Published by Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

n-Ideals of Commutative Rings

Unsal Tekir ${ }^{\text {a }}$, Suat Koc ${ }^{\text {a }}$, Kursat Hakan Oral ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Marmara University, Istanbul, Turkey
${ }^{b}$ Department of Mathematics, Yildiz Technical University, Istanbul, Turkey

Abstract

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever $a b \in I$ with $a \notin \sqrt{0}$, then $b \in I$ for every $a, b \in R$. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.

1. INTRODUCTION

Throughout this study, all rings are assumed to be commutative with nonzero identity. Let R be a ring. If I is an ideal of R with $I \neq R$, then I is called a proper ideal. Suppose that I is an ideal of R. We denote the radical of I by $\sqrt{I}=\left\{a \in R: a^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$. In particular, we mean $\sqrt{0}$ by the set of all nilpotents in R, i.e, $\left\{a \in R: a^{n}=0\right.$ for some $\left.n \in \mathbb{N}\right\}$. Let S be a nonempty subset of R. Then the ideal $\{a \in R: a S \subseteq I\}$, which contains I, will be designated by ($I: S$).

The notion of prime ideal plays a key role in the theory of commutative algebra, and it has been widely studied. See, for example, [4,8]. Recall from [2], a prime ideal P of R is a proper ideal having the property that $a b \in P$ implies either $a \in P$ or $b \in P$ for each $a, b \in R$. In [10], Mohamadian defined a proper ideal I of R as an r-ideal if whenever $a, b \in R$ with $a b \in I$ and $\operatorname{ann}(a)=0$ imply that $b \in I$, where $\operatorname{ann}(a)=\{r \in R: r a=0\}$. Motivated from this concept, in section 2 , we give the notion of n-ideals and we investigate many properties of n-ideals with similar prime ideals. A proper ideal I of R is said to be an n-ideal if the condition $a b \in I$ with $a \notin \sqrt{0}$ implies $b \in I$ for every $a, b \in R$. Among many results in this paper, it is shown (in Theorem 2.7) that a proper ideal I of R is an n-ideal of R if and only if $I=(I: a)$ for every $a \notin \sqrt{0}$. In Proposition 2.5, we show that every n-ideal is also an r-ideal. Furthermore, in Theorem 2.14, we characterize the integral domains with n-ideal. Also, we show that (in Theorem 2.15) a ring R is a field if and only if R is von Neumann regular and 0 is an n-ideal. In Proposition 2.20 we show that if I is an n-ideal of R, then $S^{-1} I$ is an n-ideal of $S^{-1} R$, where S is a multiplicatively closed subset of R and $S^{-1} R$ is the ring of fraction on S. Moreover, in Proposition 2.25, we characterize the all rings in which every proper ideal is an n-ideal.

Let M be an R-module. Then the set $R(+) M=\{(r, m): r \in R, m \in M\}$, which is called the idealization of M in R, is a commutative ring with coordinate-wise addition and the multiplication $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=$

[^0]$\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$ for each $r_{1}, r_{2} \in R$ and $m_{1}, m_{2} \in M$ [11]. From Proposition 2.27 to Corollary 2.33 we study the n-ideals of $R(+) M$. Finally, in section 3, counter examples are given.

2. n-Ideals of Commutative Rings

Definition 2.1. A proper ideal I of R is called an n-ideal if whenever $a, b \in R$ with $a b \in I$ and $a \notin \sqrt{0}$, then $b \in I$.
Example 2.2. (i) Suppose that (R, M) is a local ring with unique prime ideal. Then every ideal is an n-ideal.
(ii) In any integral domain D, the zero ideal is an n-ideal.
(iii) Any ring R need not have an n-ideal. For instance, \mathbb{Z}_{6} has not any n-ideal.

Proposition 2.3. If I is an n-ideal of R, then $I \subseteq \sqrt{0}$.
Proof. Assume that I is an n-ideal but $I \nsubseteq \sqrt{0}$. Then there exists an $a \in I$ such that $a \notin \sqrt{0}$. Since $a .1=a \in I$ and I is an n-ideal, we conclude that $1 \in I$, so that $I=R$, a contradiction. Hence $I \subseteq \sqrt{0}$.

Proposition 2.4. Let $\left\{I_{i}\right\}_{i \in \Delta}$ be a nonmepty set of n-ideals of R, then $\bigcap_{i \in \Delta} I_{i}$ is an n-ideal of R.
Proof. Let $a b \in \bigcap_{i \in \Delta} I_{i}$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then $a b \in I_{i}$ for every $i \in \Delta$. Since I_{i} is an n-ideal of R, we get the result that $b \in I_{i}$ and so $b \in \bigcap_{i \in \Delta} I_{i}$.

Recall that a proper ideal I of R is an r-ideal if the condition $a b \in I$ with $\operatorname{ann}(a)=0$ implies $b \in I$ for each $a, b \in R$. In the following proposition, we show that every n-ideal is also an r-ideal.

Proposition 2.5. Let R be a ring. If I is an n-ideal of R, then it is an r-ideal.
Proof. Suppose that I is an n-ideal of R and $a b \in I$ with $\operatorname{ann}(a)=0$ for $a, b \in R$. Since $a \notin \sqrt{0}$ and I is an n-ideal, we conclude that $b \in I$. Consequently, I is an r-ideal of R.

