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Abstract. Using the concepts of a pair upclass, α−admissible andµ−subadmissible mappings in this paper,
are proven a coupled coincidence point results for mappings F : X2

→ X and 1 : X→ X. In this way, recent
papers [27, 33] have been reformed and generalized. Two examples are given to support the theoretical
results.

1. Introduction and Mathematical Preliminaries

The fixed point theory has drawn much attention in partially ordered metric spaces. Turinici [50] has
expanded Banach contraction principle [8] in the setting of partially ordered sets, and laid the foundation
for a new trend in the fixed point theory. Ran and Reurings [34] are impacted by development of the
applications of Turinici’s theorem to matrix equations and they have established some results in this
direction. Their results are further extended by Nieto and Rodrı́guez-López [31, 32] for non-decreasing
mappings. Lakshmikantham at al. [9, 15] introduced the new notion of coupled fixed points for the
mappings satisfying the mixed monotone property in partially ordered spaces and discussed the existence
and uniqueness of a solution for a periodic boundary value problem. Later on, Lakshmikantham and
Ćirić [24] proved coupled coincidence and coupled common fixed point theorems for nonlinear contractive
mappings in partially ordered complete metric spaces. Further on, Choudhury and Kundu [10], proved
the coupled coincidence point results for compatible mappings in the settings of partially ordered metric
space. Samet et al. [45, 48] have recently introduced the notion of (α − ψ)−contractive and α−admissible
mapping, and they proved fixed point theorems for such mappings in complete metric spaces. For more
results regarding coupled fixed points in various metric spaces one can refer to ([1]-[49]).

The aim of the present paper is to generalize the results of Mursaleen et al. [27] and Kumar [33] for
(α−µ−ψ−H−F )−contractive, α−admissible and µ−subadmissible mappings using compatible mappings.
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Research supported by MNTRRS-174009.
Email addresses: analsisamirmath2@gmail.com (Arslan Hojat Ansari), diana.dolicanin@pr.ac.rs (Diana Dolićanin-Djekić),
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Definition 1.1. [9] Let (X,�) be a partially ordered set and F : X × X → X be a mapping. Then, a map F is said to
have mixed monotone property if F(x, y) is monotone non-decreasing in x and is monotone non-increasing in y, that
is, for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ F(x1, y) � F(x2, y),

and

y1, y2 ∈ X, y1 � y2 ⇒ F(x, y1) � F(x, y2).

Definition 1.2. [9] An element (x, y) ∈ X × X is said to be coupled fixed point of the mapping F : X2
→ X if

F(x, y) = x and F(y, x) = y.

Theorem 1.3. [9] Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a
complete metric space. Let F : X × X → X be a continuous mapping having the mixed monotone property on X.
Assume that there exists a k ∈ [0, 1) with

d(F(x, y),F(u, v)) ≤
k
2

[d(x,u) + d(y, v)],

for all x � u and y � v. If there exist x0, y0 ∈ X such that

x0 � F(x0, y0), y0 � F(y0, x0),

then there exist x, y ∈ X such that F(x, y) = x and F(y, x) = y.

Theorem 1.4. [9] Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a
complete metric space. Assume that X has the following property:

(i) if a non-decreasing sequence (xn)→ x, then xn � x for all n ∈N,
(ii) if a non-increasing sequence (yn)→ y, then y � yn for all n ∈N.

Let F : X2
→ X be a mapping having the mixed monotone property on X. Assume that there exists a k ∈ [0, 1)

with

d(F(x, y),F(u, v)) ≤
k
2

[d(x,u) + d(y, v)]

for all x � u and y � v. If there exist x0, y0 ∈ X such that

x0 � F(x0, y0), y0 � F(y0, x0),

then there exist x, y ∈ X such that F(x, y) = x and F(y, x) = y.

Let Ψ be the family of nondecreasing functions ψ : [0,+∞)→ [0,+∞) such that
∑
∞

n=1 ψ
n(t) < +∞ for all

t > 0, where ψn is the n-th iterate of ψ and satisfying:
(i) ψ−1({0}) = {0},
(ii) ψ(t) < t for all t > 0,
(iii) lim

r→t+
ψ(r) < t for all t > 0.

Lemma 1.5. [27] If ψ : [0,+∞]→ [0,+∞] is nondecreasing and right continuous then ψn(t)→ 0 as n→ +∞ for
all t ≥ 0 if and only if ψ(t) < t for all t > 0.
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Definition 1.6. [24] Let (X, d) be a partially ordered set, F : X2
→ X and 1 : X → X be two mappings. Then, a

map F is said to have mixed 1−monotone property if F(x, y) is monotone 1− non-decreasing in x and is monotone
1−non-increasing in y, that is, for any x, y ∈ X,

x1, x2 ∈ X, 1x1 � 1x2 ⇒ F(x1, y) � F(x2, y),

and

y1, y2 ∈ X, 1y1 � 1y2 ⇒ F(x, y1) � F(x, y2).

