Filomat 31:10 (2017), 2933–2941 https://doi.org/10.2298/FIL1710933T

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

n-Ideals of Commutative Rings

Unsal Tekir^a, Suat Koc^a, Kursat Hakan Oral^b

^aDepartment of Mathematics, Marmara University, Istanbul, Turkey ^bDepartment of Mathematics, Yildiz Technical University, Istanbul, Turkey

Abstract. In this paper, we present a new classes of ideals: called *n*-ideal. Let *R* be a commutative ring with nonzero identity. We define a proper ideal *I* of *R* as an *n*-ideal if whenever $ab \in I$ with $a \notin \sqrt{0}$, then $b \in I$ for every $a, b \in R$. We investigate some properties of *n*-ideals analogous with prime ideals. Also, we give many examples with regard to *n*-ideals.

1. INTRODUCTION

Throughout this study, all rings are assumed to be commutative with nonzero identity. Let *R* be a ring. If *I* is an ideal of *R* with $I \neq R$, then *I* is called a proper ideal. Suppose that *I* is an ideal of *R*. We denote the radical of *I* by $\sqrt{I} = \{a \in R : a^n \in I \text{ for some } n \in \mathbb{N}\}$. In particular, we mean $\sqrt{0}$ by the set of all nilpotents in *R*, i.e, $\{a \in R : a^n = 0 \text{ for some } n \in \mathbb{N}\}$. Let *S* be a nonempty subset of *R*. Then the ideal $\{a \in R : aS \subseteq I\}$, which contains *I*, will be designated by (I : S).

The notion of prime ideal plays a key role in the theory of commutative algebra, and it has been widely studied. See, for example, [4,8]. Recall from [2], a prime ideal *P* of *R* is a proper ideal having the property that $ab \in P$ implies either $a \in P$ or $b \in P$ for each $a, b \in R$. In [10], Mohamadian defined a proper ideal *I* of *R* as an *r*-ideal if whenever $a, b \in R$ with $ab \in I$ and ann(a) = 0 imply that $b \in I$, where $ann(a) = \{r \in R : ra = 0\}$. Motivated from this concept, in section 2, we give the notion of *n*-ideals and we investigate many properties of *n*-ideals with similar prime ideals. A proper ideal *I* of *R* is said to be an *n*-ideal if the condition $ab \in I$ with $a \notin \sqrt{0}$ implies $b \in I$ for every $a, b \in R$. Among many results in this paper, it is shown (in Theorem 2.7) that a proper ideal *I* of *R* is an *n*-ideal. Furthermore, in Theorem 2.14, we characterize the integral domains with *n*-ideal. Also, we show that (in Theorem 2.15) a ring *R* is a field if and only if *R* is von Neumann regular and 0 is an *n*-ideal. In Proposition 2.20 we show that if *I* is an *n*-ideal of *R*, then $S^{-1}I$ is an *n*-ideal of $S^{-1}R$, where *S* is a multiplicatively closed subset of *R* and $S^{-1}R$ is the ring of fraction on *S*. Moreover, in Proposition 2.25, we characterize the all rings in which every proper ideal is an *n*-ideal.

Let *M* be an *R*-module. Then the set $R(+)M = \{(r, m) : r \in R, m \in M\}$, which is called the idealization of *M* in *R*, is a commutative ring with coordinate-wise addition and the multiplication $(r_1, m_1)(r_2, m_2) =$

²⁰¹⁰ Mathematics Subject Classification. Primary 13A15; Secondary 13A99

Keywords. prime ideal, r-ideal, n-ideal

Received: 29 August 2016; Accepted: 16 January 2017

Communicated by Miroslav Ćirić

The second author is being financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK)

Email addresses: utekir@marmara.edu.tr(Unsal Tekir), suat.koc@marmara.edu.tr(Suat Koc), khoral993@gmail.com(Kursat Hakan Oral)

 $(r_1r_2, r_1m_2 + r_2m_1)$ for each $r_1, r_2 \in R$ and $m_1, m_2 \in M$ [11]. From Proposition 2.27 to Corollary 2.33 we study the *n*-ideals of R(+)M. Finally, in section 3, counter examples are given.

2. *n*-Ideals of Commutative Rings

Definition 2.1. A proper ideal I of R is called an n-ideal if whenever $a, b \in \mathbb{R}$ with $ab \in I$ and $a \notin \sqrt{0}$, then $b \in I$.

Example 2.2. (*i*) Suppose that (R, M) is a local ring with unique prime ideal. Then every ideal is an n-ideal. (*ii*) In any integral domain D, the zero ideal is an n-ideal. (*iii*) Any ring R need not have an n-ideal. For instance, \mathbb{Z}_6 has not any n-ideal.

Proposition 2.3. If *I* is an *n*-ideal of *R*, then $I \subseteq \sqrt{0}$.

Proof. Assume that *I* is an *n*-ideal but $I \not\subseteq \sqrt{0}$. Then there exists an $a \in I$ such that $a \notin \sqrt{0}$. Since $a.1 = a \in I$ and *I* is an *n*-ideal, we conclude that $1 \in I$, so that I = R, a contradiction. Hence $I \subseteq \sqrt{0}$. \Box

Proposition 2.4. Let $\{I_i\}_{i\in\Delta}$ be a nonmepty set of *n*-ideals of *R*, then $\bigcap_{i\in\Delta} I_i$ is an *n*-ideal of *R*.