Recall from [12], a proper ideal Q of R is a primary ideal if whenever $a, b \in R$ with $a b \in Q$, then $a \in Q$ or $b \in \sqrt{Q}$.

Remark 2.6. It is well known that every nilpotent element is also a zero divisor. So zero divisors and nilpotent elements are equal in case $\langle 0\rangle$ is a primary ideal of R. Thus the n-ideals and r-ideals are equivalent in any commutative ring whose zero ideal is primary.

Remember that a proper ideal P of R is prime if and only if $P=(P: a)$ for every $a \notin P$. Now, we give a similar result for n-ideals.

Theorem 2.7. Let R be a ring and I a proper ideal of R. Then the followings are equivalent:
(i) I is an n-ideal of R.
(ii) $I=(I: a)$ for every $a \notin \sqrt{0}$.
(iii) For ideals J and K of $R, J K \subseteq I$ with $J \cap(R-\sqrt{0}) \neq \emptyset$ implies $K \subseteq I$.

Proof. (i) \Rightarrow (ii) : Assume that I is an n-ideal of R. For every $a \in R$, the inclusion $I \subseteq(I: a)$ always holds. Let $a \notin \sqrt{0}$ and $b \in(I: a)$. Then we have $a b \in I$. Since I is an n-ideal, we conclude that $b \in I$ and thus $I=(I: a)$.
$($ ii $) \Rightarrow$ (iii) : Suppose that $J K \subseteq I$ with $J \cap(R-\sqrt{0}) \neq \emptyset$ for ideals J and K of R. Since $J \cap(R-\sqrt{0}) \neq \emptyset$, there exists an $a \in J$ such that $a \notin \sqrt{0}$. Then we have $a K \subseteq I$, and so $K \subseteq(I: a)=I$ by (ii).
(iii) $\Rightarrow(i):$ Let $a b \in I$ with $a \notin \sqrt{0}$ for $a, b \in R$. It is sufficient to take $J=a R$ and $K=b R$ to prove the result.

Proposition 2.8. For a prime ideal I of R, I is an n-ideal of R if and only if $I=\sqrt{0}$.
Proof. Suppose that I is a prime ideal of R. It is clear that $\sqrt{0} \subseteq I$. If I is an n-ideal of R, then by Proposition 2.3, we have $I \subseteq \sqrt{0}$ and so $I=\sqrt{0}$. For the converse, assume that $I=\sqrt{0}$. Now we show that I is an n-ideal. Let $a b \in I$ and $a \notin \sqrt{0}$ for $a, b \in R$. Since I is a prime ideal and $a \notin \sqrt{0}$, we get $b \in I$ and so I is an n-ideal of R.

Corollary 2.9. (i) $\sqrt{0}$ is an n-ideal of R if and only if it is a prime ideal of R.
(ii) Any reduced ring R, which is not integral domain, has no n-ideals.
(iii) Let R be a reduced ring. Then R is an integral domain if and only if 0 is an n-ideal of R.

Proof. (i) If $\sqrt{0}$ is a prime ideal of R, then $\sqrt{0}$ is an n-ideal of R by Proposition 2.8. Assume that $\sqrt{0}$ is an n-ideal of R. Let $a b \in \sqrt{0}$ and $a \notin \sqrt{0}$. Since $\sqrt{0}$ is an n-ideal of R, we conclude that $b \in \sqrt{0}$. Hence $\sqrt{0}$ is a prime ideal of R.
(ii) Let R be a reduced ring which is not integral domain. Then $\sqrt{0}=0$ is not prime ideal of R and so by (i) it is not an n-ideal. On the other hand, if I is a nonzero n-ideal of R, then by Proposition $2.3 I \subseteq \sqrt{0}=0$ and so $I=0$ which is a contradiction.
(iii) Suppose that R is a reduced ring. If R is an integral domain, then $0=\sqrt{0}$ is a prime ideal, and so by (i) 0 is an n-ideal of R. For the converse if 0 is an n-ideal of R, then by (ii) R is an integral domain.

Proposition 2.10. Let R be a ring and S a nonempty subset of R. If I is an n-ideal of R with $S \nsubseteq I$, then $(I: S)$ is an n-ideal of R.

Proof. It is easy to see that $(I: S) \neq R$. Let $a b \in(I: S)$ and $a \notin \sqrt{0}$. Then we have $a b s \in I$ for every $s \in S$. Since I is an n-ideal of R, we conclude that $b s \in I$ and thus $b \in(I: S)$.

Theorem 2.11. If I is a maximal n-ideal of R, then $I=\sqrt{0}$.
Proof. Let I be a maximal n-ideal of R. Now we show that I is a prime ideal of R. And so by Proposition 2.8, we have $I=\sqrt{0}$. Let $a b \in I$ and $a \notin I$ for $a, b \in R$. Since I is an n-ideal and $a \notin I$, ($I: a)$ is an n-ideal by Proposition 2.10. Thus $b \in(I: a)=I$ by the maximality of I. Hence I is a prime ideal of R.