Definition 1.7. [24] An element (x, y) ∈ X2 is said to be coupled coincidence point of mapping F : X2
→ X and

1 : X→ X if

F(x, y) = 1x,F(y, x) = 1y.

Definition 1.8. [10] The mappings F : X2
→ X and 1 : X→ X are said to be compatible if

lim
n→+∞

d(1(F(xn, yn)),F(1xn, 1yn)) = 0,

and

lim
n→+∞

d(1(F(yn, xn)),F(1yn, 1xn)) = 0,

whenever {xn} and {yn} are sequences in X, such that

lim
n→+∞

F(xn, yn) = lim
n→+∞

1xn,

lim
n→+∞

F(yn, xn) = lim
n→+∞

1yn.

Definition 1.9. [27] Let (X, d) be a partially ordered metric space and F : X2
→ X be a mapping. Then, a map F is

said to be (α,ψ)− contractive if there exist two functions α : X2
× X2

→ [0,+∞) and ψ ∈ Ψ such that

α((x, y), (u, v))d(F(x, y),F(u, v)) ≤ ψ
(d(x,u) + d(y, v)

2

)
,

for all x, y,u, v ∈ X with x � u and y � v.

Definition 1.10. [27] Let F : X2
→ X and α : X2

× X2
→ [0,+∞) be two mappings. Then, F is said to be

(α)-admissible if

α((x, y), (u, v)) ≥ 1⇒ α((F(x, y),F(y, x)), (F(u, v),F(v,u))) ≥ 1,

for all x, y,u, v ∈ X.

Definition 1.11. [33] Let F : X2
→ X, 1 : X→ X and α : X2

× X2
→ [0,+∞) be mappings. Then F and 1 are said

to be (α)-admissible if

α((1x, 1y), (1u, 1v)) ≥ 1⇒ α((F(x, y),F(y, x)), (F(u, v),F(v,u))) ≥ 1,

for all x, y,u, v ∈ X.
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2. Main Results

In this section we will first introduce new functions, and than using the concepts of a pair upclass,
α−admissible and µ−subadmissible mappings we will prove a coupled coincidence point results on metric
space endowed with partial order.

Definition 2.1. Let F : X2
→ X andµ : X2

×X2
→ [0,+∞) be two mappings. Then F is said to be (µ)−subadmissible

if

µ((x, y), (u, v)) ≤ 1⇒ µ((F(x, y),F(y, x)), (F(u, v),F(v,u))) ≤ 1,

for all x, y,u, v ∈ X.

Definition 2.2. Let F : X2
→ X, 1 : X → X and α : X2

× X2
→ [0,+∞) be mappings. Then F and 1 are said to be

(µ)−subadmissible if

µ((1x, 1y), (1u, 1v)) ≤ 1⇒ µ((F(x, y),F(y, x)), (F(u, v),F(v,u))) ≤ 1,

for all x, y,u, v ∈ X.

Definition 2.3. A function H : R × [0,+∞)→ R is a function of subclass of type I if it is continuous and x ≥ 1⇒
H(1, y) ≤ H(x, y), for all x ∈ R, y ∈ [0,+∞).

Example 2.4. We have the following functions of subclass of type I, for all x ∈ R, y ∈ [0,+∞):

• H(x, y) = (y + l)x, l > 1,

• H(x, y) = (x + l)y, l > 1,

• H(x, y) = xyn,

• H(x, y) = xy,

• H(x, y) = y,

• H(x, y) = ( x+1
2 )y,

• H(x, y) = 2x+1
3 y,

• H(x, y) = (

n∑
i=0

xn−i

n+1 )y,

• H(x, y) = (

n∑
i=0

xn−i

n+1 + l)y, l > 1.

Definition 2.5. Let F : R+
× R+

→ R be a mapping. We say that the pair (F ,H) is a upclass of type I if F is
continuous, H is a function of subclass of type I and satisfies:

(1) 0 ≤ x ≤ 1 =⇒ F (x, y) ≤ F (1, y)
(2) H(1, y1) ≤ F (x, y2) =⇒ y1 ≤ xy2,
for all x, y, y1, y2 ∈ R+.

Example 2.6. The following the functions of a upclass of type I, for all x ∈ R, y, t ∈ [0,+∞), s ∈ [0, 1]:

• H(x, y) = (y + l)x, l > 1, F (s, t) = st + l,

• H(x, y) = (x + l)y, l > 1, F (s, t) = (1 + l)st,

• H(x, y) = xyn, F (s, t) = sntn,
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• H(x, y) = xy, F (s, t) = st,

• H(x, y) = y, F (s, t) = st,

• H(x, y) = 2x+1
3 y, F (s, t) = st,

• H(x, y) = ( x+1
2 )y, F (s, t) = st,

• H(x, y) = (

n∑
i=0

xn−i

n+1 )y, F (s, t) = st,

• H(x, y) = (

n∑
i=0

xn−i

n+1 + l)y, l > 1, F (s, t) = (1 + l)st.