Proof. Let $ab \in \bigcap_{i \in \Delta} I_i$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then $ab \in I_i$ for every $i \in \Delta$. Since I_i is an *n*-ideal of *R*, we get the result that $b \in I_i$ and so $b \in \bigcap_{i \in \Delta} I_i$. \Box

Recall that a proper ideal *I* of *R* is an *r*-ideal if the condition $ab \in I$ with ann(a) = 0 implies $b \in I$ for each $a, b \in R$. In the following proposition, we show that every *n*-ideal is also an *r*-ideal.

Proposition 2.5. Let R be a ring. If I is an n-ideal of R, then it is an r-ideal.

Proof. Suppose that *I* is an *n*-ideal of *R* and $ab \in I$ with ann(a) = 0 for $a, b \in R$. Since $a \notin \sqrt{0}$ and *I* is an *n*-ideal, we conclude that $b \in I$. Consequently, *I* is an *r*-ideal of *R*. \Box

Recall from [12], a proper ideal *Q* of *R* is a primary ideal if whenever $a, b \in R$ with $ab \in Q$, then $a \in Q$ or $b \in \sqrt{Q}$.

Remark 2.6. It is well known that every nilpotent element is also a zero divisor. So zero divisors and nilpotent elements are equal in case $\langle 0 \rangle$ is a primary ideal of R. Thus the n-ideals and r-ideals are equivalent in any commutative ring whose zero ideal is primary.

Remember that a proper ideal *P* of *R* is prime if and only if P = (P : a) for every $a \notin P$. Now, we give a similar result for *n*-ideals.

Theorem 2.7. Let R be a ring and I a proper ideal of R. Then the followings are equivalent:

(i) I is an n-ideal of R. (ii) I = (I : a) for every $a \notin \sqrt{0}$. (iii) For ideals J and K of R, $JK \subseteq I$ with $J \cap (R - \sqrt{0}) \neq \emptyset$ implies $K \subseteq I$.

Proof. (*i*) \Rightarrow (*ii*) : Assume that *I* is an *n*-ideal of *R*. For every $a \in R$, the inclusion $I \subseteq (I : a)$ always holds. Let $a \notin \sqrt{0}$ and $b \in (I : a)$. Then we have $ab \in I$. Since *I* is an *n*-ideal, we conclude that $b \in I$ and thus I = (I : a).

 $(ii) \Rightarrow (iii)$: Suppose that *JK* ⊆ *I* with *J* ∩ (*R* − $\sqrt{0}$) ≠ Ø for ideals *J* and *K* of *R*. Since *J* ∩ (*R* − $\sqrt{0}$) ≠ Ø, there exists an *a* ∈ *J* such that *a* ∉ $\sqrt{0}$. Then we have *aK* ⊆ *I*, and so *K* ⊆ (*I* : *a*) = *I* by (ii).

 $(iii) \Rightarrow (i)$: Let *ab* ∈ *I* with *a* ∉ $\sqrt{0}$ for *a*, *b* ∈ *R*. It is sufficient to take *J* = *aR* and *K* = *bR* to prove the result. □

Proposition 2.8. For a prime ideal I of R, I is an n-ideal of R if and only if $I = \sqrt{0}$.

Proof. Suppose that *I* is a prime ideal of *R*. It is clear that $\sqrt{0} \subseteq I$. If *I* is an *n*-ideal of *R*, then by Proposition 2.3, we have $I \subseteq \sqrt{0}$ and so $I = \sqrt{0}$. For the converse, assume that $I = \sqrt{0}$. Now we show that *I* is an *n*-ideal. Let $ab \in I$ and $a \notin \sqrt{0}$ for $a, b \in R$. Since *I* is a prime ideal and $a \notin \sqrt{0}$, we get $b \in I$ and so *I* is an *n*-ideal of *R*. \Box

Corollary 2.9. (i) $\sqrt{0}$ is an n-ideal of R if and only if it is a prime ideal of R. (ii) Any reduced ring R, which is not integral domain, has no n-ideals. (iii) Let R be a reduced ring. Then R is an integral domain if and only if 0 is an n-ideal of R.

Proof. (i) If $\sqrt{0}$ is a prime ideal of *R*, then $\sqrt{0}$ is an *n*-ideal of *R* by Proposition 2.8. Assume that $\sqrt{0}$ is an *n*-ideal of *R*. Let $ab \in \sqrt{0}$ and $a \notin \sqrt{0}$. Since $\sqrt{0}$ is an *n*-ideal of *R*, we conclude that $b \in \sqrt{0}$. Hence $\sqrt{0}$ is a prime ideal of *R*.

(ii) Let *R* be a reduced ring which is not integral domain. Then $\sqrt{0} = 0$ is not prime ideal of *R* and so by (i) it is not an *n*-ideal. On the other hand, if *I* is a nonzero *n*-ideal of *R*, then by Proposition 2.3 $I \subseteq \sqrt{0} = 0$ and so I = 0 which is a contradiction.

(iii) Suppose that *R* is a reduced ring. If *R* is an integral domain, then $0 = \sqrt{0}$ is a prime ideal, and so by (i) 0 is an *n*-ideal of *R*. For the converse if 0 is an *n*-ideal of *R*, then by (ii) *R* is an integral domain.

