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Abstract. Using the new Caputo-Liouville derivative with fractional order, we have modified the nonlinear
Schrdinger equation. We have shown some useful in connection of the new derivative with fractional
order. We used an iterative approach to derive an approximate solution of the modified equation. We
have established the stability of the iteration scheme using the fixed point theorem. We have in addition
presented in detail the uniqueness of the special solution.

1. Introduction

Recently, a new derivative with fractional order was proposed by Caputo and Fabrizio [1, 2]. They argued
that, “the new derivative assumes two different representations for temporal and spatial variable. However,
the first form of this derivative was proposed in late 1832 by Joseph Liouville [3] .The first representation
works on times variable, where the real powers appearing in the solution of the usual fractional derivative
will turn into integer power and the second one is related to the spatial variables, thus for the non-local
fractional derivative”. One of the interesting applications of this new derivative is that, it can describe
material heterogeneities and structures with different scales, which obviously cannot be handling with
the well-known local theories [1]. Another application is in the study of the macroscopic behaviours of
some materials, connected with non-local interactions between atoms, which are established in decisive of
the properties of material. On the other hand, nonlinear differential equations have been quit efficient in
describing the behaviour of some interesting real world problem. For instance Schrdinger equation plays
the role of the Newton’s law and conservation of energy in classical mechanic; more precisely predicts the
future behaviour of a dynamic system [4–8, 12]. No wonder then, why many researcher have devoted their
attention in developing new adequate analytical, numerical and iterative methods which can be used to
derive exact or approximate solutions of these equations. However, in the case of approximate solutions
obtained via iterative methods, the major concern is to establish the stability and the convergence of the
method for the concerned equation. Fewer methods are found in the literature which helps investigating
the stability of iteration methods.
The aim of this paper is to promote the application of the newly proposed derivative with fractional order
to the nonlinear Schrdinger equation, to derive an approximate or exact solution using iteration technique,
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and prove the stability of the technique by using the fixed point theorem technique. The rest of the paper
will have the following structure:
In section 2, we present the new derivative with fractional order with some properties, in section 3 we
present the derivative the solution of the modified Schrdinger equation using an iteration method, in
section 4 we present the application of the fixed point theorem to establish the stability of the methods.

2. Caputo-Liouville Derivative with Fractional Order

Definition 1: Let f ∈ H1 (a, b) , b > a, a ∈ [0, 1] then, the new Caputo derivative of fractional derivative is defined
as:

Da
t
(

f (t)
)

=
M(a)
1 − a

∫ t

a
f ′(x)exp

[
−a

t − x
1 − a

]
dx (1)

Where M(a) is a normalization function such that M (0) = M (1) = 1 [1]. However, if the function does not
belongs to H1 (a, b) then, the derivative can be reformulated as

Da
t
(

f (t)
)

=
aM(a)
1 − a

∫ t

a

(
f (t) − f (x)

)
exp

[
−a

t − x
1 − a

]
dx (2)

Remark: The authors remarked that, if s = 1−a
a ∈ [0,∞) , a = 1

1+s ∈ [0, 1], then equation (2) assumes the form

Da
t
(

f (t)
)

=
N(s)

s

∫ t

a
f ′ (x) exp

[
−

t − x
s

]
dx, N (0) = N (∞) = 1 (3)

In addition,

lim
s→0

1
s

exp
[
−

t − x
s

]
= d (x − t) (4)

Now after the introduction of a new derivative, the associate anti-derivative becomes important, the
associated integral of the new Caputo derivative with fractional order was proposed by Nieto and Losada
[2].
Definition 2: [2] Let 0 < a < 1. The fractional integral of order a of a function f is defined by

It
a
(

f (t)
)

=
2 (1 − a)

(2 − a) M (a)
f (t) +

2a
(2 − a) M (a)

∫ t

0
f (s) ds, t ≥ 0 (5)

Remark [2]. Note that, according to the above definition, the fractional integral of Caputo type of function
of order 0 < a < 1 is an average between function f and its integral of order one. This therefore imposes

2 (1 − a)
(2 − a) M (a)

+
2a

(2 − a) M (a)
= 1 (6)

The above expression yields an explicit formula for

M (a) =
2

2 − a
, 0 ≤ a ≤ 1

Because of the above, Nieto and Losada proposed that the Caputo-Liouville derivative of order 0 < a < 1
can be reformulated as

Da
t
(

f (t)
)

=
1

1 − a

∫ t

a
f ′(x)exp

[
−a

t − x
1 − a

]
dx (7)

Theorem 1: For the new Caputo derivative with fractional order, if the function f (t) is such that

f (s) (a) = 0, s = 1, 2, . . .n

then, we have

Da
t
(
Dn

t ( f (t))
)

= Dn
t
(
Da

t ( f (t))
)

