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Available at: http://www.pmf.ni.ac.rs/filomat

Monotone Iterative Technique via Initial Time Different Coupled
Lower and Upper Solutions for Fractional Differential Equations

Ali Yakara, Hadi Kutlaya

aDepartment of Mathematics, Gaziosmanpasa University

Abstract. In this paper, we investigate the extremal solutions for a class of nonlinear fractional differential
equations with order q ∈ (0, 1) by means of monotone iterative technique via initial time different coupled
upper and lower solutions.

1. Introduction

We devote this paper to studying the existence of extremal solutions of the following weighted Cauchy
type problem

Dqx (t) = F (t, x) , Γ
(
q
)

x (t) (t − t0)1−q
|t=t0 = x0 (1.1)

by employing the coupled upper and lower solutions together with monotone technique. Here t ∈
(t0, t0 + T] , t0,T > 0 and the differential operator Dq is taken in the Rieman-Liouville (R-L) sense with
order 0 < q < 1.

As is well known, the concept of fractional differential equations is generalization of the conventional
ordinary differential equations to arbitrary non integer order. Since many physical phenomena especially
arising in different branches of sciences and engineering such as physics, chemistry, aerodynamics, vis-
coelasticity and polymer rheology, etc. might be described more accurately through fractional derivatives,
it has been made considerable scientific progress on development of fractional calculus and fractional dif-
ferential equations. For some recent contributions on fractional differential equations, see [1-8] and the
references therein.

It is mostly not easy to get exact solutions of given ordinary or partial fractional differential equations. In
literature, there are some analytical and numerical methods related to such type of problems, for instance,
finite difference method, Adomian decomposition method, Galerkin technique, homotopy analysis etc.
have been studied by means of fractional differential equations, (see [9 − 12]). Meanwhile, quasilinearization
and monotone iterative technique coupled with the method of lower and upper solutions provide an
efffective way to investigate the existence of solutions for nonlinear fractional or integer order differential
equations.
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In monotone technique, we generate monotone sequences from corresponding linear equations by
using the natural upper and lower solutions as initial iterations. It is shown that the constructed monotone
sequences converge uniformly and monotonically to minimal and maximal solutions or the unique solution
of given nonlinear problems if the uniqueness conditions are satisfied. When the function F (t, x) in (1.1)
consist of two parts involving the sum of a nondecreasing and a nonincreasing function, we can use coupled
upper and lower solutions and employe generalized monotone technique. Both monotone or generalized
monotone technique have been studied to extend to various kinds of initial and boundary value problems
of fractional type, (see [13 − 22] for details).

Generally speaking, fractional differential equations have been discussed by way of Riemann–Liouville
and Caputo differential operator. However when used as fractional order, we can take some advantages of
Caputo derivative but it only exist for C1 functions. On the other hand, we do not require such a strong
condition with R-L derivative. We consider the functions having a singularity at the left most end point
in that case. Actually, they satisfy only continuity on a half open interval, with a special Cp property. As
another result of using Riemann Liouville fractional derivative, we do not get direct uniform convergence of
constructed sequences {αn (t)} and

{
βn (t)

}
. Instead, it is shown that the weighted sequences

{
(t − t0)1−q αn (t)

}
and

{
(t − t0)1−q βn (t)

}
converge uniformly to the extremal solutions of the given equation, (see [22]).

If we change F (t, x) in (1.1) by the sum of two functions such that F = f + 1, where f , 1 ∈ C [R+
× R,R] ,

then, the problem (1.1) can be rewritten in the following form:

Dqx (t) = f (t, x) + 1 (t, x) , Γ
(
q
)

x (t) (t − t0)1−q
|t=t0 = x0. (1.2)

The main purpose of this paper is to discuss generalized monotone iterative technique with initial time
diference via coupled lower and upper solutions. They play a significant role in the investigation of initial
value problems of differential equations where the initial time differs. In main section, we introduce two
essential theorems for (1.2) relative to changes in initial time and establish sufficient conditions for existence
of extremal solutions by using monotone technique. This paper generalizes some results of [4] where initial
functions α, β start from the same points.

2. Preliminaries

In this section, we deal with basic concepts for fractional differential equations involving R-L fractional
differential operator of order q. Especially, we consider existence and comparison theorems which are used
for the development of the main results. Here and in what follows, we will let 0 < q < 1, p = 1 − q, and
J = (t0, t0 + T] , J̄ = [t0, t0 + T] where t0,T > 0.