Proposition 2.10. *Let* R *be a ring and* S *a nonempty subset of* R. *If* I *is an* n*-ideal of* R *with* $S \not\subseteq I$ *, then* (I : S) *is an* n*-ideal of* R.

Proof. It is easy to see that $(I : S) \neq R$. Let $ab \in (I : S)$ and $a \notin \sqrt{0}$. Then we have $abs \in I$ for every $s \in S$. Since *I* is an *n*-ideal of *R*, we conclude that $bs \in I$ and thus $b \in (I : S)$. \Box

Theorem 2.11. If *I* is a maximal *n*-ideal of *R*, then $I = \sqrt{0}$.

Proof. Let *I* be a maximal *n*-ideal of *R*. Now we show that *I* is a prime ideal of *R*. And so by Proposition 2.8, we have $I = \sqrt{0}$. Let $ab \in I$ and $a \notin I$ for $a, b \in R$. Since *I* is an *n*-ideal and $a \notin I$, (I : a) is an *n*-ideal by Proposition 2.10. Thus $b \in (I : a) = I$ by the maximality of *I*. Hence *I* is a prime ideal of *R*. \Box

Theorem 2.12. Let R be a ring. Then there exists an n-ideal of R if and only if $\sqrt{0}$ is a prime ideal of R.

Proof. Suppose that *I* is an *n*-ideal of *R* and $\Omega = \{J : J \text{ is an } n\text{-ideal of } R\}$. Since $I \in \Omega$, $\Omega \neq \emptyset$. It is clear that Ω is a partially ordered set by the set inclusion. Suppose $I_1 \subseteq I_2 \subseteq ... \subseteq I_n \subseteq ...$ is a chain of Ω . Now, we show that $\bigcup_{n=1}^{\infty} I_i$ is an *n*-ideal of *R*. Let $ab \in \bigcup_{n=1}^{\infty} I_i$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then we have $ab \in I_k$ for some $k \in \mathbb{N}$. Since I_k is an *n*-ideal, we conclude $b \in I_k \subseteq \bigcup_{n=1}^{\infty} I_i$. So $\bigcup_{n=1}^{\infty} I_i$ is a upper bound of the chain $\{I_i : i \in \mathbb{N}\}$. By Zorn's Lemma Ω has a maximal element *K*. Then by the previous theorem, we get the result that $K = \sqrt{0}$ is

a prime ideal of *R*. For the converse, assume that $\sqrt{0}$ is a prime ideal of *R*. Then by Corollary 2.9(i), $\sqrt{0}$ is an *n*-ideal of *R*. \Box

We recall from [1] that an ideal *I* of *R* is called weakly primary if whenever $0 \neq ab \in I$ for some $a, b \in R$, then $a \in I$ or $b \in \sqrt{I}$. Also, we recall from [5] ([6]) that a proper ideal *I* of *R* is a 2-absorbing primary (weakly 2-absorbing primary) if whenever $abc \in I$ ($0 \neq abc \in I$) for some $a, b, c \in R$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$ ($ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$). In view of Proposition 2.3 and Theorem 2.12, we have the following result. Since its proof is straightforward, we omit the proof.

Corollary 2.13. *Let I* be an ideal of *R* such that $I \subseteq \sqrt{0}$.

1) The following statements are equivalent:

(*i*) I is an n-ideal.

(ii) I is a primary ideal of R.

2) If I is an n-ideal of R, then I is a weakly primary (so weakly 2-absorbing primary) and 2-absorbing primary ideal. However the converse is not true (see Example 3.5 (ii)).

3) The followings are equivalent:

(*i*) I is a weakly 2-absorbing primary ideal of R and $\sqrt{0}$ is a prime ideal.

(ii) I is a 2-absorbing primary ideal of R and $\sqrt{0}$ is a prime ideal.

4) Suppose that R has at least one n-ideal. Then I is a weakly 2-absorbing primary ideal of R if and only if I is a 2-absorbing primary ideal.

Theorem 2.14. For any ring *R*, the followings are equivalent.

(i) R is an integral domain.

(ii) 0 is the only n-ideal of R.

Proof. (*i*) \Rightarrow (*ii*) : Suppose that *R* is an integral domain. Let *I* be an *n*-ideal of *R*. Then by Proposition 2.3, we have $I \subseteq \sqrt{0} = 0$ and so I = 0. Also, by Example 2.2 we know that 0 is an *n*-ideal.

 $(ii) \Rightarrow (i)$: Assume that 0 is only *n*-ideal of *R*. Then by Theorem 2.12 and Corollary 2.9(i) $\sqrt{0}$ is both *n*-ideal and prime ideal. So by assumption $\sqrt{0} = 0$ is a prime ideal. Hence *R* is an integral domain. \Box

Recall from that a ring *R* is called von Neumann regular if for every $a \in R$, there exists an element *x* of *R* such that $a = a^2x$. Also a ring *R* is said to be a boolean ring if whenever $a = a^2$ for every $a \in R$. Notice that every boolean ring is also a von Neumann regular [2].

Theorem 2.15. Let R be a ring. Then the followings hold:

(i) R is a field if and only if R is von Neumann regular ring and 0 is an n-ideal.

(ii) Suppose that R is boolean ring. Then R is a field if and only if 0 is an n-ideal. In particular $R \cong \mathbb{Z}_2$.