Theorem 2.12. Let R be a ring. Then there exists an n-ideal of R if and only if $\sqrt{0}$ is a prime ideal of R.
Proof. Suppose that I is an n-ideal of R and $\Omega=\{J: J$ is an n-ideal of $R\}$. Since $I \in \Omega, \Omega \neq \emptyset$. It is clear that Ω is a partially ordered set by the set inclusion. Suppose $I_{1} \subseteq I_{2} \subseteq \ldots \subseteq I_{n} \subseteq \ldots$ is a chain of Ω. Now, we show that $\bigcup_{n=1}^{\infty} I_{i}$ is an n-ideal of R. Let $a b \in \bigcup_{n=1}^{\infty} I_{i}$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then we have $a b \in I_{k}$ for some $k \in \mathbb{N}$. Since I_{k} is an n-ideal, we conclude $b \in I_{k} \subseteq \bigcup_{n=1}^{\infty} I_{i}$. So $\bigcup_{n=1}^{\infty} I_{i}$ is a upper bound of the chain $\left\{I_{i}: i \in \mathbb{N}\right\}$. By Zorn's Lemma Ω has a maximal element K. Then by the previous theorem, we get the result that $K=\sqrt{0}$ is a prime ideal of R. For the converse, assume that $\sqrt{0}$ is a prime ideal of R. Then by Corollary 2.9(i), $\sqrt{0}$ is an n-ideal of R.

We recall from [1] that an ideal I of R is called weakly primary if whenever $0 \neq a b \in I$ for some $a, b \in R$, then $a \in I$ or $b \in \sqrt{I}$. Also, we recall from [5] ([6]) that a proper ideal I of R is a 2-absorbing primary (weakly 2-absorbing primary) if whenever $a b c \in I(0 \neq a b c \in I)$ for some $a, b, c \in R$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}(a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I})$. In view of Proposition 2.3 and Theorem 2.12, we have the following result. Since its proof is straightforward, we omit the proof.

Corollary 2.13. Let I be an ideal of R such that $I \subseteq \sqrt{0}$.

1) The following statements are equivalent:
(i) I is an n-ideal.
(ii) I is a primary ideal of R.
2) If I is an n-ideal of R, then I is a weakly primary (so weakly 2-absorbing primary) and 2-absorbing primary ideal. However the converse is not true (see Example 3.5 (ii)).
3) The followings are equivalent:
(i) I is a weakly 2-absorbing primary ideal of R and $\sqrt{0}$ is a prime ideal.
(ii) I is a 2-absorbing primary ideal of R and $\sqrt{0}$ is a prime ideal.
4) Suppose that R has at least one n-ideal. Then I is a weakly 2-absorbing primary ideal of R if and only if I is a 2-absorbing primary ideal.

Theorem 2.14. For any ring R, the followings are equivalent.
(i) R is an integral domain.
(ii) 0 is the only n-ideal of R.

Proof. ($i) \Rightarrow(i i)$: Suppose that R is an integral domain. Let I be an n-ideal of R. Then by Proposition 2.3, we have $I \subseteq \sqrt{0}=0$ and so $I=0$. Also, by Example 2.2 we know that 0 is an n-ideal.
$(i i) \Rightarrow(i)$: Assume that 0 is only n-ideal of R. Then by Theorem 2.12 and Corollary 2.9(i) $\sqrt{0}$ is both n-ideal and prime ideal. So by assumption $\sqrt{0}=0$ is a prime ideal. Hence R is an integral domain.

Recall from that a ring R is called von Neumann regular if for every $a \in R$, there exists an element x of R such that $a=a^{2} x$. Also a ring R is said to be a boolean ring if whenever $a=a^{2}$ for every $a \in R$. Notice that every boolean ring is also a von Neumann regular [2].

Theorem 2.15. Let R be a ring. Then the followings hold:
(i) R is a field if and only if R is von Neumann regular ring and 0 is an n-ideal.
(ii) Suppose that R is boolean ring. Then R is a field if and only if 0 is an n-ideal. In particular $R \cong \mathbb{Z}_{2}$.

Proof. (i) If R is a field, then it is clear that R is von Neumann regular. From Theorem 2.14, 0 is an n-ideal. For the converse, suppose that R is von Neumann regular ring and 0 is an n-ideal. Let $0 \neq a \in R$. Since R is von Neumann regular, $a=a^{2} x$ for some $x \in R$. Also it is easy to see that $\sqrt{0}=0$. Since $a(1-a x)=0$ and 0 is an n-ideal of R, we conclude that $a x=1$ and thus a is unit. Consequently, R is a field.
(ii) Suppose that R is boolean ring. Then R is a von Neumann regular ring. So by (i) it follows that R is a field if and only if 0 is an n-ideal. The rest is easily seen.

Proposition 2.16. Let R be a ring and K an ideal of R with $K \cap(R-\sqrt{0}) \neq \emptyset$. Then the followings hold:
(i) If I_{1}, I_{2} are n-ideals of R with $I_{1} K=I_{2} K$, then $I_{1}=I_{2}$.
(ii) If $I K$ is an n-ideal of R, then $I K=I$.

Proof. (i) Since I_{1} is an n-ideal and $I_{2} K \subseteq I_{1}$, by Theorem 2.7 (iii), we get the result that $I_{2} \subseteq I_{1}$. Likewise, we get $I_{1} \subseteq I_{2}$.
(ii) Since $I K$ is an n-ideal and $I K \subseteq I K$, we conclude that $I \subseteq I K$, so this completes the proof.