Definition 2.7. Let F : R+
×R+

→ R be a mapping. We say that the pair (F ,H) is a special upclass of type I if F
is continuous, H is a function of subclass of type I and satisfies:

(1) 0 ≤ s ≤ 1⇒ F (s, t) ≤ F (1, t);
(2) H(1, y) ≤ F (1, t) =⇒ y ≤ t,
for all y, t ∈ R+.

Example 2.8. We have following functions of special upclass of type I, for all x ∈ R, y, t, s ∈ R+:

• H(x, y) = (yk + l)xn
, l > 1, F (s, t) = smtk + l,

• H(x, y) = (xn + l)yk
, l > 1, F (s, t) = (1 + l)smtk

,

• H(x, y) = xnyk, F (s, t) = sptk,

• H(x, y) = xy, F (s, t) = st,

• H(x, y) = y, F (s, t) = st,

• H(x, y) = 2x+1
3 y, F (s, t) = st,

• H(x, y) = ( x+1
2 )y, F (s, t) = st,

• H(x, y) = (

n∑
i=0

xn−i

n+1 )myk, F (s, t) = sptk,

• H(x, y) = (

n∑
i=0

xn−i

n+1 + l)yk
, l > 1, F (s, t) = (1 + l)sptk

.

Remark 2.9. Each pair (F ,H) of upclass of type I is pair (F ,H) of special upclass of type I but converse is not true.

Theorem 2.10. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete
metric space. Let F : X2

→ X and 1 : X → X be a mappings, and let F have a mixed 1−monotone property on X.
Suppose that there exists ψ ∈ Ψ, pair (F ,H) is a upclass of type I and α, µ : X2

× X2
→ [0,+∞) such that for

x, y,u, v ∈ X, the following holds:

H(α((1x, 1y), (1u, 1v)),
d(F(x, y),F(u, v)) + d(F(y, x),F(v,u))

2
) (1)

≤ F (µ((1x, 1y), (1u, 1v)), ψ
(d(1x, 1u) + d(1y, 1v)

2

)
),

for all 1x � 1u and 1y � 1v. Suppose also that

(i) F and 1 are (α)-admissible and (µ)-subadmissible,
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(ii) there exist x0, y0 ∈ X such that 1x0 � F(x0, y0) and 1y0 � F(y0, x0) with

α((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≥ 1, α((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≥ 1,

µ((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≤ 1, µ((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≤ 1,

(iii) F(X2) ⊆ 1(X), 1 is continuous, and F and 1 are compatible in X,
(iv) F is continuous.

Then F and 1 have a coupled coincidence point, that is there exist x, y ∈ X such that

F(x, y) = 1x,F(y, x) = 1y.

Proof. Let x0, y0 ∈ X be such that

α((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≥ 1, α((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≥ 1,

and

µ((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≤ 1, µ((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≤ 1,

and using (iii) there exist x1, y1 ∈ X, such that 1x0 � F(x0, y0) = 1x1 and 1y0 � F(y0, x0) = 1y1. Also, there
exist x2, y2 ∈ X such that F(x1, y1) = 1x2 and F(y1, x1) = 1y2. Continuing this process, we can construct two
sequences (xn) and (yn) in X as follows

1xn+1 = F(xn, yn), 1yn+1 = F(yn, xn),

for all n ≥ 0. We shall show that

1xn � 1xn+1, 1yn � 1yn+1, (2)

for all n ≥ 0. We will use the mathematical induction. Let n = 0. Since 1x0 � F(x0, y0) and 1y0 � F(y0, x0)
and as 1x1 = F(x0, y0) and 1y1 = F(y0, x0), we have 1x0 � 1x1 and 1y0 � 1y1. Thus (2) hold for n = 0. Now
suppose that (2) hold for some fixed n ≥ 0. Then, since 1xn � 1xn+1 and 1yn � 1yn+1 and by mixed monotone
property of F, we have

1xn+2 = F(xn+1, yn+1) � F(xn, yn+1) � F(xn, yn) = 1xn+1

and

1yn+2 = F(yn+1, xn+1) � F(yn, xn+1) � F(yn, xn) = 1yn+1.

From above, we conclude that

1xn+1 � 1xn+2 , 1yn+1 � 1yn+2.

Thus by the mathematical induction we conclude that (2) hold for all n ≥ 0. If for some n, we have
(1xn+1, 1yn+1) = (1xn, 1yn), then F(xn, yn) = 1xn and F(yn, xn) = 1yn, that is xn = x and yn = y are coupled
coincidence point of F and 1. Now, we assumed that (1xn+1, 1yn+1) , (1xn, 1yn) for all n ≥ 0. Since F is
(α)-admissible and (µ)-subadmissible we have

α((1x0, 1y0), (1x1, 1y1)) = α((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≥ 1⇒

α((F(x0, y0),F(y0, x0)), (F(x1, y1),F(y1, x1))) = α((1x1, 1y1), (1x2, 1y2)) ≥ 1.