Proof. (i) If *R* is a field, then it is clear that *R* is von Neumann regular. From Theorem 2.14, 0 is an *n*-ideal. For the converse, suppose that *R* is von Neumann regular ring and 0 is an *n*-ideal. Let $0 \neq a \in R$. Since *R* is von Neumann regular, $a = a^2x$ for some $x \in R$. Also it is easy to see that $\sqrt{0} = 0$. Since a(1 - ax) = 0 and 0 is an *n*-ideal of *R*, we conclude that ax = 1 and thus *a* is unit. Consequently, *R* is a field.

(ii) Suppose that *R* is boolean ring. Then *R* is a von Neumann regular ring. So by (i) it follows that *R* is a field if and only if 0 is an *n*-ideal. The rest is easily seen. \Box

Proposition 2.16. Let *R* be a ring and *K* an ideal of *R* with $K \cap (R - \sqrt{0}) \neq \emptyset$. Then the followings hold: (i) If I_1, I_2 are *n*-ideals of *R* with $I_1K = I_2K$, then $I_1 = I_2$. (ii) If IK is an *n*-ideal of *R*, then IK = I.

Proof. (i) Since I_1 is an *n*-ideal and $I_2K \subseteq I_1$, by Theorem 2.7 (iii), we get the result that $I_2 \subseteq I_1$. Likewise, we get $I_1 \subseteq I_2$.

(ii) Since *IK* is an *n*-ideal and *IK* \subseteq *IK*, we conclude that *I* \subseteq *IK*, so this completes the proof. \Box

Theorem 2.17. Let $f : R \to S$ be a ring homomorphism. Then the followings hold: (*i*) If f is an epimorphism and I is an n-ideal of R containing Ker(f), then f(I) is an n-ideal of S. (*ii*) If f is a monomorphism and J is an n-ideal of S, then $f^{-1}(J)$ is an n-ideal of R.

Proof. (i) Let $a'b' \in f(I)$ with $a' \notin \sqrt{0_S}$ for $a', b' \in S$. Since f is epimorphism, there exist $a, b \in R$ such that a' = f(a) and b' = f(b). Then $a'b' = f(ab) \in f(I)$. As $Ker(f) \subseteq I$, we conclude that $ab \in I$. Also, note that $a \notin \sqrt{0_R}$. Since I is an n-ideal of R, we get the result that $b \in I$ and so $f(b) = b' \in f(I)$ as it is needed.

(ii) Let $ab \in f^{-1}(J)$ and $a \notin \sqrt{0_R}$. Then $f(ab) = f(a)f(b) \in J$. Since $a \notin \sqrt{0_R}$ and f is a monomorphism, we get $f(a) \notin \sqrt{0_S}$. Since J is an n-ideal of S, $f(b) \in J$ and so $b \in f^{-1}(J)$. Consequently, $f^{-1}(J)$ is an n-ideal of R. \Box

2936

Corollary 2.18. Let *R* be a ring and $J \subseteq I$ be two ideals of *R*. Then the followings hold: (*i*) If *I* is an *n*-ideal of *R*, then *I*/*J* is an *n*-ideal of *R*/*J*. (*ii*) If *I*/*J* is an *n*-ideal of *R*/*J* and $J \subseteq \sqrt{0}$, then *I* is an *n*-ideal of *R*. (*iii*) If *I*/*J* is an *n*-ideal of *R*/*J* and *J* is an *n*-ideal of *R*, then *I* is an *n*-ideal of *R*.

Proof. (i) Assume that *I* is an *n*-ideal of *R* with $J \subseteq I$. Let $\pi : R \to R/J$ be the natural homomorphism. Note that $Ker(\pi) = J \subseteq I$, and so by Theorem 2.17(i) it follows that I/J is an *n*-ideal of R/J.

(ii) Let $ab \in I$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then we have $(a + J)(b + J) = ab + J \in I/J$ and $a + J \notin \sqrt{0_{R/J}}$. Since I/J is an *n*-ideal of R/J, we conclude that $b + J \in I/J$ and so $b \in I$. Consequently, I is an *n*-ideal of R. (iii) It follows from (ii) and Proposition 2.3. \Box

Corollary 2.19. Let R be a ring and S a subring of R. If I is an n-ideal of R with $S \not\subseteq I$, then $I \cap S$ is an n-ideal of S.

Proof. Suppose that *S* is a subring of *R* and *I* is an *n*-ideal of *R* with $S \not\subseteq I$. Consider the injection $i : S \to R$. And note that $i^{-1}(I) = I \cap S$, so by Proposition 2.17(ii), $I \cap S$ is an *n*-ideal of *S*. \Box

Recall that an element *a* of *R* is called regular if ann(a) = 0. Then we denote the set of all regular elements of *R* by r(R). Further, it is easy to see that r(R) is a multiplicatively closed subset of *R*.

Proposition 2.20. Let *R* be a ring and *S* a multiplicatively closed subset of *R*. Then the followings hold: (i) If *I* is an *n*-ideal of *R*, then $S^{-1}I$ is an *n*-ideal of $S^{-1}R$.

(*ii*) If S = r(R) and J is an n-ideal of $S^{-1}R$, then J^c is an n-ideal of R.

