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Abstract. In this paper, we introduce the notion of strict pseudo-contractive mappings in the framework of
CAT(0) metric spaces. Some properties of such mappings including demiclosed principle are investigated.
Also, strong convergence and ∆-convergence of the well-known Mann iterative algorithm is established for
strict pseudo-contractive mappings.

1. Introduction and Preliminaries

A metric space (X, d) is a CAT(0) space if it is geodesically connected and if every geodesic triangle in
X is at least as thin as its comparison triangle in the Euclidean plane. For other equivalent definitions and
basic properties, we refer the reader to standard texts such as [1, 3, 4, 11]. Complete CAT(0) spaces are often
called Hadamard spaces. Let x, y ∈ X and λ ∈ [0, 1]. We write λx ⊕ (1 − λ)y for the unique point z in the
geodesic segment joining from x to y such that

d(z, x) = (1 − λ)d(x, y) and d(z, y) = λd(x, y). (1)

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {λx ⊕ (1 − λ)y : λ ∈ [0, 1]}.
A subset C of a CAT(0) space is convex if [x, y] ⊆ C for all x, y ∈ C.

Berg and Nikolaev in [2] have introduced the concept of quasilinearization. Let us formally denote a pair
(a, b) ∈ X × X by

−→
ab and call it a vector. Then quasilinearization is the map 〈·, ·〉 : (X × X) × (X × X) → R

defined by

〈
−→
ab,
−→
cd〉 =

1
2

(
d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)

)
, (a, b, c, d ∈ X). (2)

It is easily seen that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+ 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all a, b, c, d, x ∈ X.

We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d) (3)
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for all a, b, c, d ∈ X. It known [2, Corollary 3] that a geodesically connected metric space is CAT(0) space if
and only if it satisfies the Cauchy-Schwarz inequality.

The concept of ∆-convergence introduced by Lim [12] in 1976 was shown by Kirk and Panyanak [10]
in CAT(0) spaces to be very similar to the weak convergence in Hilbert space setting. Next, we give the
concept of ∆-convergence and collect some basic properties. Let {xn} be a bounded sequence in a CAT(0)
space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from Proposition 7 of [7] that in a CAT(0) space, A({xn}) consists of exactly one point.
A sequence {xn} ⊂ X is said to ∆-converge to x ∈ X if A({xnk }) = {x} for every subsequence {xnk } of {xn}.
Uniqueness of asymptotic center implies that CAT(0) space X satisfies Opial’s property, i.e., for given
{xn} ⊂ X such that {xn} ∆-converges to x and given y ∈ X with y , x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y). (4)

We need following lemmas in the sequel.

Lemma 1.1. [10] Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subsequence.

Lemma 1.2. [6] If C is a closed convex subset of a complete CAT(0) space and if {xn} is a bounded sequence in C,
then the asymptotic center of {xn} is in C.

Lemma 1.3. [9, Theorem 2.6] Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X. Then {xn}

∆-converges to x if and only if lim supn→∞〈
−−→xxn,
−→xy〉 ≤ 0 for all y ∈ X.

Lemma 1.4. [8, Lemma 2.5] A geodesic space X is a CAT(0) space if and only if the following inequality

d2(λx ⊕ (1 − λ)y, z) ≤ λd2(x, z) + (1 − λ)d2(y, z) − λ(1 − λ)d2(x, y) (5)

is satisfied for all x, y, z ∈ X and λ ∈ [0, 1].

Lemma 1.5. [3, Proposition 2.2] Let X be a CAT(0) space. Then

d(λp ⊕ (1 − λ)q, λr ⊕ (1 − λ)s) ≤ λd(p, r) + (1 − λ)d(q, s) (6)

for all p, q, r, s ∈ X and λ ∈ [0, 1].

2. Strict Pseudo-Contractions

In this section, we present an appropriate definition of strict pseudo-contractions in CAT(0) metric
spaces and obtain demiclosed principle for such mappings.

Definition 2.1. Let C be a nonempty subset of a CAT(0) space X. A mapping T : C → X is called strict pseudo-
contraction if there exists a constant 0 ≤ k < 1 such that

d2(Tx,Ty) ≤ d2(x, y) + 4κd2
(1

2
x ⊕

1
2

Ty,
1
2

Tx ⊕
1
2

y
)

(7)

for all x, y ∈ C. If (7) holds, we also say that T is a κ-strict pseudo-contraction.
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The definition of pseudo-contraction finds its origin in Hilbert spaces. Note that the class of strict pseudo-
contractions strictly includes the class of nonexpansive mappings. That is, T is nonexpansive if and only if
T is a 0-strict pseudo-contraction. A point x ∈ C is called fixed point of T if Tx = x. We shall denote by F(T)
the set of fixed points of T. If T is κ-strict pseudo-contraction and p ∈ F(T), then it follows from (6) that

d2(Tx, p) ≤ d2(x, p) + κd2 (x,Tx) (8)

for all x ∈ C.