Thus, by mathematical induction, we have

α((1xn, 1yn), (1xn+1, 1yn+1)) ≥ 1 (3)
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and similarly

α((1yn, 1xn), (1yn+1, 1xn+1)) ≥ 1. (4)

Also,

µ((1x0, 1y0), (1x1, 1y1)) = µ((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≤ 1⇒

µ((F(x0, y0),F(y0, x0)), (F(x1, y1),F(y1, x1))) = µ((1x1, 1y1), (1x2, 1y2)) ≤ 1.

So, by mathematical induction, we have,

µ((1xn, 1yn), (1xn+1, 1yn+1)) ≤ 1 (5)

and similarly

µ((1yn, 1xn), (1yn+1, 1xn+1)) ≤ 1, (6)

for all n ∈N. Using (1), (3) and (5), we obtain

H(1,
d(1xn, 1xn+1) + d(1yn+1, 1yn)

2
)

= H(1,
d(F(xn−1, yn−1),F(xn, yn)) + d(F(yn−1, xn−1),F(yn, xn))

2
)

≤ H(α((1xn−1, 1yn−1), (1xn, 1yn)),
d(F(xn−1, yn−1),F(xn, yn)) + d(F(yn−1, xn−1),F(yn, xn))

2
)

≤ F (µ((1xn−1, 1yn−1), (1xn, 1yn)), ψ
(d(1xn−1, 1xn) + d(1yn−1, 1yn)

2

)
)

≤ F (1, ψ
(d(1xn−1, 1xn) + d(1yn−1, 1yn)

2

)
).

So, using condition (1) from Definition 2.5 we conclude that

d(1xn, 1xn+1) + d(1yn+1, 1yn)
2

≤ ψ
(d(1xn−1, 1xn) + d(1yn−1, 1yn)

2

)
.

Repeating the above process, we get

d(1xn, 1xn+1) + d(1yn, 1yn+1)
2

≤ ψn
(d(1x0, 1x1) + d(1y0, 1y1)

2

)
for all n ∈N. For ε > 0 there exists n(ε) ∈N such that∑

n≥n(ε)

ψn
(d(1x0, 1x1) + d(1y0, 1y1)

2

)
< ε/2.

Let n,m ∈N be such that m > n > n(ε). Then, by using the triangle inequality, we have

d(1xn, 1xm) + d(1yn, 1ym)
2

≤

m−1∑
k=n

d(1xk, 1xk+1) + d(1yk, 1yk+1)
2

≤

m−1∑
k=n

ψk
(d(1x0, 1x1) + d(1y0, 1y1)

2

)
≤

∑
n≥n(ε)

ψn
(d(1x0, 1x1) + d(1y0, 1y1)

2

)
< ε/2.
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This implies that d(1xn, 1xm) + d(1yn, 1ym) < ε. So,

d(1xn, 1xm) < ε

and

d(1yn, 1ym) < ε.

Therefore, (1xn) and (1yn) are Cauchy sequences in (X, d). Since (X, d) is complete metric space we have that
the sequences (1xn) and (1yn) are convergent in (X, d). Then, there exist x, y ∈ X such that

lim
n→+∞

F(xn, yn) = lim
n→+∞

1xn = x,

lim
n→+∞

F(yn, xn) = lim
n→+∞

1yn = y.

Since F and g are compatible mappings, we have:

lim
n→+∞

d(1(F(xn, yn)),F(1xn, 1yn)) = 0, (7)

and

lim
n→+∞

d(1(F(yn, xn)),F(1yn, 1xn)) = 0. (8)

Now, we use the assumption that F and 1 are continuous mappings. Also we have that 1xn+1 = F(xn, yn)
and 1yn+1 = F(yn, xn). Now, taking limit n→ +∞ in (7) and (8) we get

d(1x,F(x, y)) = 0.

Similarly, we have d(1y,F(y, x)) = 0. So, F(x, y) = 1x and F(y, x) = 1y. Thus we proved that F and 1 have a
coupled coincidence point.

If we choice H(x, y) = xy andF (s, t) = st,we obtain a corrigendum of Theorem 3.2 in [33] with µ(x, y) = 1
for all x, y ∈ X.

Theorem 2.11. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete
metric space. Let F : X2

→ X and 1 : X→ X be two mappings such that F have the mixed 1−monotone property on
X. Suppose that there exists ψ ∈ Ψ and α : X2

× X2
→ [0,+∞) such that for x, y,u, v ∈ X, the following holds:

α((1x, 1y), (1u, 1v))
d(F(x, y),F(u, v)) + d(F(y, x),F(v,u))

2
) ≤ ψ

(d(1x, 1u) + d(1y, 1v)
2

)
for all 1x � 1u and 1y � 1v. Suppose also that

(i) F and 1 are (α)−admissible,
(ii) there exist x0, y0 ∈ X such that 1x0 � F(x0, y0) and 1y0 � F(y0, x0) with

α((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≥ 1, α((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≥ 1,

(iii) F(X2) ⊆ 1(X), 1 is continuous and F and 1 are compatible in X,
(iv) F is continuous.