Proof. (i) Let $\frac{a}{s} \frac{b}{t} \in S^{-1}I$ with $\frac{a}{s} \notin \sqrt{0_{S^{-1}R}}$, where $a, b \in R$ and $s, t \in S$. Then we have $uab \in I$ for some $u \in S$. It is clear that $a \notin \sqrt{0}$. Since *I* is an *n*-ideal of *R*, we conclude that $ub \in I$ and so $\frac{b}{t} = \frac{ub}{ut} \in S^{-1}I$. Consequently, $S^{-1}I$ is an *n*-ideal of $S^{-1}R$.

(ii) Let $ab \in J^c$ and $a \notin \sqrt{0_R}$. Then we have $\frac{a}{1}\frac{b}{1} \in J$. Now we show that $\frac{a}{1} \notin \sqrt{0_{S^{-1}R}}$. Suppose $\frac{a}{1} \in \sqrt{0_{S^{-1}R}}$. There exists a positive integer k such that $(\frac{a}{1})^k = \frac{a^k}{1} = 0_{S^{-1}R}$. Then we get $ua^k = 0$ for some $u \in S$. Since ann(u) = 0, we conclude that $a \in \sqrt{0_R}$, a contradiction. Thus we have $\frac{a}{1} \notin \sqrt{0_{S^{-1}R}}$. Since J is an n-ideal of $S^{-1}R$, we get the result that $\frac{b}{1} \in J$ and so $b \in J^c$. \Box

Definition 2.21. Let *S* be a nonempty subset of *R* with $R - \sqrt{0} \subseteq S$. Then *S* is called an *n*-multiplicatively closed subset of *R* if $xy \in S$ for all $x \in R - \sqrt{0}$ and all $y \in S$.

Suppose that *I* is an *n*-ideal of *R*. Then by Proposition 2.3 we have $I \subseteq \sqrt{0}$ and so $R - \sqrt{0} \subseteq R - I$. Let $x \in R - \sqrt{0}$ and $y \in R - I$. Assume that $xy \in I$. Since $x \notin \sqrt{0}$ and *I* is an *n*-ideal, we conclude that $y \in I$, a contradiction. Thus we get the result that $xy \in R - I$, and so R - I is an *n*-multiplicatively closed subset of *R*. For the converse, suppose that *I* is an ideal and R - I is an *n*-multiplicatively closed subset of *R*. Now we show that *I* is an *n*-ideal. Let $ab \in I$ with $a \notin \sqrt{0}$ for $a, b \in R$. Then we have $b \in I$, or else we would have $ab \in R - I$ since R - I is an *n*-multiplicatively closed subset of *R*. By the above observations we have the following result analogous with the relations between prime ideals and multiplicatively closed subsets.

Corollary 2.22. For a proper ideal I of R, I is an n-ideal of R if and only if R - I is an n-multiplicatively closed subset of R.

We remind the reader that if *I* is an ideal which is disjiont from a multiplicatively closed subset *S* of *R*, then there exists a prime ideal *P* of *R* containng *I* such that $P \cap S = \emptyset$. The following Theorem states that a similar result is true for *n*-ideals.

Theorem 2.23. Let *I* be an ideal of *R* such that $I \cap S = \emptyset$, where *S* is an *n*-multiplicatively closed subset of *R*. Then there exists an *n*-ideal *J* containing *I* such that $J \cap S = \emptyset$.

Proof. Consider the set $\Omega = \{I' : I' \text{ is an ideal of } R \text{ with } I' \cap S = \emptyset\}$. Since $I \in \Omega$, we have $\Omega \neq \emptyset$. By using Zorn's lemma, we get a maximal element J of Ω . Now we show that J is an n-ideal of R. Suppose not. Then we have $ab \in J$ for some $a \notin \sqrt{0}$ and $b \notin J$. Thus we get $b \in (J : a)$ and $J \subsetneq (J : a)$. By the maximality of J, we have $(J : a) \cap S \neq \emptyset$ and thus there exists an $s \in S$ such that $s \in (J : a)$. So we have $as \in J$. Also $sa \in S$, because $a \in R - \sqrt{0}$, $s \in S$ and S is an n-multiplicatively closed subset of R. Thus we get $S \cap J \neq \emptyset$, and this contradicts by $J \in \Omega$. Hence J is an n-ideal of R. \Box

Proposition 2.24. Suppose that $I \subseteq I_1 \cup I_2 \cup ... \cup I_n$, where $I, I_1, I_2, ..., I_n$ are ideals of R. If I_i is an n-ideal and the others have non-nilpotent elements with $I \nsubseteq \bigcup_{\substack{j \neq i \\ j \neq i}} I_j$, then $I \subseteq I_i$.

Proof. We may assume that i = 1. Since $I \notin I_2 \cup ... \cup I_n$, there exits an $x \in I - \bigcup_{j=2}^n I_j$. Thus we have $x \in I_1$. Let $y \in I \cap (I_2 \cap I_3 \cap ... \cap I_n)$. Since $x \notin I_k$ and $y \in I_k$ for every $2 \leq k \leq n$, we have $x + y \notin I_k$. Thus we have $x + y \notin I_1$ and so $x + y \in I_1$. As $x + y \in I_1$ and $x \in I_1$, it follows that $y \in I_1$ and so $I \cap \bigcap_{k=2}^n I_k \subseteq I_1$. By the way $\sqrt{0}$ is a prime ideal, because *R* has an *n*-ideal. So the product of non-nilpotent elements is also a non-nipotent element. Thus we have $(\prod_{k=2}^n I_k) \cap (R - \sqrt{0}) \neq \emptyset$. Since $I.(\prod_{k=2}^n I_k) \subseteq I_1$ and I_1 is an *n*-ideal of *R*, we have $I \subseteq I_1$ by Theorem 2.7. \Box

Recall from [7] a ring *R* is a *UN*-ring if every nonunit element *a* of *R* is a product a unit and a nilpotent element.