Theorem 2.17. Let $f: R \rightarrow S$ be a ring homomorphism. Then the followings hold:
(i) If f is an epimorphism and I is an n-ideal of R containing $\operatorname{Ker}(f)$, then $f(I)$ is an n-ideal of S.
(ii) If f is a monomorphism and J is an n-ideal of S, then $f^{-1}(J)$ is an n-ideal of R.

Proof. (i) Let $a^{\prime} b^{\prime} \in f(I)$ with $a^{\prime} \notin \sqrt{0_{S}}$ for $a^{\prime}, b^{\prime} \in S$. Since f is epimorphism, there exist $a, b \in R$ such that $a^{\prime}=f(a)$ and $b^{\prime}=f(b)$. Then $a^{\prime} b^{\prime}=f(a b) \in f(I)$. As $\operatorname{Ker}(f) \subseteq I$, we conclude that $a b \in I$. Also, note that $a \notin \sqrt{0_{R}}$. Since I is an n-ideal of R, we get the result that $b \in I$ and so $f(b)=b^{\prime} \in f(I)$ as it is needed.
(ii) Let $a b \in f^{-1}(J)$ and $a \notin \sqrt{0_{R}}$. Then $f(a b)=f(a) f(b) \in J$. Since $a \notin \sqrt{0_{R}}$ and f is a monomorphism, we get $f(a) \notin \sqrt{0_{S}}$. Since J is an n-ideal of $S, f(b) \in J$ and so $b \in f^{-1}(J)$. Consequently, $f^{-1}(J)$ is an n-ideal of R.

Corollary 2.18. Let R be a ring and $J \subseteq I$ be two ideals of R. Then the followings hold:
(i) If I is an n-ideal of R, then I / J is an n-ideal of R / J.
(ii) If I / J is an n-ideal of R / J and $J \subseteq \sqrt{0}$, then I is an n-ideal of R.
(iii) If I / J is an n-ideal of R / J and J is an n-ideal of R, then I is an n-ideal of R.

Proof. (i) Assume that I is an n-ideal of R with $J \subseteq I$. Let $\pi: R \rightarrow R / J$ be the natural homomorphism. Note that $\operatorname{Ker}(\pi)=J \subseteq I$, and so by Theorem 2.17(i) it follows that I / J is an n-ideal of R / J.
(ii) Let $a b \in I$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then we have $(a+J)(b+J)=a b+J \in I / J$ and $a+J \notin \sqrt{0_{R / J}}$. Since I / J is an n-ideal of R / J, we conclude that $b+J \in I / J$ and so $b \in I$. Consequently, I is an n-ideal of R.
(iii) It follows from (ii) and Proposition 2.3.

Corollary 2.19. Let R be a ring and S a subring of R. If I is an n-ideal of R with $S \nsubseteq I$, then $I \cap S$ is an n-ideal of S.
Proof. Suppose that S is a subring of R and I is an n-ideal of R with $S \nsubseteq I$. Consider the injection $i: S \rightarrow R$. And note that $i^{-1}(I)=I \cap S$, so by Proposition 2.17(ii), $I \cap S$ is an n-ideal of S.

Recall that an element a of R is called regular if $\operatorname{ann}(a)=0$. Then we denote the set of all regular elements of R by $r(R)$. Further, it is easy to see that $r(R)$ is a multiplicatively closed subset of R.

Proposition 2.20. Let R be a ring and S a multiplicatively closed subset of R. Then the followings hold:
(i) If I is an n-ideal of R, then $S^{-1} I$ is an n-ideal of $S^{-1} R$.
(ii) If $S=r(R)$ and J is an n-ideal of $S^{-1} R$, then J^{c} is an n-ideal of R.

Proof. (i) Let $\frac{a}{s} \frac{b}{t} \in S^{-1} I$ with $\frac{a}{s} \notin \sqrt{0_{S^{-1} R}}$, where $a, b \in R$ and $s, t \in S$. Then we have $u a b \in I$ for some $u \in S$. It is clear that $a \notin \sqrt{0}$. Since I is an n-ideal of R, we conclude that $u b \in I$ and so $\frac{b}{t}=\frac{u b}{u t} \in S^{-1} I$. Consequently, $S^{-1} I$ is an n-ideal of $S^{-1} R$.
(ii) Let $a b \in J^{c}$ and $a \notin \sqrt{0_{R}}$. Then we have $\frac{a}{1} \frac{b}{1} \in J$. Now we show that $\frac{a}{1} \notin \sqrt{0_{S^{-1} R}}$. Suppose $\frac{a}{1} \in \sqrt{0_{S^{-1} R}}$. There exists a positive integer k such that $\left(\frac{a}{1}\right)^{k}=\frac{a^{k}}{1}=0_{S^{-1} R}$. Then we get $u a^{k}=0$ for some $u \in S$. Since $\operatorname{ann}(u)=0$, we conclude that $a \in \sqrt{0_{R}}$, a contradiction. Thus we have $\frac{a}{1} \notin \sqrt{0_{S^{-1} R}}$. Since J is an n-ideal of $S^{-1} R$, we get the result that $\frac{b}{1} \in J$ and so $b \in J^{c}$.