Proposition 2.2. Let C be a nonempty subset of a CAT(0) space X and T : C → X be a mapping. If T is a κ-strict
pseudo-contraction, then T satisfies the Lipschitz condition

d(Tx,Ty) ≤
1 + κ
1 − κ

d(x, y). (9)

Proof. Using Cauchy-Schwarz inequality and (5) we have

d2(Tx,Ty) ≤ d2(x, y) + 4κd2
(1

2
x ⊕

1
2

Ty,
1
2

Tx ⊕
1
2

y
)

≤ d2(x, y) + κ
(
d2(x, y) + d2(Tx,Ty)

+d2(x,Tx) + d2(y,Ty) − d2(x,Ty) − d2(y,Tx)
)

= d2(x, y) + κ
(
d2(x, y) + d2(Tx,Ty)

)
+ 2κ〈−→yx,

−−−−→
TxTy〉

≤ d2(x, y) + κ
(
d2(x, y) + d2(Tx,Ty)

)
+ 2κd(x, y)d(Tx,Ty). (10)

It follows that

(1 − κ)d2(Tx,Ty) − 2κd(x, y)d2(Tx,Ty) − (1 + κ)d2(x, y) ≤ 0.

Solving this quadratic inequality, we obtain the Lipschitz condition (9). �

Theorem 2.3. Let C be a closed convex subset of a CAT(0) space X and T : C→ X be a κ-strict pseudo-contraction
mapping. If F(T) , ∅, then F(T) is closed and convex.

Proof. From Lipschitz condition (9) it follows that F(T) is closed. We prove convexity. Let p, q ∈ F(T),
t ∈ [0, 1] and x = tp ⊕ (1 − t)q. By (1), (5) and (8) we have

d2(x,Tx) ≤ td2(p,Tx) + (1 − t)d2(q,Tx) − t(1 − t)d2(p, q)
≤ t[d2(x, p) + κd2 (x,Tx)] + (1 − t)[d2(x, q) + κd2 (x,Tx)] − t(1 − t)d2(p, q)
= t[(1 − t)2d2(p, q) + κd2 (x,Tx)] + (1 − t)[t2d2(p, q) + κd2 (x,Tx)]
−t(1 − t)d2(p, q)

= [t(1 − t)2 + (1 − t)t2
− t(1 − t)]d2(p, q) + κd2 (x,Tx)

= κd2 (x,Tx) .

Since 0 ≤ κ < 1, then d(x,Tx) = 0. �

Since it is not possible to formulate the concept of demiclosedness in a CAT(0) setting, as stated in lin-
ear spaces, let us formally say that ”I − T is demiclosed at zero” if the conditions, {xn} ⊆ C ∆- converges to
x∗ and d(xn,Txn)→ 0 imply x∗ ∈ F(T).

Theorem 2.4. (Demiclosed principle) Let C be a nonempty closed convex subset of a complete CAT(0) space X and
T : C→ X be a mapping. If T is a κ-strict pseudo-contraction, then I − T is demiclosed at zero.
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Proof. Let {xn} ⊆ C ∆-converges to x∗. It follows from Lemma 1.2 that x∗ ∈ C. For each x ∈ X, set

f (x) := lim sup
n→∞

d2(xn, x).

By definition of quasilinearization we see that

d2(xn, x∗) + d2(x, x∗) = 2〈
−−→
x∗xn,

−→
x∗x〉 + d2(xn, x).

This together with Lemma 1.3 implies that

f (x∗) + d2(x, x∗) ≤ f (x), ∀x ∈ X.

In particular,

f (x∗) + d2(Tx∗, x∗) ≤ f (Tx∗). (11)

On the other hand, using similar method as in (10), we have

d2(Txn,Tx∗) ≤ d2(xn, x∗) + κ
(
d2(xn,Txn) + d2(x∗,Tx∗)

)
+2κd(xn,Txn)d(x∗,Tx∗).

It follows from the assumption d(xn,Txn)→ 0 that

f (Tx∗) = lim sup
n→∞

d2(xn,Tx∗) ≤ lim sup
n→∞

d2(Txn,Tx∗)

≤ f (x∗) + κd2(x∗,Tx∗).

