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Abstract. In this paper, we study the existence of a common fixed point for uniformly continuous one
parameter semigroups of nonlinear self-mappings on a closed convex subset C of a real Banach space X with
uniformly normal structure such that the semigroup has a bounded orbit. This result applies, in particular,
to the study of an asymptotic stability criterion for a class of semigroup of nonlinear uniformly continuous
infinite-dimensional systems.

1. Introduction and Preliminaries

Three fundamental theorems concerning fixed points are Brouwer’s, Schauder and Banach. Brouwer
theorem states that every continuous function on a ball B in Rn into itself has a fixed point. This theorem
simply guarantees the existence of a solution, but gives no information about the uniqueness of the solution.
In Schauder fixed point theorem, if B is a compact, convex subset of a Banach space X and f : B → B is a
continuous function, then f has a fixed point. A very interesting useful result in fixed point theory is due
to Banach known as the Banach contraction principle and is one of the most important theorem in classical
functional analysis. This theorem has several generalizations either by extending the contraction mapping,
generalizing the completeness or occasionally even both.

On the other hand, normal structure is one of the basic concepts in metric fixed point theory. It was
introduced by Brodskii and Milman in [6]. In 1980, Bynum [7] introduced the normal structure coefficient
N(X) which was applied by Casini and Maluta [9] to obtain a fixed point theorem for uniformly lipschitzian
mappings. The important application of normal structure is in fixed point theory and other fields related
to the existence of solutions of differential equations and integral equations etc.

Let C be a nonempty bounded subset of a Banach space X. Then a point x0 ∈ C is said to be
(i) a diametral point of C if

sup{||x0 − x|| : x ∈ C} = sup{||x − y|| : x, y ∈ C} = δ(C),
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where δ(C) denotes the diametral of C.
(ii) a nondiametral point of C if

sup{||x0 − x|| : x ∈ C} < sup{||x − y|| : x, y ∈ C}.

A nonempty convex subset C of a Banach space X is said to have normal structure if each convex
bounded subset D of C with at least two points contains a nondiametral point, i.e., there exists x0 ∈ D such
that

sup{||x0 − x|| : x ∈ D} < sup{||x − y|| : x, y ∈ D}.

Definition 1.1. [7] Let E be a nonempty subset of a Banach space X and let F be a nonempty family of subsets
of E. The family F is said to be normal structure provided that rC(C) < δ(C)( where rC(C) = infx∈C supy∈C ||x−y||
is Chebyshev radius of C relative to it self) for every bounded set C ∈ F with δ(C) > 0. If there exists a
constant 0 < c < 1 such that rC(C) ≤ c.δ(C) for every bounded set C ∈ F with δ(C) > 0, then F is said to be
uniformly normal structure.
Definition 1.2. (Normal structure coefficient) [7] Let X be a Banach space. Then the number N(X) is said
to be the normal structure coefficient if

N(X) = inf
{ δ(C)
rC(C)

}
,

Where the infimum is taken over all closed convex bounded subsets C of X with rC(C) > 0. It is clear that
N(X) ≥ 1.
Remark 1.1. N(X) > 1 if and only if X has uniformly normal structure.
It is known that a Banach space with uniformly normal structure is reflexive and that all uniformly convex
or uniformly smooth Banach spaces have uniformly normal structure (see, e.g., [28]). It is also been
compucated that N(H) =

√
2 for a Hilbert spaces H. The computations of the normal structure coefficient

N(X) for general Banach spaces look however complicated. No exact values of N(X) are known except for
some special cases (e.g., Hilbert and Lp spaces). In general, we have the following lower bounded for N(X)
(see [3, 7, 19])

N(X) ≥
1

1 − δX(1)
.

Other lower bounds for N(X) in terms of some Banach space parameters or constants can be found in
[15, 25].