Definition 2.21. Let S be a nonempty subset of R with $R-\sqrt{0} \subseteq S$. Then S is called an n-multiplicatively closed subset of R if $x y \in S$ for all $x \in R-\sqrt{0}$ and all $y \in S$.

Suppose that I is an n-ideal of R. Then by Proposition 2.3 we have $I \subseteq \sqrt{0}$ and so $R-\sqrt{0} \subseteq R-I$. Let $x \in R-\sqrt{0}$ and $y \in R-I$. Assume that $x y \in I$. Since $x \notin \sqrt{0}$ and I is an n-ideal, we conclude that $y \in I$, a contradiction. Thus we get the result that $x y \in R-I$, and so $R-I$ is an n-multiplicatively closed subset of R. For the converse, suppose that I is an ideal and $R-I$ is an n-multiplicatively closed subset of R. Now we show that I is an n-ideal. Let $a b \in I$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then we have $b \in I$, or else we would have $a b \in R-I$ since $R-I$ is an n-multiplicatively closed subset of R. So it follows that I is an n-ideal of R. By the above observations we have the following result analogous with the relations between prime ideals and multiplicatively closed subsets.

Corollary 2.22. For a proper ideal I of R, I is an n-ideal of R if and only if $R-I$ is an n-multiplicatively closed subset of R.

We remind the reader that if I is an ideal which is disjiont from a multiplicatively closed subset S of R, then there exists a prime ideal P of R contaning I such that $P \cap S=\emptyset$. The following Theorem states that a similar result is true for n-ideals.

Theorem 2.23. Let I be an ideal of R such that $I \cap S=\emptyset$, where S is an n-multiplicatively closed subset of R. Then there exists an n-ideal J containing I such that $J \cap S=\emptyset$.

Proof. Consider the set $\Omega=\left\{I^{\prime}: I^{\prime}\right.$ is an ideal of R with $\left.I^{\prime} \cap S=\emptyset\right\}$. Since $I \in \Omega$, we have $\Omega \neq \emptyset$. By using Zorn's lemma, we get a maximal element J of Ω. Now we show that J is an n-ideal of R. Suppose not. Then we have $a b \in J$ for some $a \notin \sqrt{0}$ and $b \notin J$. Thus we get $b \in(J: a)$ and $J \subsetneq(J: a)$. By the maximality of J, we have $(J: a) \cap S \neq \emptyset$ and thus there exists an $s \in S$ such that $s \in(J: a)$. So we have $a s \in J$. Also $s a \in S$, because $a \in R-\sqrt{0}, s \in S$ and S is an n-multiplicatively closed subset of R.Thus we get $S \cap J \neq \emptyset$, and this contradicts by $J \in \Omega$. Hence J is an n-ideal of R.

Proposition 2.24. Suppose that $I \subseteq I_{1} \cup I_{2} \cup \ldots \cup I_{n}$, where $I, I_{1}, I_{2}, \ldots, I_{n}$ are ideals of R. If I_{i} is an n-ideal and the others have non-nilpotent elements with $I \nsubseteq \bigcup_{j \neq i} I_{j}$, then $I \subseteq I_{i}$.

Proof. We may assume that $i=1$. Since $I \nsubseteq I_{2} \cup \ldots \cup I_{n}$, there exits an $x \in I-\bigcup_{j=2}^{n} I_{j}$. Thus we have $x \in I_{1}$. Let $y \in I \cap\left(I_{2} \cap I_{3} \cap \ldots \cap I_{n}\right)$. Since $x \notin I_{k}$ and $y \in I_{k}$ for every $2 \leq k \leq n$, we have $x+y \notin I_{k}$. Thus we have $x+y \in I-\bigcup_{j=2}^{n} I_{j}$ and so $x+y \in I_{1}$. As $x+y \in I_{1}$ and $x \in I_{1}$, it follows that $y \in I_{1}$ and so $I \cap \bigcap_{k=2}^{n} I_{k} \subseteq I_{1}$. By the way $\sqrt{0}$ is a prime ideal, because R has an n-ideal. So the product of non-nilpotent elements is also a non-nipotent element. Thus we have $\left(\prod_{k=2}^{n} I_{k}\right) \cap(R-\sqrt{0}) \neq \emptyset$. Since $I .\left(\prod_{k=2}^{n} I_{k}\right) \subseteq I_{1}$ and I_{1} is an n-ideal of R, we have $I \subseteq I_{1}$ by Theorem 2.7.

Recall from [7] a ring R is a UN-ring if every nonunit element a of R is a product a unit and a nilpotent element.

Proposition 2.25. For any ring R, the followings are equivalent:
(i) Every element of R is either nilpotent or unit.
(ii) Every proper principal ideal is an n-ideal.
(iii) Every proper ideal is an n-ideal.
(iv) R has a unique prime ideal which is $\sqrt{0}$.
(v) R is a UN-ring.
(vi) $R / \sqrt{0}$ is a field.

