $N=N_{1} \cap N_{2}=K_{1} \times K_{2}$ is a 2-absorbing quasi primary submodule of M by Lemma 2.21.

Theorem 2.23. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ be a finitely generated multiplication R-module, where M_{1} is a multiplication R_{1}-module and M_{2} is a multiplication R_{2}-module. If $N=N_{1} \times N_{2}$ is a proper submodule of M, then the followings are equivalent:
(i) N is a 2-absorbing quasi primary submodule of M.
(ii) $N_{1}=M_{1}$ and N_{2} is a 2-absorbing quasi primary submodule of M_{2} or $N_{2}=M_{2}$ and N_{1} is a 2-absorbing quasi primary submodule of M_{1} or N_{1}, N_{2} are quasi primary submodules of M_{1} and M_{2}, respectively.

Proof. (i) \Rightarrow (ii) : Suppose that $N=N_{1} \times N_{2}$ is a 2-absorbing quasi primary submodule of M. Then $\left(N:_{R} M\right)=\left(N_{1}:_{R_{1}} M_{1}\right) \times\left(N_{2}:_{R_{2}} M_{2}\right)$ is a 2-absorbing quasi primary ideal of R. By [17, Theorem 2.23], we have $\left(N_{1}:_{R_{1}} M_{1}\right)=R_{1}$ and $\left(N_{2}:_{R_{2}} M_{2}\right)$ is a 2-absorbing quasi primary ideal of R_{2} or $\left(N_{2}:_{R_{2}} M_{2}\right)=R_{2}$ and ($N_{1}: R_{1} M_{1}$) is a 2-absorbing quasi primary ideal of R_{1} or $\left(N_{1}: R_{1} M_{1}\right),\left(N_{2}: R_{2} M_{2}\right)$ are quasi primary ideals of R_{1} and R_{2}, respectively. Assume that $\left(N_{1}:_{R_{1}} M_{1}\right)=R_{1}$ and $\left(N_{2}:_{R_{2}} M_{2}\right)$ is a 2-absorbing quasi primary ideal of R_{2}. Then $N_{1}=M_{1}$ and N_{2} is a 2-absorbing quasi primary submodule of M_{2} by Theorem 2.9. If ($N_{2}:_{R_{2}} M_{2}$) = R_{2} and ($N_{1}:_{R_{1}} M_{1}$) is a 2-absorbing quasi primary ideal of R_{1}, similarly we have $N_{2}=M_{2}$ and N_{1} is a 2-absorbing quasi primary submodule of M_{1}. Now, assume that $\left(N_{1}:_{R_{1}} M_{1}\right),\left(N_{2}:_{R_{2}} M_{2}\right)$ are quasi primary ideals of R_{1} and R_{2}, respectively. By the definition of quasi primary submodule, N_{1} and N_{2} are quasi primary submodules of N_{1} and N_{2}, respectively.
$(i i) \Rightarrow(i):$ It follows from previous theorem.

Acknowledgement.

We would like to thank the refree his/her great effort in profreading the manuscript.

References

[1] S. E. Atani and A. Y. Darani, On quasi-primary submodules. Chiang May J. Sci, 33(3) (2006), 249-254.
[2] S. E. Atani and F. Farzalipour, On weakly prime submodules. Tamkang Journal of Mathematics, 38(3) (2007), 247-252.
[3] R. Ameri, On the prime submodules of multiplication modules. International journal of Mathematics and mathematical Sciences, (27) (2003) , 1715-1724.
[4] D. D. Anderson and M. Winders, Idealization of a module. Journal of Commutative Algebra, 1(1) (2009), 3-56.
[5] W. F. Anderson and K. R. Fuller, Rings and categories of modules. Vol. 13. Springer Science \& Business Media, 2012.
[6] E. Bast, Z. Abd and P. P. Smith, Multiplication modules. Communications in Algebra 16.4 (1988), 755-779.
[7] M. Behboodi and H. Koohy, Weakly prime modules. Vietnam J. Math, 32(2) (2004), 185-195.
[8] F. Çallıalp and Ü. Tekir, On Unions of Prime Submodules. Southeast Asian Bulletin of Mathematics, 28(2) (2004).
[9] A. Y. Darani and F. Soheilnia., 2-absorbing and weakly 2-absorbing submodules. Thai Journal of Mathematics 9.3 (2012), 577-584.
[10] C. Faith, Algebra: Rings, modules and categories I. Vol. 190. Springer Science \& Business Media, 2012.
[11] L. Fuchs, On quasi-primary ideals. Acta Sci. Math.(Szeged), 11 (1947), 174-183.
[12] R. W. Gilmer, Multiplicative ideal theory. Vol. 12. M. Dekker, 1972.
[13] McCasland, R. L., \& Moore, M. E. (1986). On radicals of submodules of finitely generated modules. Canad. Math. Bull, 29(1), 37-39.
[14] R. L. McCasland and M. E. Moore, On radicals of submodules. Communications in Algebra, 19(5) (1991), 1327-1341.
[15] H. Mostafanasab, E. Yetkin, U. Tekir, and A. Y. Darani, On 2-absorbing primary submodules of modules over commutative rings. An. Sti. U. Ovid. Co-mat. 24(1) (2015), 335-351
[16] M. Nagata, Local rings, Interscience, New York, 1962. MR, 27, 5790, (2000).
[17] U. Tekir, S. Koç, K. H. Oral, and K. P. Shum, On 2-Absorbing Quasi-Primary Ideals in Commutative Rings. Communications in Mathematics and Statistics, 4(1) (2016), 55-62.

[^0]: 2010 Mathematics Subject Classification. Primary 13A15
 Keywords. multiplication module, prime submodule, 2-absorbing submodule
 Received: 29 August 2016; Accepted: 26 February 2017
 Communicated by Miroslav Ćirić
 The first author is being financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK)
 Email addresses: suat.koc@marmara.edu.tr (Suat Koc), rnuregen@yildiz.edu.tr (Rabia Nagehan Uregen),
 utekir@marmara.edu.tr (Unsal Tekir)