Proposition 2.25. *For any ring R, the followings are equivalent:*

(i) Every element of R is either nilpotent or unit.
(ii) Every proper principal ideal is an n-ideal.
(iii) Every proper ideal is an n-ideal.
(iv) R has a unique prime ideal which is √0.
(v) R is a UN-ring.

(vi) $R/\sqrt{0}$ is a field.

Proof. (*i*) \Rightarrow (*ii*) : Suppose that $\langle x \rangle \neq R$, where $x \in R$. Let $ab \in \langle x \rangle$ and $a \notin \sqrt{0}$. Since *a* is not nilpotent, by (i) *a* is a unit in *R*. Then we have $b = a^{-1}(ab) \in \langle x \rangle$ and so $\langle x \rangle$ is an *n*-ideal of *R*.

 $(ii) \Rightarrow (iii)$: Let *I* be a proper ideal of *R* and *ab* ∈ *I*, where $a \notin \sqrt{0}$. Since *ab* ∈ $\langle ab \rangle$ and $\langle ab \rangle$ is an *n*-ideal of *R*, we conclude that $b \in \langle ab \rangle \subseteq I$. Hence *I* is an *n*-ideal of *R*.

 $(iii) \Rightarrow (iv)$: Let *P* be a prime ideal of *R*. By (iii) and Proposition 2.8, we get the result that $P = \sqrt{0}$, as needed. Furthermore, $\sqrt{0}$ is a maximal ideal of *R*.

 $(iv) \Leftrightarrow (v)$: It follows from [7, Proposition 2 (3)].

 $(iv) \Rightarrow (vi)$: It is straightforward.

 $(vi) \Rightarrow (i)$: Suppose that $R/\sqrt{0}$ is a field. Let $a \in R$ which is not nilpotent. Then we have $a \notin \sqrt{0}$ and $a + \sqrt{0}$ is nonzero element of the field $R/\sqrt{0}$. Thus we get the result that ab - 1 is nilpotent for some $b \in R$. Then we have (ab - 1) + 1 = ab is unit. Hence a is unit, as needed. \Box

Suppose that R_1 , R_2 are two commutative rings with nonzero identities and $R = R_1 \times R_2$. Then R becomes a commutative ring with coordinate-wise addition and multiplication. Also, every ideal I of R has the form $I = I_1 \times I_2$, where I_i is an ideal of R_i for i = 1, 2. Now, we give the following result.

Proposition 2.26. Let R_1 and R_2 be two commutative rings. Then $R_1 \times R_2$ has no n-ideals.

Proof. Assume that $I = I_1 \times I_2$ is an *n*-ideal of $R_1 \times R_2$, where I_i is an ideal of R_i for i = 1, 2. Since $(0, 1)(1, 0) \in I_1 \times I_2$, $(0, 1) \notin \sqrt{0_{R_1 \times R_2}}$ and $(1, 0) \notin \sqrt{0_{R_1 \times R_2}}$, we conclude that $(0, 1), (1, 0) \in I$ and so $I = R_1 \times R_2$, a contradiction. \Box

Let R(+)M denote the idealization of M in R, where M is an R-module. Assume that I is an ideal of R and N is a submodule of M. Then I(+)N is an ideal of R(+)M if and only if $IM \subseteq N$, in that case I(+)N is called a homogeneous ideal of R(+)M [3]. In [3,9], the nil radical of R(+)M is characterized as follows:

$$\sqrt{0_{R(+)M}} = \sqrt{0}(+)M.$$

Notice that $(r, m) \notin \sqrt{0_{R(+)M}}$ if and only if $r \notin \sqrt{0}$.

Proposition 2.27. Let I be an n-ideal of R. Then I(+)M is an n-ideal of R(+)M.

Proof. Let $(r_1, m_1)(r_2, m_2) \in I(+)M$ with $(r_1, m_1) \notin \sqrt{0_{R(+)M}}$. Then we have $r_1r_2 \in I$ and $r_1 \notin \sqrt{0}$. Since *I* is an *n*-ideal of *R*, we conclude that $r_2 \in I$ and so $(r_2, m_2) \in I(+)M$. Consequently, I(+)M is an *n*-ideal of R(+)M.

Remark 2.28. Let I be an n-ideal of R and N a submodule of M with $IM \subseteq N$, then I(+)N need not be an n-ideal of R(+)M. For example 0 is an n-ideal of the ring of integers and $\overline{0}$ is a submodule of \mathbb{Z} -module \mathbb{Z}_6 . But $0(+)\overline{0}$ is not an n-ideal, because $(2,\overline{0})(0,\overline{3}) \in 0(+)\overline{0}$ with $(2,\overline{0}) \notin \sqrt{0}_{\mathbb{Z}(+)\mathbb{Z}_6}$ but $(0,\overline{3}) \notin 0(+)\overline{0}$.