For proof see [1].
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3. Application of Fixed Point Theorem for Nonlinear Fractional Schrödinger Equation

The equation under consideration here is the two dimensional generalized fractional Schrdinger equation

iDα
t (Ψ(X, t)) = −

1
2
∇

2Ψ ((X, t)) + Vd(X)Ψ ((X, t)) + BdΨ
m+1 ((X, t)) , X ∈ Rd, t > 0 (8)

the above will be subjected to the following initial condition

iΨ(X, 0) = f (X),X ∈ Rd

preliminaries: Let (X, ‖.‖) be a Banach space and H a self-map of X. Let yn+1 = 1(H, yn)
be some iterative technique. Assuming that, F(H) the fixed point set of H has at least one element and that
yn converges to a point p ∈ F(H). Let {xn} ⊆ X and define en =

∥∥∥xn+1 − 1(H, xn)
∥∥∥. If lim

n→∞
en = 0 implies that

lim
n→∞

xn = p , then the iteration method yn+1 = 1(H, yn) is said to be H− Stable. Without any loss of generality,
we must assume that, our sequence {xn} has an upper boundary; otherwise we cannot expect the possibility
of convergence. If all these conditions are satisfied for yn+1 = Hyn which is known as Picard’s iteration,
consequently the iteration will is H− Stable. We shall then state the following theorem.

Theorem 2: (see [7]). Let (X, ‖.‖) be a Banach space and H a self-map of X satisfying∥∥∥Hx −Hy
∥∥∥ ≤ C ‖x −Hx‖ + c

∥∥∥x − y
∥∥∥ , for all x, y in X where 0 ≤ C, 0 ≤ α < 1. Suppose that H has fixed point

p. Then, H is Picard H− Stable.
Let consider the following sequence associate to the nonlinear fractional Schrdinger equation

Ψn(X, t) + It
αλ (s)

{
iDα

t (Ψn(X, s)) +
1
2
∇

2Ψn ((X, s)) + Vd(X)Ψn ((X, s)) + BdΨ̃
m+1
n ((X, s))

}
(9)

where λ(s) is the Lagrange multiplier and Ψ̃m+1
n is a restricted variation implying δΨ̃m+1

n = 0 .
Theorem 3: Let H be a self-map defined as

H(Ψn(X, t)) = Ψn+1(X, t) = Ψn(X, t)+
It
αλ (s)

{
iDα

t (Ψn(X, s)) + 1
2∇

2Ψn ((X, s)) + Vd(X)Ψn ((X, s)) + BdΨ̃
m+1
n ((X, s))

}
is H− Stable in L2(a, b).
Proof. The first step in this proof is to show that, H has a fixed point. Therefore for n,m ∈Nwe have

‖H(Ψn(X, t)) −H(Ψk(X, t))‖ = ‖Ψn+1(X, t) −Ψk+1(X, t)‖

=

∥∥∥∥∥∥∥∥∥∥∥∥∥
Ψn(X, t)+

It
αλ (s)

{
iDα

t (Ψn(X, s)) + 1
2∇

2Ψn ((X, s))
+Vd(X)Ψn ((X, s)) + BdΨ

m+1
n ((X, s))

}
−

Ψk(X, t) −
{

It
αλ (s)

{
iDα

t (Ψk(X, s))
+ 1

2∇
2Ψk ((X, s)) + Vd(X)Ψk ((X, s)) + BdΨ

m+1
k ((X, s))

}}
∥∥∥∥∥∥∥∥∥∥∥∥∥

(10)

Now using the triangular inequality property of the norm, we obtain

‖Ψn(X, t) −Ψk(X, t)‖ ≤ ‖Ψn(X, t) −Ψk(X, t)‖ +
∥∥∥∥It
αλ (s)

(
iDα

t (Ψn(X, s)) − iDα
t (Ψk(X, s))

)∥∥∥∥+∥∥∥∥It
αλ (s)

(
1
2∇

2Ψn ((X, s)) − 1
2∇

2Ψk ((X, s))
)∥∥∥∥ + ‖Vd(X)Ψn ((X, s)) − Vd(X)Ψk ((X, s))‖+∥∥∥BdΨ

m+1
n ((X, s)) − BdΨ

m+1
k ((X, s))

∥∥∥ (11)

We shall evaluate the above equation case by case starting with the fractional part. We start here with∥∥∥∥It
αλ (s)

(
iDα

t (Ψn(X, s)) − iDα
t (Ψk(X, s))

)∥∥∥∥ ≤ |λ (s)|
∥∥∥It
αDα

t (Ψn(X, s) −Ψk(X, s))
∥∥∥ =

|λ (s)| ‖(Ψn(X, s) −Ψk(X, s)) − (Ψn(X, 0) −Ψk(X, 0))‖ =
|λ (s)| ‖(Ψn(X, s) −Ψk(X, s))‖ , (Ψn(X, 0) −Ψk(X, 0)) = 0, (n > 0)

