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Abstract. This work deals with the solution of the inverse problem by spectral data for Dirac operators
with piecewise continuous coefficient and spectral parameter contained in boundary condition. The main
theorem on necessary and sufficient conditions for the solvability of inverse problem is proved. The
algorithm of the reconstruction of potential according to spectral data is given.

1. Introduction

In the mathematical and physical literature, the inverse problems for the Dirac operator are widespread.
In particular, it was discovered in [1, 7] that the Dirac equation was related to a nonlinear wave equation.
Therefore, the applications of Dirac differential equations system has been examined in various areas of
physics, such as [3, 4, 31, 32].

In this work, we consider the following boundary value problem generated by the first order Dirac
differential equations system

By′ + Ω (x) y = λρ (x) y, 0 < x < π (1)

with boundary conditions

y1(0) = 0,
(λ + h1) y1(π) + h2y2(π) = 0, (2)

where

B =
1
i
σ1, Ω(x) = σ2p(x) + σ3q(x), y (x) =

(
y1 (x)
y2 (x)

)
,

in here

σ1 =

(
0 i
−i 0

)
, σ2 =

(
1 0
0 −1

)
, σ3 =

(
0 1
1 0

)
be the well-known Pauli-matrices, which has these properties:
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• σ2
i = I, (I is 2 × 2 identity matrix),

• σ∗i = σi (self-adjointness), i = 1, 2, 3,

• σiσ j = −σ jσi (anticommutativity) for i , j,

p (x) , q (x) are real valued functions in L2(0, π), λ is a spectral parameter,

ρ(x) =

{
1, 0 ≤ x ≤ a,
α, a < x ≤ π,

1 , α > 0, h1 and h2 are real numbers and h2 > 0.
In the finite interval, the solvabilty of inverse problem with different spectral characteristics is inves-

tigated by many authors, for example; when ρ(x) ≡ 1 in the equation (1), the inverse problem for Dirac
operator was obtained by two spectra in [11], was examined by one spectrum and normalizing numbers in
[6], contained spectral parameter in boundary condition was studied by spectral function in [21]. Inverse
spectral problems for Dirac operator with summable potential were worked in [2, 26, 28]. Numerical
solution of inverse spectral problems for Dirac operator was examined in [29]. Inverse nodal problem
for Dirac systems was carried out in [15, 33, 34]. Inverse problem for interior spectral data of discontin-
uous Dirac operator was solved in [14]. Using Weyl-Titschmarsh function, direct and inverse problems
for Dirac type-system were studied in [9, 10, 30]. Solution of the inverse quasiperiodic problem for Dirac
system was given in [27]. For Dirac operator, Ambarzumian-type theorems were proved in [16, 17, 35].
On a positive half line, inverse problem for Dirac system was investigated by two spectra in [13], inverse
scattering problem for a system of Dirac equations of order 2n was completely solved in [12] and when
the boundary condition contained spectral parameter, for Dirac operator, inverse scattering problem was
worked in [5, 22]. Moreover, the theory of Dirac operators was comprehensively given in [20, 32].

Let λn and αn are respectively eigenvalues and normalizing numbers of boundary value problem (1),
(2). The quantities {λn, αn} are called spectral data of the problem (1), (2). We can state the inverse problem
for a system of Dirac equations in the following way: knowing the spectral data {λn, αn},
(i) to indicate a method of determining the potential Ω(x),
(ii) to find necessary and sufficient conditions for {λn, αn} to be the spectral data of a problem (1),(2), for
this, we derive differential equation, Parseval equality and boundary conditions.

This paper is organized as follows: In section 2, the eigenvalue problem of boundary value problem
(1), (2) is studied and the main equation or Gelfand-Levitan-Marchenko type equation is given. In section
3, a complete solution of inverse problem according to spectral data is obtained. The main theorem on the
necessary and sufficient conditions for the solvability of inverse problem is proved and then the algorithm
of the construction of the potential function Ω(x) by spectral data is given.