Definition 2.29. Let M be an R-module. Then we say that an element a of R is nilpotent in M if whenever $a^n M = 0_M$ for some positive integer n. Then the set of all nilpotents in M is denoted by Nil(M). It is clear that $\sqrt{0} \subseteq Nil(M)$.

Now we generalize the concept of *n*-ideals to modules in the following.

Definition 2.30. *Let* M *be an* R*-module. Then a proper submodule* N *of* M *is called an* n*-submodule if for* $a \in R, m \in M$, $am \in N$ with $a \notin Nil(M)$, then $m \in N$.

Theorem 2.31. *Let I be an ideal of R and N a proper submodule of M. If* I(+)N *is an* n*-ideal of* R(+)M, *then I is an* n*-ideal of R and N is an* n*-submodule of M.*

Proof. Suppose that I(+)N is an *n*-ideal of R(+)M. First, we show that *I* is an *n*-ideal of *R*. Let $ab \in I$ with $a \notin \sqrt{0}$. Then we have $(a, 0_M)(b, 0_M) = (ab, 0_M) \in I(+)N$ with $(a, 0_M) \notin \sqrt{0_{R(+)M}}$. Since I(+)N is an *n*-ideal of R(+)M, we conclude that $(b, 0_M) \in I(+)N$ and so $b \in I$. Now, we show that *N* is an *n*-submodule of *M*. Let $am \in N$ with $a \notin Nil(M)$. Then we have $(a, 0_M)(0, m) = (0, am) \in I(+)N$ with $(a, 0_M) \notin \sqrt{0_{R(+)M}}$. Since I(+)N is an *n*-ideal of R(+)M, we conclude that $(0, m) \in I(+)N$ and so $m \in N$, as needed. \Box

Theorem 2.32. Let *M* be an *R*-module with $Nil(M) \subseteq \sqrt{0}$. If *I* is an *n*-ideal of *R* and *N* is an *n*-submodule of *M* with $IM \subseteq N$, then I(+)N is an *n*-ideal of R(+)M.

Proof. Let $(r_1, m_1)(r_2, m_2) \in I(+)N$ with $(r_1, m_1) \notin \sqrt{0_{R(+)M}}$. Then $r_1r_2 \in I$ and $r_1 \notin \sqrt{0}$. Since *I* is an *n*-ideal of *R*, we conclude that $r_2 \in I$. Thus we have $r_2m_1 \in IM \subseteq N$, and so $r_1m_2 \in N$, because $r_1m_2 + r_2m_1 \in N$. Since *N* is an *n*-submodule of *M* and $r_1 \notin Nil(M) \subseteq \sqrt{0}$, we conclude $m_2 \in N$ so that $(r_2, m_2) \in I(+)N$ as it is needed. \Box

Corollary 2.33. Let M be an R-module with $Nil(M) \subseteq \sqrt{0}$. Suppose that I is an ideal of R and N is a proper submodule of M with $IM \subseteq N$. Then I(+)N is an n-ideal of R(+)M if and only if I is an n-ideal of R and N is an n-submodule of M.

3. Examples

Proposition 3.1. \mathbb{Z}_n has an *n*-ideal if and only if $n = p^k$ for some $k \in \mathbb{Z}^+$, where *p* is prime number.

Proof. If $n = p^k$ for some $k \in \mathbb{Z}^+$, then \mathbb{Z}_n is a local ring with unique prime ideal and so by Example 2.2 every ideal is an *n*-ideal. Suppose that $n = p_1^{n_1} p_2^{n_2} \dots p_t^{n_t}$, where p_i 's are distinct prime numbers with $t \ge 2$. First notice that $\sqrt{0} = \langle \overline{p_1 p_2} \dots \overline{p_t} \rangle$. Assume that *I* is an *n*-ideal of \mathbb{Z}_n . Then we get $I \subseteq \sqrt{0} = \langle \overline{p_1 p_2} \dots \overline{p_t} \rangle$. Hence $I = \langle \overline{p_1^{s_1} p_2^{s_2}} \dots \overline{p_t^{s_t}} \rangle$ for some positive integers s_i with $s_i \le n_i$ for i = 1, 2, ..., t. It is easy to see that $\overline{p_2^{s_2}} \dots \overline{p_t^{s_t}} \notin \sqrt{0} = \langle \overline{p_1 p_2} \dots \overline{p_t} \rangle$ and $\overline{p_1^{s_1}} \notin I = \langle \overline{p_1^{s_1} p_2^{s_2}} \dots \overline{p_t^{s_t}} \rangle$ but $\overline{p_1^{s_1}} (\overline{p_2^{s_2}} \dots \overline{p_t^{s_t}}) \in I$. So it follows that *I* is not an *n*-ideal, a contradiction. \Box

Now we give the following examples to compare with the notion of prime ideals, *n*-ideals and *r*-ideals.

Example 3.2. (*i*) It is clear that $3\mathbb{Z}$ is a prime ideal of \mathbb{Z} . But it is not an n-ideal of \mathbb{Z} by Example 2.2. (*ii*) In the ring \mathbb{Z}_{27} , $\langle \overline{9} \rangle$ is an n-ideal. But $\langle \overline{9} \rangle$ is not prime ideal, because $\overline{3}.\overline{3} \in \langle \overline{9} \rangle$ and $\overline{3} \notin \langle \overline{9} \rangle$. (*iii*) $\langle \overline{3} \rangle$ is an r-ideal of \mathbb{Z}_6 but it is not an n-ideal by Proposition 3.1.