Assume that X is a real Banach space with uniformly normal structure and C is a nonempty closed
convex subset of X. A mapping T : C → C is said to be a Lipschitzian mapping if, for each integer n ≥ 1,
there exist a constant kn > 0 such that

||Tnx − Tny|| ≤ kn||x − y|| for all x, y ∈ C.

A Lipschitzian mapping is said to be a k-uniformly Lipschitzian mapping if kn = k for all n ≥ 1.
In 1973, Goebel and Kirk [13] then posed the question whether or not the constant γ > 1 which solves

the equation
(1 − δX(1/γ))γ = 1, (1)

is the largest number for which any k-uniformly Lipschitzian mapping T with k < γ has a fixed point, δX
being the modulus of convexity of X.

Particularly, in 1993, Tan and Xu [27] answered the question of Goebel and Kirk [13] mentioned above
in the negative by proving the following theorem:
Theorem 1.1. ([27], Theorem 3.5) Let X be a real uniformly convex Banach space, C a nonempty closed
convex subset of X, and τ = {Ts : s ∈ G : G be an unbounded subset of [0,∞) } a k-uniformly Lipschitzian
semigroup on C with k < α, where α > 1 is the unique solution of the equation

α2

N(X)
δ−1

X (1 −
1
α

) = 1, (2)
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where N(X) > 1 is the normal structure coefficient of X. Suppose there exists an x0 ∈ C such that the orbit
{Tsx0 : s ∈ G} is bounded. then there exists z ∈ C such that Tsz = z for all s ∈ G.
In 2010, Ceng, Xu and Yao [10], studied the existence of fixed points of uniformly Lipschitzian semigroups
τ = {Ts : s ∈ G} in the setting of Banach spaces X under conditions weaker than uniform convexity.
More precisely, they replaced the uniform convexity of X in Theorem 1.1 with the weaker condition of the
uniformly normal structure of X.

In this paper we will introduce a new common fixed point theorem of uniformly continuous semigroups
of self-mappings in Banach space with uniform normal structure. Our result extends the result due to Ceng
Xu and Yao [10, Theorem 3.1]. Also, we will use this theorem to study asymptotic stability for a class of
infinite-dimensional nonlinear uniformly continuous systems on Banach state space.

We begin with some notations and preliminaries.
Recall that X is strictly convex if its unit sphere does not contain any line segments, that is, X is strictly

convex if and only if the following implication holds:

x, y ∈ X, ||x|| = ||y|| = 1 and ||(x + y)/2|| = 1 ⇒ x = y.

In order to measure the degree of convexity of X, we define its modulus of convexity δX : [0, 2]→ [0, 1]
by

δX(ε) = inf{1 − ||(x + y)/2|| : ||x|| ≤ 1, ||y|| ≤ 1 and ||x − y|| ≥ ε}.

The characteristic of convexity of X is the number ε0(X) = sup{ε : δX(ε) = 0}. It is easy to see [13] that X is
uniformly convex iff ε0(X) = 0; uniformly nonsquare iff ε0(X) < 2; and strictly convex iff δ(2) = 1.Moreover,
if ε0(X) < 1; then X has a normal structure.

The following properties of modulus of convexity X are quite well-known (see [14])
(a) δX is increasing on [0,2], and moreover strictly increasing on [ε0, 2];
(b) δX is continuous on [0, 2) (but not necessarily at ε = 2);
(c) δX(2) = 1 iff X is strictly convex;
(d) δX(0) = 0 and limε→2− δX(ε) = 1 − ε0/2
(e) [||a − x|| ≤ r, ||a − y|| ≤ r and ||x − y|| ≥ ε] ⇒ ||a − (x + y)/2|| ≤ r(1 − δX(ε/r)).

We need the notion of asymptotic centers, due to Edelstein [12]. Let C be a nonempty closed convex
subset of a Banach space X and let {xt : t ∈ G} be a bounded net of elements of X. Then the asymptotic radius
and asymptotic center of {xt}t∈G with respect to C are the number

rC{xt} = inf
y∈C

lim sup
t
||xt − y||,

and respectively, the (possibly empty) set

AC({xt}) = {y ∈ C : lim sup
t
||xt − y|| = rC({xt}).