2. Preliminaries

Let ϕ(x, λ) and ψ(x, λ) be solutions of the system (1) satisfying the boundary conditions

ϕ1(0, λ) = 0, ϕ2(0, λ) = −1,

ψ1(π, λ) = h2, ψ2(π, λ) = −λ − h1.
(3)

The solution ϕ(x, λ) has the following representation ([18, 23])

ϕ(x, λ) = ϕ0(x, λ) +

∫ µ(x)

0
A(x, t)

(
sinλt
− cosλt

)
dt, (4)
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where

ϕ0(x, λ) =

(
sinλµ(x)
− cosλµ(x)

)
, µ(x) =

{
x, 0 ≤ x ≤ a,
αx − αa + a, a < x ≤ π,

Ai j(x, .) ∈ L2(0, π), i, j = 1, 2 for fixed x ∈ [0, π] and A(x, t) is solution of the problem

BA′x(x, t) + ρ(x)A′t(x, t)B = −Ω(x)A(x, t),

Ω(x) = ρ(x)
[
A(x, µ(x))B − BA(x, µ(x))

]
, (5)

A11(x, 0) = A21(x, 0) = 0.

The formula (5) gives the relation between the kernel A(x, t) and the coefficient of Ω(x) of the equation (1).
The characteristic function ∆(λ) of the boundary value problem (1), (2) is

∆(λ) := W
[
ϕ(x, λ), ψ(x, λ)

]
= ϕ2(x, λ)ψ1(x, λ) − ϕ1(x, λ)ψ2(x, λ), (6)

where W
[
ϕ(x, λ), ψ(x, λ)

]
is Wronskian of the solutions ϕ(x, λ) and ψ(x, λ) and independent of x ∈ [0, π].

The zeros of ∆(λ) coincide with the eigenvalues λn of problem (1), (2). The functions ϕ(x, λ) and ψ(x, λ) are
eigenfunctions and there exists a sequence βn such that

ψ(x, λn) = βnϕ(x, λn), βn , 0. (7)

The inner product in Hilbert space Hρ = L2,ρ(0, π;C2) ⊕ C is defined by

〈Y,Z〉 :=
∫ π

0

[
y1(x)z1(x) + y2(x)z2(x)

]
ρ(x)dx +

1
h2

y3z3,

where

Y =
(
y1(x), y2(x), y3

)T
∈ Hρ, Z = (z1(x), z2(x), z3)T

∈ Hρ.

Let us define

L̆(Y) :=
(

l(y)
−h1y1(π) − h2y2(π)

)
with

D(L̆) =

{
Y | Y =

(
y1(x), y2(x), y3

)T
∈ Hρ, y1(x), y2(x) ∈ AC[0, π],

y3 = y1(π), y1(0) = 0, l(y) ∈ L2,ρ(0, π;C2)

}
where

l(y) =
1
ρ(x)

(
y′2 + p(x)y1 + q(x)y2
−y′1 + q(x)y1 − p(x)y2

)
.

The boundary value problem (1), (2) is equivalent to equation L̆Y = λY.
Normalizing numbers of boundary value problem (1), (2) are defined as follows:

αn :=
∫ π

0

(∣∣∣ϕ1(x, λn)
∣∣∣2 +

∣∣∣ϕ2(x, λn)
∣∣∣2)ρ(x)dx +

1
h2

∣∣∣ϕ1(π, λn)
∣∣∣2 .

The following relation holds [23]:

∆̇(λn) = βnαn, (8)

where ∆̇(λ) = d
dλ∆(λ).
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Theorem 2.1. [23]. i) The eigenvalues λn, (n ∈ Z) of boundary value problem (1), (2) are

λn = λ0
n + εn, {εn} ∈ l2, (9)

where λ0
n = nπ

µ(π) are zeros of function λ sinλµ(π). For the large n, the eigenvalues are simple;

ii) The eigenfunctions of the problem (1), (2) can be represented in the form

ϕ(x, λn) =

 sin nπµ(x)
µ(π)

− cos nπµ(x)
µ(π)

 +

(
ζ(1)

n (x)
ζ(2)

n (x)

)
, (10)

where
∑
∞

n=−∞

{∣∣∣ζ(1)
n (x)

∣∣∣2 +
∣∣∣ζ(2)

n (x)
∣∣∣2} ≤ C, in here C is a positive number;

iii)Normalizing numbers of the problem (1), (2) are as follows

αn = µ(π) + τn, {τn} ∈ l2. (11)

Note that using (4), as |λ| → ∞ uniformly in x ∈ [0, π] the following asymptotic formulas are obtain:

ϕ1(x, λ) = sinλµ(x) + O
(

1
|λ| e
|Imλ|µ(x)

)
,

ϕ2(x, λ) = − cosλµ(x) + O
(

1
|λ| e
|Imλ|µ(x)

)
.