This together with (11) implies that Tx∗ = x∗. �

3. Mann’s Algorithm

We recall that given a self-mapping T of a closed convex subset C of a CAT(0) space X, Mann’s algorithm
generates a sequence {xn} in C by the recursive formula

xn+1 = αnxn ⊕ (1 − αn)Txn, n ≥ 0, (12)

where the initial guess x0 is arbitrary and {αn} is a real control sequence in the interval (0, 1).

Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT(0) space X, T : C → C be a κ-strict
pseudo-contraction for some 0 ≤ κ < 1 such that the fixed point set F(T) is nonempty. Let {xn} be the sequence
generated by Mann’s algorithm (12). If αn ⊂ [α, β] for some α, β ∈ (κ, 1) and for all n ≥ 0, then {xn} ∆-converges to
a fixed point of T.

Proof. Let p ∈ F(T). It follows from (5) and (8) that

d2(xn+1, p) = d2(αnxn ⊕ (1 − αn)Txn, p)
≤ αnd2(xn, p) + (1 − αn)d2(Txn, p) − αn(1 − αn)d2(xn,Txn)
≤ αnd2(xn, p) + (1 − αn)(d2(xn, p) + κd2 (xn,Txn)) − αn(1 − αn)d2(xn,Txn)
= d2(xn, p) − (αn − κ)(1 − αn)d2(xn,Txn). (13)

Since κ < αn < 1 for all n ≥ 0, we have d(xn+1, p) ≤ d(xn, p), that is, the sequence {d(xn, p)} is decreasing and
so limn→∞ d(xn, p) exists. Moreover, utilizing (13) and considering κ < α ≤ αn ≤ β < 1, we have

(α − κ)(1 − β)d2(xn,Txn) ≤ (αn − κ)(1 − αn)d2(xn,Txn)
≤ d2(xn, p) − d2(xn+1, p).
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This implies that

lim
n→∞

d(xn,Txn) = 0. (14)

Since {xn} is bounded, it follows from Lemma 1.1 that ω∆(xn) , ∅, where

ω∆(xn) = {x ∈ X : xni ∆-converges to x for some subsequence {ni} of {n}}.

Let p ∈ ω∆(xn). Then there exists a subsequence {xni } of {xn}which ∆-converges to p. Using (14) and Theorem
2.4 (demiclosedness of I − T), we get p ∈ F(T) and so ω∆(xn) ⊂ F(T). We show that ω∆(xn) is singleton. Let
p, q ∈ ω∆(xn) and let {xni } and {xn j } be subsequences of {xn} which ∆-converge to p and q, respectively. If
p , q, then from (4) and the fact that limn→∞ d(xn, p) exists for all p ∈ F(T), we have

lim
n→∞

d(xn, p) = lim sup
i→∞

d(xni , p) < lim sup
i→∞

d(xni , q)

= lim
n→∞

d(xn, q) = lim sup
j→∞

d(xn j , q)

< lim sup
j→∞

d(xn j , p) = lim
n→∞

d(xn, p),

which is a contradiction. Hence, p = q and the proof is complete. �

Remark 3.2. Theorem 3.1 generalizes Marino and Xu’s result [13, Theorem 3.1] to CAT(0) metric spaces which are
more general than Hilbert spaces. Note that our strong assumption on control sequence {αn} is not restrictive. Also,
Theorem 3.1 includes Corollary 3.1 of [5], where xn ∈ C for n ≥ 2 and it is not needed projecting xn on C.

The following theorem gives a sufficient condition for strong convergence of {xn}, which is an extension of
Corollary 3.3 of [5].

Theorem 3.3. With the assumptions of Theorem 3.1, {xn} converges strongly to a fixed point of T if and only if
lim infn→∞ d(xn,F(T)) = 0, where d(xn,F(T)) denotes the metric distance from the point xn to F(T).

Proof. The necessity is apparent. We show the sufficiency. Suppose that lim infn→∞ d(xn, F(T)) = 0.
As in proof of Theorem 3.1, we have d(xn+1, p) ≤ d(xn, p). Taking infimum over all p ∈ F(T), we have
d(xn+1,F(T)) ≤ d(xn,F(T)). Thus limn→∞ d(xn,F(T)) exists and so limn→∞ d(xn,F(T)) = 0. Let n,m ≥ 1 and
p ∈ F(T) be arbitrary. Then we have

d(xn+m, xn) ≤ d(xn+m, p) + d(xn, p) ≤ 2d(xn, p),

which follows that d(xn+m, xn) ≤ 2d(xn,F(T)). Thus {xn} is a Cauchy sequence. Let xn → q ∈ C. Therefore,

d(q,F(T)) ≤ d(q, xn) + d(xn,F(T))→ 0.

Since by Theorem 2.3, F(T) is closed, then q ∈ F(T) and the proof is complete. �
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