Lemma 1.1. ([27], Lemma 2.1) If C is a nonempty closed convex subset of a reflexive Banach space X, then
for every bounded net {xt}t∈G of elements of X, AC({xt}) is a nonempty bounded closed convex subset of C.
In particular, if X is a uniformly convex Banach space, then AC({xt}) consists of a single point.
Lemma 1.2.([27], Lemma 2.2) Suppose X is a Banach space with uniformly normal structure. Then for every
bounded net {xt}t∈G of elements of X there exists y ∈ co({xt : t ∈ G}) such that

lim sup
t
||xt − y|| ≤ Ñ(X)D({xt}),

where Ñ(X) = 1/N(X), co(E) is the closure of the convex hull of a set E ⊂ X and D({xt}) = lim
t

(sup{||xi − x j|| :

t ≤ i, j ∈ G}) is the asymptotic diameter of {xt}.
For an early application of the notion of asymptotic centers to fixed point theory, the reader might be
referred to the paper by S. Reich [26].
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2. Fixed Point of Semigroup of Uniformly Continuous Mappings

In this section, we shall be concerned with a special kind of one parameter semigroup of self-mappings on
a closed convex convex subset of a Banach space with normal structure, namely, the uniformly continuous
semigroups.
Definition 2.1. Let C be a closed convex subset of a Banach space X. Then the collection τ = {Ts : s ∈ G}
of mappings on C into itself is said to be uniformly continuous semigroup on C if the following conditions
are satisfied:
(i) Ts+tx = TsTtx for all s, t ∈ G and x ∈ C;
(ii) ∀ x ∈ C, the mapping t→ Ttx from G into C is continuous when G has the relative topology of [0,∞);
(iii) for each t ∈ G, Tt : C→ C is uniformly continuous on C.
Remark 2.1. Every Lipschitzian semigroup on C is uniformly continuous on C but the converse my not be
true.
Example 2.1. Let {Tt : t ∈ {0, 1}} be a family of mappings defined as follows:

Ttx =

{ √
x, t = 1,

x, t = 0,

where x ∈ [0,∞). Then Tt is uniformly continuous but not Lipschitzian.
Theorem 2.1. Suppose X is a real Banach space with with uniformly normal structure, C is a nonempty
closed convex subset of X, and τ = {Ts : s ∈ G} is a uniformly continuous semigroup on C and

N(X) >
2c

1 − c
, 0 < c < 1. (3)

If {Tsx0 : s ∈ G} is bounded for some x0 ∈ C, then there exists z ∈ C such that Tsz = z for all s ∈ G.
Proof. Put Ñ(X) = N(X)−1. Since X has a uniformly normal structure, X is reflexive. Due to the boundedness
of {Tsx0 : s ∈ G} and by Lemma 1.1, we get that AC({Ttx0}t∈G) is nonempty bounded closed convex subset of
C. Then we can choose x1 ∈ AC({Ttx0}t∈G) such that

lim sup
t
||Ttx0 − x1|| = inf

y∈C
lim sup

t
||Ttx0 − y||.

Consequently we can choose x2 ∈ AC({Ttx1}t∈G) such that

lim sup
t
||Ttx1 − x2|| = inf

y∈C
lim sup

t
||Ttx1 − y||.

Continuing this process, we can construct a sequence {xn}
∞

n=0 in C with the properties:
(i) for each n ≥ 0, {Ttxn}t∈G is bounded;
(ii) for each n ≥ 0, xn+1 ∈ AC({Ttxn}t∈G); that is xn+1 is a point in C such that

lim
t
||Ttxn − xn+1|| = inf

y∈C
lim

t
||Ttxn − y||.