(12)

Substituting the asymptotic formulas (12) into

∆(λ) = (λ + h1)ϕ1(π, λ) + h2ϕ2(π, λ),

we get as |λ| → ∞

∆(λ) = λ sinλµ(π) + O
(
e|Imλ|µ(π)

)
. (13)

Proposition 2.2. The specification of the eigenvalues λn, (n ∈ Z) uniquely determines the characteristic function
∆(λ) by formula

∆(λ) = −µ(π)(λ2
0 − λ

2)
∞∏

n=1

(λ2
n − λ

2)
(λ0

n)2
. (14)

Proof. Since the function ∆(λ) is entire function, from Hadamard’s theorem (see [19]), using (13) we obtain
(14).

Theorem 2.3. [24]. For each fixed x ∈ (0, π], the kernel A(x, t) from the representation (4) satisfies the following
equation

A(x, µ(t)) + F(x, t) +

∫ µ(x)

0
A(x, ξ)F0(ξ, t)dξ = 0, 0 < t < x, (15)

where

F0(x, t) =

∞∑
n=−∞

[
1
αn

(
sinλnx
− cosλnx

)
ϕ̃0(t, λn) −

1
µ(π)

(
sinλ0

nx
− cosλ0

nx

)
ϕ̃0(t, λ0

n)
]

(16)

and

F(x, t) = F0(µ(x), t), (17)

in here ϕ̃0(t, λn) denotes the transposed vector function of ϕ0(t, λn).

Definition 2.4. The equation (15) is called Gelfand-Levitan-Marchenko type equation or main equation.

Lemma 2.5. [24]. For each fixed x ∈ (0, π], the equation (15) has a unique solution A(x, .) ∈ L2(0, µ(x)).

Remark 2.6. The boundary value problem (1), (2) is uniquely determined by spectral data (see [24]).
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3. Solution of Inverse Problem

In this work, the inverse problem is solved by using the method of Gelfand-Levitan-Marchenko. In
this method, the main equation has an important role. By the Gelfand-Levitan-Marchenko method, we
obtain algorithms for the solution of inverse problem and provide necessary and sufficient conditions for
solvability of inverse problem.

Let the real numbers {λn, αn}, (n ∈ Z) of the form (9) and (11) be given. Using these numbers, we
construct the functions F0(x, t) and F(x, t) by the formulas (16) and (17) and determine A(x, t) from the main
equation (15). Let us construct the function ϕ(x, λ) by the formula (4), the function Ω(x) by the formula (5),
∆(λ) by the formula (14) and βn by the formula (8) respectively, i.e.,

ϕ(x, λ) := ϕ0(x, λ) +

∫ µ(x)

0
A(x, t)

(
sinλt
− cosλt

)
dt,

Ω(x) := ρ(x)
[
A(x, µ(x))B − BA(x, µ(x))

]
,

∆(λ) := −µ(π)(λ2
0 − λ

2)
∞∏

n=1

λ2
n − λ

2

(λ0
n)2

,

βn :=
∆̇(λn)
αn

, 0.