Then F and 1 have a coupled coincidence point, that is, there exist x, y ∈ X such that

F(x, y) = 1x, F(y, x) = 1y.

In the next theorem, we omit the continuity hypothesis of F.
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Theorem 2.12. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete
metric space. Let F : X2

→ X and 1 : X → X be two mappings such that F has a mixed 1−monotone property.
Assume that there exists ψ ∈ Ψ, pair (F ,H) is a upclass of type I and a mapping α : X2

× X2
→ [0,+∞) such that

H(α((1x, 1y), (1u, 1v)),
d(F(x, y),F(u, v)) + d(F(y, x),F(v,u))

2
) (9)

≤ F (µ((1x, 1y), (1u, 1v)), ψ
(d(1x, 1u) + d(1y, 1v)

2

)
),

for all x, y,u, v ∈ X with 1x � 1u and 1y � 1v. Suppose that

(a) conditions (i),(ii) and (iii) of Theorem 2.10 hold,
(b) if (xn) and (yn) are sequences in X such that

α((11xn, 11yn), (11xn+1, 11yn+1)) ≥ 1, α((11yn, 11xn), (11yn+1, 11xn+1)) ≥ 1,

µ((11xn, 11yn), (11xn+1, 11yn+1)) ≤ 1, µ((11yn, 11xn), (11yn+1, 11xn+1)) ≤ 1,

for all n ∈N, and lim
n→+∞

1xn = x ∈ X and lim
n→+∞

1yn = y ∈ X then

α((11xn, 11yn), (1x, 1y)) ≥ 1, α((11yn, 11xn), (1y, 1x)) ≥ 1,

and

µ((11xn, 11yn), (1x, 1y)) ≤ 1, µ((11yn, 11xn), (1y, 1x)) ≤ 1.

Then there exist x, y ∈ X such that F(x, y) = 1x and F(y, x) = 1y, that is, F and 1 have a coupled coincidence in X.

Proof. Proceeding the same lines as in the proof of Theorem 2.10 we know that (1xn) and (1yn) are Cauchy
sequences in the complete metric space (X, d). Then, there exist x, y ∈ X such that

lim
n→+∞

1xn = x, lim
n→+∞

1yn = y.

On the other hand, from (3) and hypothesis (b), we obtain

α((1xn, 1yn), (1x, 1y)) ≥ 1, (10)

and similarly

α((1yn, 1xn), (1y, 1x)) ≥ 1. (11)

Also,

µ((1xn, 1yn), (1x, 1y)) ≤ 1, (12)

and similarly

µ((1yn, 1xn), (1y, 1x)) ≤ 1, (13)

for all n ∈N. Also, as in Theorem 2.10 we have

lim
n→+∞

F(xn, yn) = x and F(yn, xn) = y.

Using (11), (13), property of ψ(t) < t for all t > 0 and (9) we get
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H(1,
d(F(1xn, 1yn),F(x, y)) + d(F(1yn, 1xn),F(y, x))

2
) (14)

≤ H(α((11xn, 11yn), (1x, 1y)),
d(F(1xn, 1yn),F(x, y)) + d(F(1yn, 1xn),F(y, x))

2
)

≤ F (µ((11xn, 11yn), (1x, 1y)), ψ(
d(11xn, 1x) + d(11yn + 1y)

2
))

≤ F (1, ψ
(d(11xn, 1x) + d(11yn + 1y)

2

)
).

Therefore, from condition (1) of Definition 2.5 we have

d(F(1xn, 1yn),F(x, y)) + d(F(1yn, 1xn),F(y, x))
2

≤ ψ
(d(11xn, 1x) + d(11yn + 1y)

2

)
(15)

≤
d(11xn, 1x) + d(11yn + 1y)

2
.

From triangle inequality, and from condition that F and 1 are compatible we have

d(1x,F(x, y)) ≤ d(1x, 11xn+1) + d(11xn+1,F(1xn, 1yn)) + d(F(1xn, 1yn),F(x, y)) (16)

= d(1x, 11xn+1) + d(1F(xn, yn),F(1xn, 1yn)) + d(F(1xn, 1yn),F(x, y)),

and

d(1y,F(y, x)) ≤ d(1y, 11yn+1) + d(11yn+1,F(1yn, 1xn)) + d(F(1yn, 1xn),F(y, x)) (17)

= d(1y, 11yn+1) + d(1F(yn, xn),F(1yn, 1xn)) + d(F(1yn, 1xn),F(y, x)).

Adding (16) and (17), and using (15) we get

d(1x,F(x, y)) + d(1y,F(y, x)) (18)

≤ d(1x, 11xn+1) + d(1F(xn, yn),F(1xn, 1yn)) + d(1y, 11yn+1) + d(1F(yn, xn),F(1yn, 1xn))
+ d(11xn, 1x) + d(11yn + 1y)

Letting n→ +∞ in (18), and using using properties that 1 is continuous, and F and 1 are compatible we
have

d(F(x, y), 1x) + d(1y,F(y, x)) = 0. (19)

Hence, F(x, y) = 1x and F(y, x) = 1y. Thus, F and 1 have a coupled coincidence in X.