Write rn = rC({Ttxn}t∈G). Then by Lemma 1.2 we have

rn = lim sup
t
||Ttxn − xn+1|| ≤ Ñ(X)D({Ttxn}t∈G)

= Ñ(X) lim
t

(sup{||Tixn − T jxn|| : t ≤ i, j ∈ G})

≤ Ñ(X) lim sup
t
{||xn − Tixn|| + ||T jxn − xn|| : t ≤ i, j ∈ G}

≤ 2Ñ(X)d(xn),

that is
rn ≤ 2Ñ(X)d(xn), (4)
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where d(xn) = sup{||xn − Ttxn|| : t ∈ G}.
We may assume that d(xn) > 0 for all n ≥ 0 (since otherwise xn is a common fixed point of the semigroup τ
and the proof is finished). Let n ≥ 0 be fixed and let ε > 0 be small enough. We can choose j ∈ G such that

||T jxn+1 − xn+1|| > d(xn+1) − ε

and then choose s0 ∈ G so large that

||Tsxn − xn+1|| < rn + ε, ∀ s ≥ s0,

It turns out, for s ≥ s0 + j,

||Tsxn − T jxn+1|| ≤ ||Tsxn − xn+1|| + ||xn+1 − T jxn+1||]

Hence
||Tsxn − T jxn+1|| ≤ rn + ε + d(xn+1).

Then it follows from property (e) that

||Tsxn −
1
2

(xn+1 + T jxn+1)|| ≤ (rn + ε + d(xn+1))
(
1 − δX

( d(xn+1) − ε
rn + ε + d(xn+1)

))
for s ≥ s0 + j and hence

rn ≤ lim sup
s
||Tsxn −

1
2

(xn+1 + T jxn+1)|| ≤ (rn + ε + d(xn+1))
(
1 − δX

( d(xn+1) − ε
rn + ε + d(xn+1)

))
.

Taking the limit as ε→ 0, we obtain

rn ≤ (rn + d(xn+1))
(
1 − δX

( d(xn+1)
rn + d(xn+1)

))
.

This implies that

0 ≤ δX

( d(xn+1)
rn + d(xn+1)

)
≤

d(xn+1)
rn + d(xn+1)

< 1, (5)

then there exist a real number c < 1 such that

d(xn+1)
rn + d(xn+1)

< c < 1.

Hence
d(xn+1) <

c
1 − c

rn. (6)

Therefore, utilizing (4) and (6), we obtain

d(xn+1) < 2Ñ(X)
c

1 − c
d(xn). (7)

Write A = 2Ñ(X) c
1−c . Then A < 1. Hence, it is follows from (7) that

d(xn) < Ad(xn−1) < ... < And(x0). (8)

Since
||xn+1 − xn|| ≤ lim sup

t
||Ttxn − xn+1|| + lim sup

t
||Ttxn − xn|| ≤ rn + d(xn) < 3 d(xn).
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We get from (8) that
∑
∞

n=1 ||xn+1 − xn|| < ∞, and hence {xn} is a norm-Cauchy. Let z = ||.|| − limn xn. Finally, we
have for each s ∈ G and by the continuity of Ts,

||z − Tsz|| ≤ lim
n→∞

d(xn)→ 0 as n→∞.

Hence, Tsz = z for all s ∈ G and the proof is complete.
Since every Lipschitzian mapping is uniformly continuous then one can obtain the following corollary:

Corollary 2.1. ([10], Theorem 3.1) Suppose X is areal Banach space with N(X) > max(1, ε0), C is a nonempty
closed convex subset of X, and τ = {Ts; s ∈ G} is a uniformly Lipschitzian semigroup on C with Lipschitz
constant k < α∗. Here ε0 is the characteristic of convexity of X and

α∗ = sup
{
α > 1 : α2δ−1

X (1 −
1
α

)N(X)−1
≤ 1 and 1 −

1
α
∈ (0, 1 −

1
2
ε0)

}
.