The function F0(x, t) can be rewritten as follows:

F0(x, t) =
1
2
[
a(x − µ(t)) + a(x + µ(t))T

]
,

where

a(x) =

∞∑
n=−∞

[
1
αn

(
cosλnx − sinλnx
sinλnx cosλnx

)
−

1
µ(π)

(
cosλ0

nx − sinλ0
nx

sinλ0
nx cosλ0

nx

)]

and T =

(
−1 0
0 1

)
. Analogously in [8], it is shown that the function a(x) ∈ W1

2[0, 2π]. It is easily found by

using (16) and (17) that

F(x, t) =

∞∑
n=−∞

[
1
αn
ϕ0(x, λn)ϕ̃0(t, λn) −

1
µ(π)

ϕ0(x, λ0
n)ϕ̃0(t, λ0

n)
]
. (18)

Lemma 3.1 (Derivation of the Differential Equation). The relations hold:

Bϕ′(x, λ) + Ω(x)ϕ(x, λ) = λρ(x)ϕ(x, λ), (19)

ϕ1(0, λ) = 0, ϕ2(0, λ) = −1. (20)

Proof. Differentiating with respect to x and y the equation (15) respectively, we get

A
′

x(x, µ(t)) + F
′

x(x, t) + ρ(x)A(x, µ(x))F0(µ(x), t) +

∫ µ(x)

0
A
′

x(x, ξ)F0(ξ, t)dξ = 0, (21)

ρ(t)A
′

t(x, µ(t)) + F
′

t(x, t) +

∫ µ(x)

0
A(x, ξ)F

′

0t
(ξ, t)dξ = 0. (22)

It follows from (16) and (17) that

∂
∂t

F0(x, t)B + ρ(t)B
∂
∂x

F0(x, t) = 0, (23)
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ρ(x)
∂
∂t

F(x, t)B + ρ(t)B
∂
∂x

F(x, t) = 0. (24)

Since F0(x, 0)BS = 0 and F(x, 0)BS = 0, where S =

(
0
−1

)
, using the main equation (15), we obtain

A(x, 0)BS = 0, (25)

or

A11(x, 0) = A21(x, 0) = 0.

Multiplying the equation (21) on the left by B and ρ(t), we get

ρ(t)BF
′

x(x, t) + ρ(t)BA
′

x(x, µ(t)) + ρ(x)ρ(t)BA(x, µ(x))F0(µ(x), t) + ρ(t)
∫ µ(x)

0
BA

′

x(x, ξ)F0(ξ, t)dξ = 0 (26)

and multiplying the equation (22) on the right by B and ρ(x), we have

ρ(x)F
′

t(x, t)B + ρ(x)ρ(t)A
′

t(x, µ(t))B + ρ(x)
∫ µ(x)

0
A(x, ξ)F

′

0t
(ξ, t)Bdξ = 0. (27)

Adding (26) and (27) and using (24), we find

ρ(t)BA
′

x(x, µ(t)) + ρ(x)ρ(t)BA(x, µ(x))F0(µ(x), t) + ρ(t)
∫ µ(x)

0
BA

′

x(x, ξ)F0(ξ, t)dξ

= −ρ(x)ρ(t)A
′

t(x, µ(t))B − ρ(x)
∫ µ(x)

0
A(x, ξ)F

′

0t
(ξ, t)Bdξ ≡ I(x, t). (28)

From (23), we get

I(x, t) = −ρ(x)ρ(t)A
′

t(x, µ(t))B + ρ(x)ρ(t)
∫ µ(x)

0
A(x, ξ)BF

′

0ξ (ξ, t)dξ. (29)

Integrating by parts and from (25)

I(x, t) = −ρ(x)ρ(t)A
′

t(x, µ(t))B + ρ(t)ρ(x)A(x, µ(x))BF0(µ(x), t) − ρ(x)ρ(t)
∫ µ(x)

0
A
′

ξ(x, ξ)BF0(ξ, t)dξ (30)

is obtained. Substituting (30) into (28) and dividing by ρ(t) , 0, we have

BA
′

x(x, µ(t)) + ρ(x)BA(x, µ(x))F0(µ(x), t) − ρ(x)A(x, µ(x))BF0(µ(x), t)

+ρ(x)A
′

t(x, µ(t))B +

∫ µ(x)

0

[
BA

′

x(x, ξ) + ρ(x)A
′

ξ(x, ξ)B
]

F0(ξ, t)dξ = 0. (31)

Multiplying (15) on the left by Ω(x) in the form of (5) and add to (31)

BA
′

x(x, µ(t)) + ρ(x)A
′

t(x, µ(t))B + Ω(x)A(x, µ(t))