(12)
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Secondly∥∥∥∥It
αλ (s)

(
1
2∇

2Ψn ((X, s)) − 1
2∇

2Ψk ((X, s))
)∥∥∥∥ =

∥∥∥ 1
2 It
αλ (s)∇2 (Ψn ((X, s)) −Ψk ((X, s)))

∥∥∥ ≤
1
2 |λ (s)| It

α

∥∥∥∥(∇2 (Ψn ((X, s)) −Ψk ((X, s)))
)∥∥∥∥ (13)

Making use of the continuity properties of the derivative, together with property of the norm, it is possible
for us to find two positive constants θ1, θ2 such that,∥∥∥∥(∇2 (Ψn ((X, s)) −Ψk ((X, s)))

)∥∥∥∥ ≤ θ1θ2 ‖Ψn ((X, s)) −Ψk ((X, s))‖ (14)

Thus equation (13) becomes∥∥∥∥∥It
αλ (s)

(1
2
∇

2Ψn ((X, s)) −
1
2
∇

2Ψk ((X, s))
)∥∥∥∥∥ ≤ 1

2
|λ (s)| It

αθ1θ2 ‖Ψn ((X, s)) −Ψk ((X, s))‖
∥∥∥It
α(1)

∥∥∥ (15)

However, the Caputo-Fabrizio fractional integral of a constant can be calculated as follows

Iαt (a) =
2 (1 − α)

(2 − α) M(α)
a +

2αt
(2 − α) M(α)

a (16)

With the above information on hand, equation (14) becomes∥∥∥∥It
αλ (s)

(
1
2∇

2Ψn ((X, s)) − 1
2∇

2Ψk ((X, s))
)∥∥∥∥ ≤

‖Ψn ((X, s)) −Ψk ((X, s))‖ 1
2 |λ (s)|θ1θ2

∥∥∥∥ 2(1−α)
(2−α)M(α) + 2αt

(2−α)M(α)

∥∥∥∥ (17)

We finally consider the following∥∥∥BdΨ
m+1
n ((X, s)) − BdΨ

m+1
k ((X, s))

∥∥∥ = |Bd|
∥∥∥Ψm+1

n ((X, s)) −Ψm+1
k ((X, s))

∥∥∥
= |Bd| ‖Ψn ((X, s)) − BdΨk ((X, s))‖

∥∥∥∥∑m
j=0 C j

mΨ
m− j−1
n Ψ

j
k

∥∥∥∥ (18)

Due to the physical properties of the problem under study, for all n and k, we have that the function∥∥∥∥Ψm− j−1
n

∥∥∥∥ ∥∥∥∥Ψ j
k

∥∥∥∥ ≤ vm− j−1u j so that equation (18) can become

∥∥∥BdΨ
m+1
n ((X, s)) − BdΨ

m+1
k ((X, s))

∥∥∥ = |Bd| ‖Ψn ((X, s)) − BdΨk ((X, s))‖
m∑

j=0

C j
mvm− j−1u j (19)

Therefore, putting together equation (19), (17) , (12) and (11) into (10), we obtain

‖H(Ψn(X, t)) −H(Ψk(X, t))‖ ≤ |λ(s)|
∥∥∥∥ 2(1−α)

(2−α)M(α) + 2αt
(2−α)M(α)

∥∥∥∥{
1 + |Bd|

∑m
j=0 C j

mvm− j−1u j + 1
2 |λ (s)|θ1θ2

}
‖Ψn(X, t) −Ψk(X, t)‖

(20)

Thus if we assume

|λ(s)| <


∥∥∥∥ 2(1−α)

(2−α)M(α) + 2αt
(2−α)M(α)

∥∥∥∥{
1 + |Bd|

∑m
j=0 C j

mvm− j−1u j + 1
2 |λ (s)|θ1θ2 + max |(V(X))|

} 
−1

(21)

The nonlinear H has a fixed point. This completes the proof.
We next show that, H satisfies the conditions in theorem 2. Let (9) holds, thus putting

C = 0, c = |λ(s)|


∥∥∥∥ 2(1−α)

(2−α)M(α) + 2αt
(2−α)M(α)

∥∥∥∥{
1 + |Bd|

∑m
j=0 C j

mvm− j−1u j + 1
2 |λ (s)|θ1θ2 + max |Vd|

}  (22)

shows that conditions of theorem (2) holds for the nonlinear mapping H. Therefore since all condition in
theorem (2) hold for the defined non-linear mapping H, then H is Picard’s H-stable. This completes the
proof of theorem (3). One can also find in the literature others ways of dealing with fixed-point theorem
[9-11].
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4. Unicity of the Approximate Solution