If {Tsx0 : s ∈ G} is bounded for some x0 ∈ C, then there exists z ∈ C such that Tsz = z for all s ∈ G.
Example 2.2. Consider X = [0, 1] equipped with the usual norm. Let F be the set of closed subsets of X.
Define the function Tt by

Ttx = xe−t, t ≥ 0,

for all x ∈ X. Then the following statements are holds
1- F is uniformly normal;
2- the normal structure coefficient N(X) > 1;
3- Tt is bounded uniformly continuous semigroup on X.
Hence, all the conditions of Theorem 2.1 are satisfied and 0 is a fixed point of Tt.

3. An Application

Many research works are concerned with asymptotic stability of infinite dimensional systems and
applications to many classes of partial differential equations: see e.g [4, 16, 20, 21, 23, 24] and many
other references. The fundamental theory of stability was established by the Russian scientist Aleksander
Mikhailovich Lyapunov, is extensively developed for finite-dimensional systems. Many results on the
asymptotic behavior of nonlinear infinite-dimensional systems are known, for which the dissipativity
property plays an important role, see e.g [5, 8, 11, 18, 22]. In 2007 and 2010, Aksikas et al.[1, 2] developed a
theory concerning the asymptotic stability of a class of nonlinear and semilinear infinite-dimensional Banach
state space (distributed parameter) systems. They used the strict dissipativity as additional condition of
the state operator AT to prove that the ω-limit set reduces to the singleton set.

In this section we present some preliminaries and basic concepts on nonlinear semigroup theory. Also,
we use Theorem 2.1 to introduce asymptotic stability criterion of nonlinear uniformly continuous semigroup
in Banach space X with uniform normal structure.

The infinitesimal generator AT of the nonlinear uniformly continuous semigroup Tt on a nonempty
closed subset D of X is defined on its domain

D(AT) = {x ∈ D : lim
t→0

t−1[Ttx − x] exists }

by
ATx = lim

t→0+
t−1 [Ttx − x], ∀ x ∈ D(AT).

For any x0 ∈ D(A), x(t, x0) = Ttx0 is the unique solution of the following nonlinear abstract Cauchy problem{
ẋ(t) = Ax(t), t > 0
x(0) = x0,

(9)
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Definition 3.1. Consider the system (9) and assume that A generates a nonlinear uniformly continuous
semigroup Tt. Consider an equilibrium point x̄ of (9), i.e. x̄ ∈ D(A) and Ax̄ = 0. x̄ is an asymptotically stable
equilibrium point of (9) on D if

∀ x0 ∈ D lim
t−→∞

x(t, x0) := lim
t−→∞

Ttx0 = x̄.

The ω−limit set ω(x0) of x0 is the set of all states in D which are the limits at infinity of converging
sequences in the orbit through x0 i.e more specifically x ∈ ω(x0) if and only if x ∈ D and there exists a
sequence tn −→ ∞ such that

x = lim
n−→∞

Ttn x0.

The following propositions shall play an important role in our main application theorem.
Proposition 3.1. [1] For any x0 ∈ D, if ω(x0) is nonempty and if x is a fixed point of Tt, i.e Ttx = x for all
t ≥ 0, then

ω(x0) ⊂ {z :‖ z − x ‖= r}, with r ≤‖ x0 − x ‖ .

Remark 3.1. We note from the Definition 3.1 and Proposition 3.1 that if x̄ fixed point of Tt then it is
equilibrium point of A.
Example 3.1. Let X = [0, 1] and Ttx = xet. Then Tt0 = 0 and A0 = 0 i.e. x = 0 fixed point of Tt and
equilibrium point of A.
Proposition 3.2. Let Tt be a nonlinear uniformly continuous on D = D(AT) (closer of D(AT) ), generated by
AT. Then ω(x0) = ω(x) ∀ x ∈ ω(x0).
Proof. Fix x ∈ ω(x0), say x = lim

n→∞
Ttn x0 with tn → ∞ as n → ∞. Suppose now y ∈ ω(x0), say y = lim

n→∞
Tωn x0

with ωn →∞ as n→∞. We may assume without loss of generality that sn = ωn − tn ≥ n, n = 1, 2, ..., since

||Tsn x − y|| ≤ ||Tsn x − Tsn+tn x0|| + ||Tsn+tn x0 − y|| → 0 as n→∞

Hence, y = lim
n→∞

Tsn x which implies that y ∈ ω(x), then

ω(x0) ⊂ ω(x). (10)

Similarly , one can deduce that
ω(x) ⊂ ω(x0). (11)

From (10) and (11) we have
ω(x0) = ω(x).