+

∫ µ(x)

0

[
BA

′

x(x, ξ) + ρ(x)A
′

ξ(x, ξ)B + Ω(x)A(x, ξ)
]

F0(ξ, t)dt = 0 (32)

is obtained. Setting

J(x, t) := BA
′

x(x, t) + ρ(x)A
′

t(x, t)B + Ω(x)A(x, t),
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we can rewrite equation (32) as follows

J(x, µ(t)) +

∫ µ(x)

0
J(x, ξ)F0(ξ, t)dξ = 0. (33)

According to Lemma 2.5, homogeneous equation (33) has only the trivial solution, i.e.

BA
′

x(x, t) + ρ(x)A
′

t(x, t)B + Ω(x)A(x, t) = 0, 0 < t < x. (34)

Differentiating (4) and multiplying on the left by B, we have

Bϕ′(x, λ) = λρ(x)B
(

cosλµ(x)
sinλµ(x)

)
+ ρ(x)BA(x, µ(x))

(
sinλµ(x)
− cosλµ(x)

)

+

∫ µ(x)

0
BA

′

x(x, t)
(

sinλt
− cosλt

)
dt. (35)

On the other hand, multiplying (4) on the left by λρ(x) and then integrating by parts and using (25), we find

λρ(x)ϕ(x, λ) = λρ(x)
(

sinλµ(x)
− cosλµ(x)

)
+ ρ(x)A(x, µ(x))B

(
sinλµ(x)
− cosλµ(x)

)

−ρ(x)
∫ µ(x)

0
A
′

t(x, t)B
(

sinλt
− cosλt

)
dt. (36)

It follows from (35) and (36) that

λρ(x)ϕ(x, λ) = Bϕ′(x, λ) − ρ(x)
[
BA(x, µ(x)) − A(x, µ(x))B

] ( sinλµ(x)
− cosλµ(x)

)

−

∫ µ(x)

0

[
BA

′

x(x, t) + ρ(x)A
′

t(x, t)B
] ( sinλt
− cosλt

)
dt.

Taking into account (5) and (34),

Bϕ′(x, λ) + Ω(x)ϕ(x, λ) = λρ(x)ϕ(x, λ)

is obtained. For x = 0, from (4) we get (20).

Lemma 3.2 (Derivation of Parseval Equality). For each function 1(x) ∈ L2,ρ(0, π;C2), the following relation
holds:∫ π

0

(
12

1(x) + 12
2(x)

)
ρ(x)dx =

∞∑
n=−∞

1
αn

(∫ π

0
ϕ̃(t, λn)1(t)ρ(t)dt

)2

. (37)

Proof. Taking into account (4) and(
sinλξ
− cosλξ

)
=

{
ϕ0(ξ, λ), ξ < a,
ϕ0

(
ξ
α + a − a

α , λ
)
, ξ > a,

we get

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0
A(x, µ(t))ϕ0(t, λ)ρ(t)dt. (38)
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Using the expression

F0(x, t) =

{
F(x, t), x < a,

F
(

x
α + a − a

α , t
)
, x > a,

the main equation (15) transforms into the following form

A(x, µ(t)) + F(x, t) +

∫ x

0
A(x, µ(ξ))F(ξ, t)ρ(ξ)dξ = 0. (39)

From the relation (38), we get

ϕ0(x, λ) = ϕ(x, λ) +

∫ x

0
H(x, µ(t))ϕ(t, λ)ρ(t)dt (40)

and for the kernel H(x, µ(t)), we have the identity

H̃(x, µ(t)) = F(t, x) +

∫ x

0
A(x, µ(ξ))F(ξ, t)ρ(ξ)dξ. (41)

Denote

Q(λ) :=
∫ π

0
ϕ̃(t, λ)1(t)ρ(t)dt

and by using (38), it can be transformed into the following form

Q(λ) =

∫ π

0
ϕ̃0(t, λ)h(t)ρ(t)dt,

where

h(t) = 1(t) +

∫ π

t
Ã(s, µ(t))1(s)ρ(s)ds. (42)