Proof. (i) \Rightarrow (ii) : Suppose that $\langle x\rangle \neq R$, where $x \in R$. Let $a b \in\langle x\rangle$ and $a \notin \sqrt{0}$. Since a is not nilpotent, by (i) a is a unit in R. Then we have $b=a^{-1}(a b) \in\langle x\rangle$ and so $\langle x\rangle$ is an n-ideal of R.
(ii) \Rightarrow (iii) : Let I be a proper ideal of R and $a b \in I$, where $a \notin \sqrt{0}$. Since $a b \in\langle a b\rangle$ and $\langle a b\rangle$ is an n-ideal of R, we conclude that $b \in\langle a b\rangle \subseteq I$. Hence I is an n-ideal of R.
$(i i i) \Rightarrow(i v):$ Let P be a prime ideal of R. By (iii) and Proposition 2.8, we get the result that $P=\sqrt{0}$, as needed. Furthermore, $\sqrt{0}$ is a maximal ideal of R.
$(i v) \Leftrightarrow(v)$: It follows from [7, Proposition 2 (3)].
$(i v) \Rightarrow(v i):$ It is straightforward.
$(v i) \Rightarrow(i)$: Suppose that $R / \sqrt{0}$ is a field. Let $a \in R$ which is not nilpotent. Then we have $a \notin \sqrt{0}$ and $a+\sqrt{0}$ is nonzero element of the field $R / \sqrt{0}$. Thus we get the result that $a b-1$ is nilpotent for some $b \in R$. Then we have $(a b-1)+1=a b$ is unit. Hence a is unit, as needed.

Suppose that R_{1}, R_{2} are two commutative rings with nonzero identities and $R=R_{1} \times R_{2}$. Then R becomes a commutative ring with coordinate-wise addition and multiplication. Also, every ideal I of R has the form $I=I_{1} \times I_{2}$, where I_{i} is an ideal of R_{i} for $i=1,2$. Now, we give the following result.

Proposition 2.26. Let R_{1} and R_{2} be two commutative rings. Then $R_{1} \times R_{2}$ has no n-ideals.
Proof. Assume that $I=I_{1} \times I_{2}$ is an n-ideal of $R_{1} \times R_{2}$, where I_{i} is an ideal of R_{i} for $i=1,2$. Since $(0,1)(1,0) \in$ $I_{1} \times I_{2},(0,1) \notin \sqrt{0_{R_{1} \times R_{2}}}$ and $(1,0) \notin \sqrt{0_{R_{1} \times R_{2}}}$, we conclude that $(0,1),(1,0) \in I$ and so $I=R_{1} \times R_{2}$, a contradiction.

Let $R(+) M$ denote the idealization of M in R, where M is an R-module. Assume that I is an ideal of R and N is a submodule of M. Then $I(+) N$ is an ideal of $R(+) M$ if and only if $I M \subseteq N$, in that case $I(+) N$ is called a homogeneous ideal of $R(+) M$ [3]. In [3,9], the nil radical of $R(+) M$ is characterized as follows:

$$
\sqrt{0_{R(+) M}}=\sqrt{0}(+) M
$$

Notice that $(r, m) \notin \sqrt{0_{R(+) M}}$ if and only if $r \notin \sqrt{0}$.
Proposition 2.27. Let I be an n-ideal of R. Then $I(+) M$ is an n-ideal of $R(+) M$.
Proof. Let $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right) \in I(+) M$ with $\left(r_{1}, m_{1}\right) \notin \sqrt{0_{R(+) M}}$. Then we have $r_{1} r_{2} \in I$ and $r_{1} \notin \sqrt{0}$. Since I is an n-ideal of R, we conclude that $r_{2} \in I$ and so $\left(r_{2}, m_{2}\right) \in I(+) M$. Consequently, $I(+) M$ is an n-ideal of $R(+) M$.

Remark 2.28. Let I be an n-ideal of R and N a submodule of M with $I M \subseteq N$, then $I(+) N$ need not be an n-ideal of $R(+) M$. For example 0 is an n-ideal of the ring of integers and $\overline{0}$ is a submodule of \mathbb{Z}-module \mathbb{Z}_{6}. But $0(+) \overline{0}$ is not an n-ideal, because $(2, \overline{0})(0, \overline{3}) \in 0(+) \overline{0}$ with $(2, \overline{0}) \notin \sqrt{0_{\mathbb{Z}(+) \mathbb{Z}_{6}}}$ but $(0, \overline{3}) \notin 0(+) \overline{0}$.

Definition 2.29. Let M be an R-module. Then we say that an element a of R is nilpotent in M if whenever $a^{n} M=0_{M}$ for some positive integer n. Then the set of all nilpotents in M is denoted by $\operatorname{Nil}(M)$. It is clear that $\sqrt{0} \subseteq \operatorname{Nil}(M)$.

Now we generalize the concept of n-ideals to modules in the following.
Definition 2.30. Let M be an R-module. Then a proper submodule N of M is called an n-submodule if for $a \in R, m \in$ M, am $\in N$ with $a \notin \operatorname{Nil}(M)$, then $m \in N$.

Theorem 2.31. Let I be an ideal of R and N a proper submodule of M. If $I(+) N$ is an n-ideal of $R(+) M$, then I is an n-ideal of R and N is an n-submodule of M.