In the following example (i) we give an infinite ring having the *n*-ideals, and also in example (ii) we show the converse of Proposition 2.3 is not always correct.

Example 3.3. (i) Consider the ring $\mathbb{Z}[X]$ and the prime ideal $P = \langle X \rangle$. Let $R = \mathbb{Z}[X]/P^n$ and $I = P^2/P^n$ for n > 2. First, note that $\sqrt{0} = P/P^n$. Let $(f + P^n)(g + P^n) \in I$ and $g + P^n \notin \sqrt{0}$. Then $fg \in \langle X \rangle^2$ and $g \notin \langle X \rangle$, so that X^2 divides fg but X can not divide g. Thus X^2 divides f and so $f + P^n \in I$. Hence I is an n-ideal of R.

(*ii*) Let $R = \mathbb{Z}[X, Y]/\langle Y^4 \rangle$ and $I = \langle xy, y^2 \rangle$, where $x = X + \langle Y^4 \rangle$ and $y = Y + \langle Y^4 \rangle$. It is easy to see that $\sqrt{0_R} = \langle y \rangle$ is a prime ideal and so it is an n-ideal by Corollary 2.9(*i*). Furthermore, $I \subseteq \sqrt{0_R}$. Since $y(x + y) \in I$, $x + y \notin \sqrt{0_R}$ and $y \notin I$, it follows that I is not an n-ideal.

Example 3.4. Consider the ring $\mathbb{Z}_9[x]$ and note that $\sqrt{0_{\mathbb{Z}_9[x]}} = \overline{3}\mathbb{Z}_9[x]$. Now, we show that $\sqrt{0_{\mathbb{Z}_9[x]}}$ is an n-ideal. Let us define a homomorphism as follows:

$$\varphi: \mathbb{Z}_9[x] \to \mathbb{Z}_3[x], \ \varphi(\overline{a_0} + \overline{a_1}x + \dots + \overline{a_n}x^n) = \overline{a_0} + \overline{a_1}x + \dots + \overline{a_n}x^n.$$

It is clear that φ is an epimorphism and the $Ker(f) = \sqrt{\mathbb{Q}_{\mathbb{Z}_9[x]}}$. So we have $\mathbb{Z}_9[x] / \sqrt{\mathbb{Q}_{\mathbb{Z}_9[x]}} \cong \mathbb{Z}_3[x]$ is an integral domain and so $\sqrt{\mathbb{Q}_{\mathbb{Z}_9[x]}}$ is a prime ideal of $\mathbb{Z}_9[x]$. Then by Corollary 2.9(i), $\sqrt{\mathbb{Q}_{\mathbb{Z}_9[x]}}$ is an n-ideal of $\mathbb{Z}_9[x]$, which is nonzero.

The following examples show that the converses of Corollary 2.18(i) and Theorem 2.31 are not always true.

Example 3.5. (*i*) Let $R = \mathbb{Z}$, $I = 3\mathbb{Z}$ and $J = 9\mathbb{Z}$. Then I/J is an n-ideal of R/J but I is not an n-ideal of R.

(ii) Consider the \mathbb{Z} -module \mathbb{Z}_9 . Note that 0 is an n-ideal of \mathbb{Z} and $\overline{0}$ is an n-submodule of \mathbb{Z}_9 . But $I = 0(+)\overline{0}$ is not an n-ideal of $\mathbb{Z}(+)\mathbb{Z}_9$, because $(3,\overline{0})(0,\overline{3}) = (0,\overline{0}) \in I$, $(3,0) \notin \sqrt{0_{\mathbb{Z}(+)\mathbb{Z}_9}}$ and $(0,\overline{3}) \notin I$.

Remark 3.6. Suppose that I is an n-ideal of R. Then it follows that $\sqrt{I} = \sqrt{0}$ is an n-ideal by Theorem 2.12 and Corollary 2.9 (i). Example 3.3 (ii) reserves that the converse is not true, that is, I may not be an n-ideal even if \sqrt{I} is an n-ideal of R.

Acknowledgement.

We would like to thank the refree his/her great effort in profreading the manuscript.

References

- [1] Atani, S. E., & Farzalipour, F. (2005). On weakly primary ideals. Georgian Mathematical Journal, 12(3), 423.
- [2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
- [3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
- [4] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Communications in Algebra® 36(2) (2008), 686-696.
- [5] Badawi, A., Tekir, U., & Yetkin, E. (2014). On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc, 51(4), 1163-1173.
- [6] Badawi, A., Tekir, U., & Yetkin, E. (2015). On weakly 2-absorbing primary ideals of commutative rings. J. Korean Math. Soc, 52(1), 97-111.
- [7] G. Călugăreanu, UN-rings, Journal of Algebra and Its Applications, 15 (9) (2015).
- [8] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Communications in Algebra 40 (4) (2012), 1268-1279.
- [9] J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, Inc., New York, 1988.
- [10] R. Mohamadian, r-ideals in commutative rings, Turk J. Math 39 (2015), 733-749.
- [11] M. Nagata, Local rings, Interscience Publishers, New York, 1962.
- [12] R. Y. Sharp, Steps in commutative algebra, Second edition, Cambridge University Press, Cambridge, 2000.