Similarly, in view of (40), we have

1(t) = h(t) +

∫ π

t
H̃(s, µ(t))h(s)ρ(s)ds. (43)

According to (42),∫ π

0
F(x, t)h(t)ρ(t)dt =

∫ π

0
F(x, t)

[
1(t) +

∫ π

t
Ã(s, µ(t))1(s)ρ(s)ds

]
ρ(t)dt

=

∫ π

0

[
F(x, t) +

∫ t

0
F(x, s)Ã(t, µ(s))ρ(s)ds

]
1(t)ρ(t)dt

=

∫ x

0

[
F(x, t) +

∫ t

0
F(x, s)Ã(t, µ(s))ρ(s)ds

]
1(t)ρ(t)dt

+

∫ π

x

[
F(x, t) +

∫ t

0
F(x, s)Ã(t, µ(s))ρ(s)ds

]
1(t)ρ(t)dt.

It follows from (39) and (41) that∫ π

0
F(x, t)h(t)ρ(t)dt =

∫ x

0
H(x, µ(t))1(t)ρ(t)dt −

∫ π

x
Ã(t, µ(x))1(t)ρ(t)dt. (44)
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From (18) and Parseval equality we obtain,∫ π

0

(
h2

1(t) + h2
2(t)

)
ρ(t)dt +

∫ π

0
h̃(x)F(x, t)h(t)ρ(t)ρ(x)dxdt

=

∫ π

0

(
h2

1(t) + h2
2(t)

)
ρ(t)dt +

∞∑
n=−∞

1
αn

(∫ π

0
ϕ̃0(t, λn)h(t)ρ(t)dt

)2

−

∞∑
n=−∞

1
µ(π)

(∫ π

0
ϕ̃0(t, λ0

n)h(t)ρ(t)dt
)2

=

∞∑
n=−∞

1
αn

(∫ π

0
ϕ̃0(t, λn)h(t)ρ(t)dt

)2

=

∞∑
n=−∞

Q2(λn)
αn

.

Taking into account (44), we have

∞∑
n=−∞

Q2(λn)
αn

=

∫ π

0

(
h2

1(t) + h2
2(t)

)
ρ(t)dt

+

∫ π

0
h̃(x)

(∫ x

0
H(x, µ(t))1(t)ρ(t)dt

)
ρ(x)dx −

∫ π

0
h̃(x)

(∫ π

x
Ã(t, µ(x))1(t)ρ(t)dt

)
ρ(x)dx

=

∫ π

0

(
h2

1(t) + h2
2(t)

)
ρ(t)dt +

∫ π

0

(∫ π

t
h̃(x)H(x, µ(t))ρ(x)dx

)
1(t)ρ(t)dt

−

∫ π

0
h̃(x)

(∫ π

x
Ã(t, µ(x))1(t)ρ(t)dt

)
ρ(x)dx,

whence by formulas (42) and (43),

∞∑
n=−∞

Q2(λn)
αn

=

∫ π

0

(
h2

1(t) + h2
2(t)

)
ρ(t)dt +

∫ π

0

(
1̃(t) − h̃(t)

)
1(t)ρ(t)dt

−

∫ π

0
h̃(x)

(
h(x) − 1(x)

)
ρ(x)dx =

∫ π

0

(
12

1(t) + 12
2(t)

)
ρ(t)dt

is obtained, i.e., the relation (37) is valid.

Corollary 3.3. For any function f (x) and 1(x) ∈ L2,ρ(0, π;C2), the relation holds:∫ π

0
1̃(x) f (x)ρ(x)dx =

∞∑
n=−∞

1
αn

(∫ π

0
1̃(t)ϕ(t, λn)ρ(t)dt

) (∫ π

0
ϕ̃(t, λn) f (t)ρ(t)dt

)
. (45)

Lemma 3.4. For any f (x) ∈W1
2[0, π], the expansion formula

f (x) =

∞∑
n=−∞

cnϕ(x, λn) (46)

is valid, where

cn =
1
αn

∫ π

0
ϕ̃(x, λn) f (x)ρ(x)dx.
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Proof. Consider the series

f ∗(x) =

∞∑
n=−∞

cnϕ(x, λn), (47)

where

cn :=
1
αn

∫ π

0
ϕ̃(x, λn) f (x)ρ(x)dx. (48)