Proposition 3.3. Let us consider the system (9) and let T(t) be the nonlinear uniformly continuous semigroup
on D = D(AT), generated by AT. Then

ω(x0) ⊂ D(AT).

Proof. Without loss of generality assume that x = 0. Consider any x0 ∈ D(AT). Let x ∈ ω(x0). By Proposition
3.2, ω(x0) = ω(x). There is sn → ∞ as n → ∞ such that x = lim

n→∞
Tsn x. Since ω(x0) is closed convex subset

Banach space with uniform normal structure. Then applying Theorem 2.1 we obtain that

Ttx = x ∀ t ≥ 0. (12)

Then, lim
t→0+

1
t [Ttx − x] exists. Hence, x ∈ D(AT).

Proposition 3.4. Let us consider the system (9) and assume that A generates a nonlinear uniformly
continuous semigroup Tt. Consider an equilibrium point x of (9), i.e x ∈ D(A) and Ax = 0. Then

ω(x0) = {0}.
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Proof. Suppose that x, y ∈ ω(x0), x , y, since

||x − y|| = ||x − Ttn x + Ttn x − y|| ≤ ||x − Ttn x|| + ||Ttn x − y|| → 0 as n→∞ (13)

Which implies x = y and since x ∈ ω(x0) , then we have x = y = x i.e., ω(x0) = {0}.
Now, we are in a position to state the following asymptotic stability theorem which is our main goal in

this section.
Theorem 3.1. Let us consider the system (9) and let Tt be the nonlinear uniformly continuous semigroup
on a subset D = D(AT) of a Banach space X with uniform normal structure, generated by AT. Assume that
x is an equilibrium point of (9) and (I − λAT)−1 is compact for some λ > 0. Then x(t, x0)→ x as t→∞ i.e. x
is an asymptotically stable equilibrium point of (9) on D.
Proof. Without loss of generality assume that x = 0. Suppose that x0 ∈ D(AT). By Proposition 3.3,
ω(x0) ⊂ D(AT). By Proposition 3.4, ω(x0) = {0}. Now let us consider x0 ∈ D (not necessarily in D(AT)). Let
ε > 0 be arbitrarily fixed. By the density of D(AT) in D, there exists y0 ∈ D(AT) such that

‖x0 − y0‖ < ε. (14)

Since y0 ∈ D(AT), it follows from Proposition 3.4 that ω(y0) = {0}, then

lim
t→∞

Tty0 = 0. (15)

From Theorem 2.1, one can obtain that,

lim
t→∞
‖Ttx0 − x0‖ = 0 and lim

t→∞
‖Tty0 − y0‖ = 0, (16)

It follows from (14) - (16) that,
lim
t→∞

Ttx0 = 0.

Consequently, 0 is an asymptotically stable equilibrium point of (9) on D.
Example 3.2. Let C be a closed bounded convex subset of a Banach space X and let A = −1 be the
infinitesimal generator of the uniformly continuous semigroup (e−t)t≥0 on C of the following system{

ẋ(t) = −x(t) t > 0
x(0) = x0,

(17)

then the solution x0e−t approaches 0 as t→∞ i.e. 0 is an asymptotically stable equilibrium point of (17) on
C.
Open problem. It will be interesting to establish Theorem 3.1 for semilinear systems as in I. Aksikas and J.
Winkin [1] and I. Aksikas and J. Fraser Forbes [2].
Acknowledgements. The author is grateful to an anonymous referee for his fruitful comments.
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