Proof. Suppose that $I(+) N$ is an n-ideal of $R(+) M$. First, we show that I is an n-ideal of R. Let $a b \in I$ with $a \notin \sqrt{0}$. Then we have $\left(a, 0_{M}\right)\left(b, 0_{M}\right)=\left(a b, 0_{M}\right) \in I(+) N$ with $\left(a, 0_{M}\right) \notin \sqrt{0_{R(+) M}}$. Since $I(+) N$ is an n-ideal of $R(+) M$, we conclude that $\left(b, 0_{M}\right) \in I(+) N$ and so $b \in I$. Now, we show that N is an n-submodule of M. Let $a m \in N$ with $a \notin \operatorname{Nil}(M)$. Then we have $\left(a, 0_{M}\right)(0, m)=(0, a m) \in I(+) N$ with $\left(a, 0_{M}\right) \notin \sqrt{0_{R(+) M}}$. Since $I(+) N$ is an n-ideal of $R(+) M$, we conclude that $(0, m) \in I(+) N$ and so $m \in N$, as needed.

Theorem 2.32. Let M be an R-module with $\operatorname{Nil}(M) \subseteq \sqrt{0}$. If I is an n-ideal of R and N is an n-submodule of M with $I M \subseteq N$, then $I(+) N$ is an n-ideal of $R(+) M$.

Proof. Let $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right) \in I(+) N$ with $\left(r_{1}, m_{1}\right) \notin \sqrt{0_{R(+) M}}$. Then $r_{1} r_{2} \in I$ and $r_{1} \notin \sqrt{0}$. Since I is an n-ideal of R, we conclude that $r_{2} \in I$. Thus we have $r_{2} m_{1} \in I M \subseteq N$, and so $r_{1} m_{2} \in N$, because $r_{1} m_{2}+r_{2} m_{1} \in N$. Since N is an n-submodule of M and $r_{1} \notin \operatorname{Nil}(M) \subseteq \sqrt{0}$, we conclude $m_{2} \in N$ so that $\left(r_{2}, m_{2}\right) \in I(+) N$ as it is needed.

Corollary 2.33. Let M be an R-module with $\operatorname{Nil}(M) \subseteq \sqrt{0}$. Suppose that I is an ideal of R and N is a proper submodule of M with $I M \subseteq N$. Then $I(+) N$ is an n-ideal of $R(+) M$ if and only if I is an n-ideal of R and N is an n-submodule of M.

3. Examples

Proposition 3.1. \mathbb{Z}_{n} has an n-ideal if and only if $n=p^{k}$ for some $k \in \mathbb{Z}^{+}$, where p is prime number.

Proof. If $n=p^{k}$ for some $k \in \mathbb{Z}^{+}$, then \mathbb{Z}_{n} is a local ring with unique prime ideal and so by Example 2.2 every ideal is an n-ideal. Suppose that $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{t}^{n_{t}}$, where p_{i} 's are distinct prime numbers with $t \geq 2$. First notice that $\sqrt{0}=\left\langle\overline{p_{1} p_{2}} \ldots \overline{p_{t}}\right\rangle$. Assume that I is an n-ideal of \mathbb{Z}_{n}. Then we get $I \subseteq \sqrt{0}=\left\langle\overline{p_{1} p_{2} \ldots p_{t}}\right\rangle$. Hence $I=\left\langle\overline{\left.p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots \overline{p_{t}^{s_{t}}}\right\rangle \text { for some positive integers } s_{i} \text { with } s_{i} \leq n_{i} \text { for } i=1,2, \ldots, t \text {. It is easy to see that } \overline{p_{2}^{s_{2}}} \overline{p_{t}^{s_{t}}} \notin \sqrt{0}==1.2 p_{1}}\right.$ $\left\langle\overline{p_{1} p_{2} \ldots p_{t}}\right\rangle$ and $\overline{p_{1}^{s_{1}}} \notin I=\left\langle\overline{p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{t}^{s_{t}}}\right\rangle$ but $\left.\overline{p_{1}^{s_{1}}} \overline{p_{2}^{s_{2}}} \ldots \overline{p_{t}^{s_{t}}}\right) \in I$. So it follows that I is not an n-ideal, a contradiction.

Now we give the following examples to compare with the notion of prime ideals, n-ideals and r-ideals.

Example 3.2. (i) It is clear that $3 \mathbb{Z}$ is a prime ideal of \mathbb{Z}. But it is not an n-ideal of \mathbb{Z} by Example 2.2.
(ii) In the ring $\mathbb{Z}_{27},\langle\overline{9}\rangle$ is an n-ideal. But $\langle\overline{9}\rangle$ is not prime ideal, because $\overline{3} . \overline{3} \in\langle\overline{9}\rangle$ and $\overline{3} \notin\langle\overline{9}\rangle$.
(iii) $\langle\overline{3}\rangle$ is an r-ideal of \mathbb{Z}_{6} but it is not an n-ideal by Proposition 3.1.

In the following example (i) we give an infinite ring having the n-ideals, and also in example (ii) we show the converse of Proposition 2.3 is not always correct.