Using Lemma 3.1 and integrating by parts , we get

cn =
1

αnλn

∫ π

0

[
−
∂
∂x
ϕ̃(x, λn)B + ϕ̃(x, λn)Ω(x)

]
f (x)dx

=
−1
αnλn

[
ϕ̃(π, λn)B f (π) − ϕ̃(0, λn)B f (0)

]
+

1
αnλn

∫ π

0
ϕ̃(x, λn)

[
B f ′(x) + Ω(x) f (x)

]
dx.

Applying the asymptotic formulas in Theorem 2.1, we find {cn} ∈ l2. Consequently the series (47) converges
absolutely and uniformly on [0, π]. According to (45) and (48), we have∫ π

0
1̃(x) f (x)ρ(x)dx

=

∞∑
n=−∞

1
αn

(∫ π

0
1̃(t)ϕ(t, λn)ρ(t)dt

) (∫ π

0
ϕ̃(t, λn) f (t)ρ(t)dt

)

=

∞∑
n=−∞

cn

(∫ π

0
1̃(t)ϕ(t, λn)ρ(t)dt

)
=

∫ π

0
1̃(t)

 ∞∑
n=−∞

cnϕ(t, λn)

ρ(t)dt

=

∫ π

0
1̃(t) f ∗(t)ρ(t)dt.

Since 1(x) is arbitrary, f (x) = f ∗(x) is obtained, i.e., the expansion formula (46) is found.

Lemma 3.5. The following equality holds:

∞∑
n=−∞

ϕ(x, λn)
αnβn

= 0. (49)

Proof. Using residue theorem, we get

∞∑
n=−∞

ϕ(x, λn)
αnβn

=

∞∑
n=−∞

ϕ(x, λn)

∆̇(λn)
=

∞∑
n=−∞

Resλ=λn

ϕ(x, λ)
∆(λ)

=
1

2πi

∫
ΓN

ϕ(x, λ)
∆(λ)

dλ, (50)

where ΓN =
{
λ : |λ| = Nπ

µ(π) + π
2µ(π)

}
. From (14) and ([25], Lemma 3.4.2),

∆(λ) = λ sinλµ(π) + O(e|Imλ|µ(π)). (51)

We denote Gδ =
{
λ :

∣∣∣∣λ − nπ
µ(π)

∣∣∣∣ ≥ δ, n = 0,±1,±2...
}

for some small fixed δ > 0 and
∣∣∣sinλµ(π)

∣∣∣ ≥ Cδe|Imλ|µ(π),

λ ∈ Gδ, where Cδ positive number. Therefore, we have

|∆(λ)| ≥ Cδ |λ| e|Imλ|µ(π), λ ∈ Gδ.

Using this inequality and (12), we obtain (49).
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Lemma 3.6 (Derivation of Boundary Condition). The following relation is valid:

(λn + h1)ϕ1(π, λn) + h2ϕ2(π, λn) = 0.

Proof. From (49), we can write for any n0 ∈ Z

ϕ(x, λn0 )
αn0

= −

∞∑
n=−∞
n,n0

βn0ϕ(x, λn)
αnβn

(52)

Let m , n0 be any fixed number and f (x) = ϕ(x, λk). Then, substituting (52) in (46), we get

ϕ(x, λk) =

∞∑
n=−∞
n,n0

cnkϕ(x, λn),

where

cnk =
1
αn

∫ π

0

[
ϕ̃(t, λn) −

βn0

βn
ϕ̃(t, λn0 )

]
ϕ(t, λk)ρ(t)dt.