Remark 2.13. We noted, that papers ([27], [33]) have imprecisions. Namely, the proof of Theorem 3.3. from [33]
is not completely correct. This irregularity is able to correct if the condition (2) in the Theorem 3.3 replace by other
condition in accordance with above proven theorem in this paper. Also, in the paper [28] although the authors fix
mistakes, both of the examples have inaccuracies, because in both cases selected functions F does not satisfy the feature
of mixed-monotone property. For more details also see [23].

If we choice H(x, y) = xy andF (s, t) = st,we obtain a corrigendum of Theorem 3.5 in [33] with µ(x, y) = 1
for all x, y ∈ X.
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Theorem 2.14. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete
metric space. Let F : X2

→ X and 1 : X → X be two mappings such that F has a mixed 1−monotone property.
Assume that there exists ψ ∈ Ψ and a mapping α : X2

× X2
→ [0,+∞) such that

α((1x, 1y), (1u, 1v))
d(F(x, y),F(u, v)) + d(F(y, x),F(v,u))

2
) ≤ ψ

(d(1x, 1u) + d(1y, 1v)
2

)
for all x, y,u, v ∈ X with 1x � 1u and 1y � 1v. Suppose that

(a) conditions (i), (ii) and (iii) of Theorem 2.10 hold,
(b) if (xn) and (yn) are sequences in X such that

α((1xn, 1yn), (1xn+1, 1yn+1)) ≥ 1, α((1yn, 1xn), (1yn+1, 1xn+1)) ≥ 1,

for all n ∈N, lim
n→+∞

1xn = x ∈ X and lim
n→+∞

1yn = y ∈ X then

α((1xn, 1yn), (1x, 1y)) ≥ 1, α((1xn, 1yn), (1x, 1y)) ≥ 1.

Then there exist x, y ∈ X such that F(x, y) = 1x and F(y, x) = 1y, that is, F and 1 have a coupled coincidence
in X.

In the following theorem, we shall prove the uniqueness of the coupled fixed point. If (X,�) is a partially
ordered set then we endow the product X2 with following partial order relation:

(x, y) v (u, v)⇔ x � u, y � v,

for all (x, y), (u, v) ∈ X2.

Theorem 2.15. In adding to the hypothesis of Theorem 2.10, suppose that for every (x, y), (s, t) in X2, there exists
(u, v) in X2 such that

α((1x, 1y), (1u, 1v)) ≥ 1, α((1s, 1t), (1u, 1v)) ≥ 1, (20)

µ((1x, 1y), (1u, 1v)) ≤ 1, µ((1s, 1t), (1u, 1v)) ≤ 1, (21)

and (u, v) is comparable to (x, y) and (s, t). Then F and 1 have a unique coupled coincidence point.

Proof. From Theorem 2.10, the set of coupled coincidence point is nonempty. Suppose that (x, y) and (s, t)
are different coupled coincidence points of the mappings F : X2

→ X and 1 : X → X that is, 1x = F(x, y),
1y = F(y, x), 1s = F(s, t) and 1t = F(t, s). By assumption there exists (u, v) in X2 such that (u, v) is comparable
to (x, y) and (s, t). Put u = u0 and v = v0 and choose u1, v1 ∈ X such that 1u1 = F(u0, v0) and 1v1 = F(v0,u0).
Thus, we can define two sequences (1un) and (1vn) as

1un+1 = F(un, vn), 1vn+1 = F(vn,un).

Since (u, v) is comparable to (x, y) then it is easy to show that 1x � 1u1 and 1y � 1v1. Thus, 1x � 1un and
1y � 1vn for all n ≥ 1. Since, for every (x, y), (s, t) ∈ X2 there exists (u, v) ∈ X × X such that (20) and (21) are
satisfied. Since F and 1 are (α)-admissible, from (20) and (21), we have

α((1x, 1y), (1u, 1v)) ≥ 1⇒ α((F(x, y),F(y, x)), (F(u, v),F(v,u))) ≥ 1

µ((1x, 1y), (1u, 1v)) ≤ 1⇒ µ((F(x, y),F(y, x)), (F(u, v),F(v,u))) ≤ 1

Thus, for u = u0 and v = v0, we get

α((1x, 1y), (1u0, 1v0)) ≥ 1⇒ α((F(x, y),F(y, x)), (F(u0, v0),F(v0,u0))) ≥ 1,
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and

µ((1x, 1y), (1u0, 1v0)) ≤ 1⇒ µ((F(x, y),F(y, x)), (F(u0, v0),F(v0,u0))) ≤ 1.

Thus, we have

α((1x, 1y), (1u0, 1v0)) ≥ 1⇒ α((1x, 1y), (1u1, 1v1)) ≥ 1,

and

µ((1x, 1y), (1u0, 1v0)) ≤ 1⇒ µ((1x, 1y), (1u1, 1v1)) ≤ 1.