In this section, we show in detail the uniqueness of the special solution, to achieve this, we consider the
following operator

T(Ψ(X, t)) = iDα
t (Ψ(X, t)) = −

1
2
∇

2Ψ ((X, t)) + Vd(X)Ψ ((X, t)) + BdΨ
m+1 ((X, t)) (23)

Theorem 4: Using the new Caputo derivative with fractional order, the time-fractional nonlinear Schrdinger
equation has a unique special solution while using variational iteration method.
Proof: Let K =

{
U,V/

∫
Um+1Vm+1 < ∞

}
, We assume that, Ψ is the exact solution of the time-fractional

Schrdinger equation, we assume by contradiction that, we can find two different special solution U and V
such that, U , V. We evaluate using the inner product the following expression. (H(U) −H(V),U − V).

H(U) −H(V) = −
1
2
∇

2 (U (X, t) − V(X, t)) + Vd(X) (U (X, t) − V(X, t)) + Bd

(
Um+1 (X, t) − Vm+1(X, t)

)
(24)

Therefore,

(H(U) −H(V),U − V) =
(

1
2∇

2 (V (X, t) −U(X, t)) , (U − V)
)

+ (Vd(X) (U (X, t) − V(X, t)) ,U − V)

+
(
Bd

(
Um+1 (X, t) − Vm+1(X, t)

)
,U − V

) (25)

Indeed using some properties of inner function which are related to the norm, we have that(
1
2∇

2 (V (X, t) −U(X, t)) , (U − V)
)
≤

1
2

∥∥∥∇2 (V −U)
∥∥∥ ‖U − V‖

≤
1
2 Ω1Ω2 ‖U − V‖2

(26)

Also we have the following relationship

(Vd(X) (U (X, t) − V(X, t)) ,U − V) ≤ max |Vd(X)| ‖U − V‖2 (27)

And finally we have the following result(
Bd

(
Um+1 (X, t) − Vm+1(X, t)

)
,U − V

)
≤ |Bd| ‖U − V‖2

m∑
j=0

C j
mVm− j−1

1 U j
1 (28)

Now putting equation (28), (27), (26) into (25) we obtain

(H(U) −H(V),U − V) ≤

|Bd|

m∑
j=0

C j
mVm− j−1

1 U j
1 +

1
2

Ω1Ω2 + max |Vd(X)| + 1

 ‖U − V‖2 (29)

Due to the fact that U, V are bounded in K, the above equation can be transform to

(H(U) −H(V),U − V) ≤ V1U1

|Bd|

m∑
j=0

C j
mVm− j−1

1 U j
1 +

1
2

Ω1Ω2 + max |Vd(X)| + 1

 ‖U − V‖

However, since Ψ is the exact solution of the time-fractional Schrdinger equation, the above relation can
further be transform to

(H(U) −H(V),U − V) ≤ V1U1

|Bd|

m∑
j=0

C j
mVm− j−1

1 U j
1 +

1
2

Ω1Ω2 + max |Vd(X)| + 1

 {‖Ψ − V‖ + ‖U −Ψ‖} (30)

And we can find n and m bigger enough such that U and V converge to Ψ, with this in mind, we can
therefore consider max(n,m) and then

‖U −Ψ‖ <
ι

2V1U1

(
|Bd|

∑m
j=0 C j

mVm− j−1
1 U j

1 + 1
2 Ω1Ω2 + max |Vd(X)| + 1

) (31)



A. Atangana, D. Baleanu / Filomat 31:8 (2017), 2243–2248 2248

‖V −Ψ‖ <
ι

2V1U1

(
|Bd|

∑m
j=0 C j

mVm− j−1
1 U j

1 + 1
2 Ω1Ω2 + max |Vd(X)| + 1

)
Replacing the information of equation (31) into equation (30) yields

(H(U) −H(V),U − V) < ι

since ι is an extremely very small parameter, according to topology law, we have that

(H(U) −H(V),U − V) = 0⇒ U = V (32)

This completes the proof of theorem 4.

5. Conclusion

Recently, Caputo in collaboration with Fabrizio have proposed a new derivative with fractional order, which
actually the modified version proposed by Liouville in 1832. The new derivative has more interesting
properties than the old version. For instance, it can describe material heterogeneities and structures
with different scales, which obviously cannot be handling with the well-known local theories. Another
application is in the study of the macroscopic behaviours of some materials, connected with non-local
interactions between atoms, which are established in decisive of the properties of material. To further
apply this derivative, we have modified the nonlinear Schrdinger equation. An iterative procedure was
used and together with the fixed point concept to show the stability of the constructed mapping. A detail
analysis underpinning the uniqueness of the solution of the modified equation presented.
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