The system of functions {ϕ0(x, λn)}, (n ∈ Z) is orthogonal in L2,ρ(0, π;C2). Then, by (4), the system of functions
{ϕ(x, λn)}, (n ∈ Z) is orthogonal in L2,ρ(0, π;C2) as well. Therefore, cnk = δnk, where δnk is Kronecker delta.
Let us define

ank :=
∫ π

0
ϕ̃(t, λn)ϕ(t, λk)ρ(t)dt. (53)

Using this expression, we have for n , k

akk −
βn

βk
ank = αk. (54)

It follows from (53) that ank = akn. Taking into account this equality and (54) that

β2
k (αk − akk) = β2

n (αn − ann) = H, k , n,

where H is a constant. Then, we have∫ π

0
ϕ̃(t, λn)ϕ(t, λn)ρ(t)dt = αn −

H
β2

n

and ∫ π

0
ϕ̃(t, λk)ϕ(t, λn)ρ(t)dt = −

H
βkβn

, k , n.

It is easily obtained that for k , n,∫ π

0

[
ϕ1(x, λk)ϕ1(x, λn) + ϕ2(x, λk)ϕ2(x, λn)

]
ρ(x)dx

=
1

(λk − λn)
[
ϕ2(π, λk)ϕ1(π, λn) − ϕ1(π, λk)ϕ2(π, λn)

]
= −

H
βkβn

.

According to the last equation, for n , k,

βkϕ2(π, λk)βnϕ1(π, λn) − βkϕ1(π, λk)βnϕ2(π, λn) = −H(λk − λn). (55)
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We denote

un := βnϕ1(π, λn), vn := βnϕ2(π, λn). (56)

Then, we can rewrite equation (55) as follows

ukvn − vkun = H(λk − λn), n , k. (57)

Let i, j, k, n be pairwise distinct integers, then we get

ukvn − vkun = H(λk − λn),
unvi − vnui = H(λn − λi),
uivk − viuk = H(λi − λk).

Adding them together, we find

un(vi − vk) + vn(uk − ui) = viuk − uivk.

In this equation, replacing n by j, we get another equation

u j(vi − vk) + v j(uk − ui) = viuk − uivk.

Subtracting the last two equation,

(un − u j)(vi − vk) = (ui − uk)(vn − v j).

In the case of vn = v j, for some n, j ∈ Z, then vn =const. From (57), un = κ1λn + κ2. In the case of vn , v j,
then we obtain un = κ1λn +κ2 and vn = κ3λn +κ4, where in both cases κ1, κ2, κ3, κ4 are constant. Therefore,
using these relation in (56), we find

βnϕ1(π, λn) = κ1λn + κ2, βnϕ2(π, λn) = κ3λn + κ4.

Using as n→∞,

ϕ1(π, λn) = O
(1

n

)
, ϕ2(π, λn) = (−1)n+1 + O

(1
n

)
,

λn = nπ
µ(π) + O

(
1
n

)
and βn = nπ

µ(π) (−1)n + O(1) derived from (8) and (51), we obtain κ1 = 0, κ3 = −1. Denoting
h2 := κ2 and h1 := −κ4,

h2ϕ2(π, λn) = − (λn + h1)ϕ1(π, λn), n ∈ Z

is obtained and it follows from (57) that H = h2.

Theorem 3.7 (Main Theorem). For the sequences {λn, αn}, (n ∈ Z) to be the spectral data for a certain boundary
value problem L(Ω(x), h1, h2) of the form (1), (2) with Ω(x) ∈ L2(0, π), it is necessary and sufficient that the relations
(9) and (11) hold.

Proof. Necessity of this theorem is proved in Section 2, i.e., we obtain that the spectral data of the boundary
value problem L(Ω(x), h1, h2) is in the form (9) and (11). Let us prove the sufficiency. Let the real numbers
{λn, αn}, (n ∈ Z) of the form (9) and (11) be given. It follows from Lemma 3.1, Lemma 3.2 and Lemma 3.6 that
the numbers {λn, αn}, (n ∈ Z) are spectral data of the constructed boundary value problem L(Ω(x), h1, h2).
Consequently, the Main Theorem 3.7 is proved.

Algorithm 3.8. The algorithm for construction of the function Ω(x) by spectral data {λn, αn}, (n ∈ Z) follows from
the proof of the theorem:

• By the given numbers {λn, αn}, (n ∈ Z) the functions F0(x, t) and F(x, t) are respectively constructed by formula
(16) and (17),

• The function A(x, t) is found from equation (15),

• Ω(x) is calculated by the formula (5).
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