Therefore, by mathematical induction, we obtain

α((1x, 1y), (1un, 1vn)) ≥ 1, (22)

and

µ((1x, 1y), (1un, 1vn)) ≥ 1, (23)

for all n ∈N, and similarly, α((1y, 1x), (1vn, 1un)) ≥ 1. From (20), (21), (22) and (23) we get

H(1,
d(1x, 1un+1) + d(1y, 1vn+1)

2
) = H(1,

d(F(x, y),F(un, vn)) + d(F(y, x),F(vn,un))
2

)

≤ H(α((1x, 1y), (1un, 1vn)),
d(F(x, y),F(un, vn)) + d(F(y, x),F(vn,un))

2
)

≤ F (µ((1x, 1y), (1un, 1vn)), ψ
(d(1x, 1un) + d(1y, 1vn)

2

)
)

≤ F (1, ψ
(d(1x, 1un) + d(1y, 1vn)

2

)
).

So, using condition (2) of Definition (2.5) we conclude that

d(1x, 1un+1) + d(1y, 1vn+1)
2

≤ ψ
(d(1x, 1un) + d(1y, 1vn)

2

)
. (24)

Thus, from (24) we have

d(1x, 1un+1) + d(1y, 1vn+1)
2

≤ ψn
(d(1x, 1u1) + d(1y, 1v1)

2

)
, (25)

for each n ≥ 1. Letting n→ +∞ in (25) and using Lemma 1.5, we get

lim
n→+∞

[d(1x, 1un+1) + d(1y, 1vn+1)] = 0.

This implies that

lim
n→+∞

d(1x, 1un+1) = lim
n→+∞

d(1y, 1vn+1) = 0. (26)

Similarly, one can show that

lim
n→+∞

d(1s, 1un+1) = lim
n→+∞

d(1t, 1vn+1) = 0. (27)

From (26) and (27), we conclude that x = 1x = 1s = s and y = 1y = 1t = t. Hence, F and 1 have a unique
coupled coincidence point.
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Corollary 2.16. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete
metric space. Let F : X2

→ X and 1 : X→ X be two mappings such that F has a mixed 1−monotone property on X.
Suppose that there exists ψ ∈ Ψ and α, µ : X2

× X2
→ [0,+∞) such that for x, y,u, v ∈ X, the following holds:

(
d(F(x, y),F(u, v)) + d(F(y, x),F(v,u))

2
+ l)α((1x,1y),(1u,1v))

≤ µ((1x, 1y), (1u, 1v))ψ
(d(1x, 1u) + d(1y, 1v)

2

)
+l

for all 1x � 1u and 1y � 1v. Suppose also that

(i) F and 1 are (α)−admissible and (µ)−subadmissible,
(ii) there exist x0, y0 ∈ X such that 1x0 � F(x0, y0) and 1y0 � F(y0, x0) with

α((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≥ 1, α((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≥ 1

and

µ((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≤ 1, µ((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≤ 1,

(iii) F(X2) ⊆ 1(X), 1 is continuous and F and 1 are compatible in X.
(iv) F is continuous, or if (xn) and (yn) are sequences in X such that

α((1xn, 1yn), (1xn+1, 1yn+1)) ≥ 1, α((1yn, 1xn), (1yn+1, 1xn+1)) ≥ 1,

and

µ((1xn, 1yn), (1xn+1, 1yn+1)) ≤ 1, µ((1yn, 1xn), (1yn+1, 1xn+1)) ≤ 1,

for all n ∈N, and lim
n→+∞

1xn = x ∈ X and lim
n→+∞

1yn = y ∈ X then

α((1xn, 1yn), (1x, 1y)) ≥ 1, α((1xn, 1yn), (1x, 1y)) ≥ 1

and

µ((1xn, 1yn), (1x, 1y)) ≤ 1, µ((1xn, 1yn), (1x, 1y)) ≤ 1.

Then F and 1 have a coupled coincidence point, that is, there exist x, y ∈ X such that

F(x, y) = 1x, F(y, x) = 1y.

Corollary 2.17. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete
metric space. Let F : X2

→ X and 1 : X→ X be two mappings such that F have a mixed 1−monotone property on X.
Suppose that there exists ψ ∈ Ψ and α, µ : X2

× X2
→ [0,+∞) such that for x, y,u, v ∈ X, the following holds:

(α((1x, 1y), (1u, 1v)) + l)
d(F(x,y),F(u,v))+d(F(y,x),F(v,u))

2 ≤ (1 + l)
µ((1x,1y),(1u,1v))ψ

(
d(1x,1u)+d(1y,1v)

2

)
for all 1x � 1u and 1y � 1v. Suppose also that

(i) F and 1 are (α)-admissible and (µ)-subadmissible,
(ii) there exist x0, y0 ∈ X such that 1x0 � F(x0, y0) and 1y0 � F(y0, x0) with