Example 3.3. (i) Consider the ring $\mathbb{Z}[X]$ and the prime ideal $P=\langle X\rangle$. Let $R=\mathbb{Z}[X] / P^{n}$ and $I=P^{2} / P^{n}$ for $n>2$. First, note that $\sqrt{0}=P / P^{n}$. Let $\left(f+P^{n}\right)\left(g+P^{n}\right) \in I$ and $g+P^{n} \notin \sqrt{0}$. Then $f g \in\langle X\rangle^{2}$ and $g \notin\langle X\rangle$, so that X^{2} divides $f g$ but X can not divide g. Thus X^{2} divides f and so $f+P^{n} \in I$. Hence I is an n-ideal of R.
(ii) Let $R=\mathbb{Z}[X, Y] /\left\langle Y^{4}\right\rangle$ and $I=\left\langle x y, y^{2}\right\rangle$, where $x=X+\left\langle Y^{4}\right\rangle$ and $y=Y+\left\langle Y^{4}\right\rangle$. It is easy to see that $\sqrt{0_{R}}=\langle y\rangle$ is a prime ideal and so it is an n-ideal by Corollary 2.9(i). Furthermore, $I \subseteq \sqrt{0_{R}}$. Since $y(x+y) \in I, x+y \notin \sqrt{0_{R}}$ and $y \notin I$, it follows that I is not an n-ideal.

Example 3.4. Consider the ring $\mathbb{Z}_{9}[x]$ and note that $\sqrt{0_{\mathbb{Z}_{9}[x]}}=\overline{3} \mathbb{Z}_{9}[x]$. Now, we show that $\sqrt{0_{\mathbb{Z}_{9}[x]}}$ is an n-ideal. Let us define a homomorphism as follows:

$$
\varphi: \mathbb{Z}_{9}[x] \rightarrow \mathbb{Z}_{3}[x], \varphi\left(\overline{a_{0}}+\overline{a_{1}} x+\ldots+\overline{a_{n}} x^{n}\right)=\overline{a_{0}}+\overline{a_{1}} x+\ldots+\overline{a_{n}} x^{n}
$$

It is clear that φ is an epimorphism and the $\operatorname{Ker}(f)=\sqrt{0_{\mathbb{Z}_{9}[x]}}$. So we have $\mathbb{Z}_{9}[x] / \sqrt{0_{\mathbb{Z}_{9}[x]}} \cong \mathbb{Z}_{3}[x]$ is an integral domain and so $\sqrt{0_{\mathbb{Z}_{9}[x]}}$ is a prime ideal of $\mathbb{Z}_{9}[x]$. Then by Corollary 2.9(i), $\sqrt{0_{\mathbb{Z}_{9}[x]}}$ is an n-ideal of $\mathbb{Z}_{9}[x]$, which is nonzero.

The following examples show that the converses of Corollary 2.18(i) and Theorem 2.31 are not always true.

Example 3.5. (i) Let $R=\mathbb{Z}, I=3 \mathbb{Z}$ and $J=9 \mathbb{Z}$. Then I / J is an n-ideal of R / J but I is not an n-ideal of R.
(ii) Consider the \mathbb{Z}-module \mathbb{Z}_{9}. Note that 0 is an n-ideal of \mathbb{Z} and $\overline{0}$ is an n-submodule of \mathbb{Z}_{9}. But $I=0(+) \overline{0}$ is not an n-ideal of $\mathbb{Z}(+) \mathbb{Z}_{9}$, because $(3, \overline{0})(0, \overline{3})=(0, \overline{0}) \in I,(3,0) \notin \sqrt{0_{\mathbb{Z}(+) \mathbb{Z}_{9}}}$ and $(0, \overline{3}) \notin I$.

Remark 3.6. Suppose that I is an n-ideal of R. Then it follows that $\sqrt{I}=\sqrt{0}$ is an n-ideal by Theorem 2.12 and Corollary 2.9 (i). Example 3.3 (ii) reserves that the converse is not true, that is, I may not be an n-ideal even if \sqrt{I} is an n-ideal of R.

Acknowledgement.

We would like to thank the refree his/her great effort in profreading the manuscript.

References

[1] Atani, S. E., \& Farzalipour, F. (2005). On weakly primary ideals. Georgian Mathematical Journal, 12(3), 423.
[2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969
[3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
[4] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Communications in Algebra® 36(2) (2008), 686-696.
[5] Badawi, A., Tekir, U., \& Yetkin, E. (2014). On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc, 51(4), 1163-1173.
[6] Badawi, A., Tekir, U., \& Yetkin, E. (2015). On weakly 2-absorbing primary ideals of commutative rings. J. Korean Math. Soc, 52(1), 97-111.
[7] G. Călugăreanu, UN-rings, Journal of Algebra and Its Applications, 15 (9) (2015).
[8] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Communications in Algebra 40 (4) (2012), 1268-1279.
[9] J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, Inc., New York, 1988.
[10] R. Mohamadian, r-ideals in commutative rings, Turk J. Math 39 (2015), 733-749.
[11] M. Nagata, Local rings, Interscience Publishers, New York, 1962.
[12] R. Y. Sharp, Steps in commutative algebra, Second edition, Cambridge University Press, Cambridge, 2000.

[^0]: 2010 Mathematics Subject Classification. Primary 13A15; Secondary 13A99
 Keywords. prime ideal, r-ideal, n-ideal
 Received: 29 August 2016; Accepted: 16 January 2017
 Communicated by Miroslav Ćirić
 The second author is being financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK)
 Email addresses: utekir@marmara.edu.tr (Unsal Tekir), suat.koc@marmara. edu.tr (Suat Koc), khoral993@gmail.com (Kursat Hakan Oral)