α((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≥ 1, α((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≥ 1,

and

µ((1x0, 1y0), (F(x0, y0),F(y0, x0))) ≤ 1, µ((1y0, 1x0), (F(y0, x0),F(x0, y0))) ≤ 1,
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(iii) F(X2) ⊆ 1(X), 1 is continuous and F and 1 are compatible in X,
(iv) F is continuous, or if (xn) and (yn) are sequences in X such that

α((1xn, 1yn), (1xn+1, 1yn+1)) ≥ 1, α((1yn, 1xn), (1yn+1, 1xn+1)) ≥ 1,

and

µ((1xn, 1yn), (1xn+1, 1yn+1)) ≤ 1, µ((1yn, 1xn), (1yn+1, 1xn+1)) ≤ 1,

for all n ∈N, and lim
n→+∞

1xn = x ∈ X, lim
n→+∞

1yn = y ∈ X then

α((1xn, 1yn), (1x, 1y)) ≥ 1, α((1xn, 1yn), (1x, 1y)) ≥ 1

and

µ((1xn, 1yn), (1x, 1y)) ≤ 1, µ((1xn, 1yn), (1x, 1y)) ≤ 1.

Then F and 1 have a coupled coincidence point, that is, there exist x, y ∈ X such that

F(x, y) = 1x, F(y, x) = 1y.

Example 2.18. Let X = [0, 1] and d : X2
→ R be a standard metric. Define a mapping F : X2

→ X and
1 : X → X by F(x, y) =

x−y
8 and 1(x) = x for all x, y ∈ X. Let H(x, y) = xy and F (s, t) = st. Consider a mapping

α : X2
× X2

→ [0,+∞) and µ : X2
× X2

→ [0,+∞) be such that

α((x, v), (y,u)) =

{
1, if x � y,u � v,
0, otherwise,

and

µ((x, v), (y,u)) =

{
1, if x � y,u � v,
10, otherwise.

Now we have,

d(F(x, v),F(y,u)) =

∣∣∣∣∣x − v
8
−

y − u
8

∣∣∣∣∣≤ 1
8

(|x − y| + |v − u|) =
1
8

(d(x, y) + d(v,u)).

Analogous,

d(F(v, x),F(y,u)) ≤
1
8

(d(x, y) + d(v,u)).

So, it follows that

α((x, v), (y,u))
d(F(x, v),F(y,u)) + d(F(v, x),F(u, y))

2

≤
1
4

(d(x, y) + d(v,u))

≤
1
2
µ((x, v), (y,u))

(d(x, y) + d(v,u))
2

.

Thus all hypothesis of Theorem 2.10 for ψ(t) = t
2 are fulfilled. Then, there exists a coupled coincidence point (0, 0)

of F and 1.
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Example 2.19. Let X = [0, 1] Then (X,�) is a partially ordered set with the natural ordering of real numbers. Let
d(x, y) =

∣∣∣x − y
∣∣∣ for x, y ∈ [0, 1]. Then (X, d) is a complete metric space. Let F : X2

→ X and 1 : X → X be defined

as 1(x) = x3 , and F(x, y) =
x3
−y3

4 + 3
4 , for all x ∈ X. Let H(x, y) = xy and F (s, t) = st.

Let (xn) and (yn) be sequences in X such that

lim
n→+∞

F(xn, yn) = lim
n→+∞

1xn = a,

lim
n→+∞

F(yn, xn) = lim
n→+∞

1yn = b.

Thus it follows that a = 3
4 , and b = 3

4 .
Therefore,

lim
n→+∞

d(1(F(xn, yn)), F(1xn, 1yn)) = 0

lim
n→+∞

d(1(F(yn, xn)), F(1yn, 1xn)) = 0

Hence, the mappings F and 1 are compatible in X. Consider a mapping α, µ : X2
× X2

→ [0,+∞) be such that

α((1x, 1v), (1y, 1u)) =

{
1, if x � y,u � v,
0, otherwise,

µ((1x, 1v), (1y, 1u)) =

{
1, if x � y,u � v,
10, otherwise.

It follows that

α((1x, 1v), (1y, 1u))
d(F(x, v),F(y,u)) + d(F(v, x),F(u, y))

2
=

∣∣∣∣ x3
−v3

4 −
y3
−u3

4

∣∣∣∣ +
∣∣∣∣ v3
−x3

4 −
u3
−y3

4

∣∣∣∣
2

≤
1
4

(
∣∣∣x3
− y3

∣∣∣ +
∣∣∣u3
− v3

∣∣∣)
=

1
4

(d(1x, 1y) + d(1u, 1v))

≤
1
2
µ((1x, 1v), (1y, 1u))

(d(1x, 1y) + d(1u, 1v))
2

.

Thus ψ(t) = t
2 . Also we can see that F(X2) ⊆ 1(X) and F satisfies mixed 1−monotone property. So, all conditions

of Theorem 2.10 are satisfied, and (0, 0) is a coupled coincidence point for F and 1.
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[37] Radenović, S., Bhaskar-Lakshmikantham type-results for monotone mappings in partially ordered metric spaces, Int. J. Nonlinear Anal.
Appl., 5(2), 37–49, 2014.
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