Definition 2.1. A function σ (t) ∈ C [J,R] is said to be a Cp class function if (t − t0)p σ (t) ∈ C
[
J̄,R

]
. The

set of Cp functions is denoted by Cp
[
J̄,R

]
. Moreover, given a function σ (t) ∈ Cp

[
J̄,R

]
we call the function

(t − t0)p σ (t) the continuous extension of σ (t) .
We next give the definition of natural and definitions of various possible coupled lower and upper

solutions relative to (1.2).
Definition 2.2. Let α, β ∈ Cp

[
J̄,R

]
, and f , 1 ∈ C

[
J̄ × R,R

]
. Then α and β are called to be

(i) natural lower and upper solutions of (1.2) respectively if

Dqα ≤ f (t, α) + 1 (t, α) , α0
≤ x0,

Dqβ ≥ f
(
t, β

)
+ 1

(
t, β

)
, β0
≥ x0, (2.1)

(ii) coupled lower and upper solutions of type I of (1.2) respectively if

Dqα ≤ f (t, α) + 1
(
t, β

)
, α0
≤ x0,

Dqβ ≥ f
(
t, β

)
+ 1 (t, α) , β0

≥ x0, (2.2)
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(iii) coupled lower and upper solutions of type II of (1.2) respectively if

Dqα ≤ f
(
t, β

)
+ 1 (t, α) , α0

≤ x0,

Dqβ ≥ f (t, α) + 1
(
t, β

)
, β0
≥ x0, (2.3)

(iv) coupled lower and upper solutions of type III of (1.2) respectively if

Dqα ≤ f
(
t, β

)
+ 1

(
t, β

)
, α0
≤ x0,

Dqβ ≥ f (t, α) + 1 (t, α) , β0
≥ x0, (2.4)

where α0 = Γ
(
q
)
α (t) (t − t0)1−q

|t=t0 and β0 = Γ
(
q
)
β (t) (t − t0)1−q

|t=t0 .
Lemma 2.1. Let m ∈ Cp

[
J̄,R

]
be such that for any t1 ∈ J we have m (t1) = 0 and m (t) ≤ 0 for t0 < t ≤ t1.

Then it follows that Dqm (t) |t=t1≥ 0.
This lemma is basis for the proofs of the following comparison results and its proof can be found in [4]

with locally Hölder continuity assumption. Obviously, it is not generally possible to show that whether
the resulting iterates of constructed sequences in both monotone and quasilinearization method satisfy the
Hölder continuty assumption. Recently, this disturbing assumption have been relaxed independently to
only Cp continuity property. For the proofs of this updated lemma and next lemmas, (see [22 − 24]).

Lemma 2.2. Let f ∈ C
[
J̄ × R,R

]
and let α, β ∈ Cp

[
J̄,R

]
be natural lower and upper solutions of (1.2).

Further assume that

f (t, x) − f
(
t, y

)
≤ L

(
x − y

)
, whenever x ≥ y, L > 0

then, α (t) ≤ β (t) on J provided that α0
≤ β0.

Lemma 2.3. Let f ∈ Cp
[
J̄,R

]
and λ be a real constant then the following linear initial value problem

(IVP)

Dqx (t) = λx (t) + f (t) , Γ
(
q
)

x (t) (t − t0)1−q
|t=t0= x0 (2.5)

has a unique solution x (t) in Cp
[
J̄,R

]
given explicitly by

x (t) = x0 (t − t0)q−1 Eq,q
(
λ (t − t0)q) +

t∫
t0

(t − s)q−1 Eq,q
(
λ (t − s)q) f (s) ds, (2.6)

where Eq,q (t) denotes the two parameter Mittag-Leffler function and given by Eq,q (t) =
∞∑

k=0

tk

Γ(qk+q) .

If f (t) ≡ 0 identically on J, then, we get the solution to the corresponding homogeneous IVP of (2.5)

x (t) = x0 (t − t0)q−1 Eq,q
(
λ (t − t0)q) .

Corollary 2.1. Let m ∈ Cp
[
J̄,R

]
and let λ ≥ 0 be a constant. Assume that

Dqm (t) ≤ λm (t) , m (t) (t − t0)1−q
|t=t0= m0.

Then, we have

m (t) ≤ m0 (t − t0)q−1 Eq,q
(
L (t − t0)q) (2.7)

on J.
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3. Main Theorem

We are now in a position to introduce the main results. We employe generalized monotone iterative
technique to the problem (1.2) by taking coupled lower and upper solutions with initial data differences.
It is noted, that when α (t) ≤ β (t) hold on J together with the conditions that f (t, x) is nondecreasing in x
and 1

(
t, y

)
is nonincreasing in y for each t, then lower and upper solutions given by (2.1) and (2.4) reduce

to (2.3). For that reason, we just focus on the cases (2.2) and (2.3). In the following, we first begin with
choosing coupled upper and lower solutions of type I.

Theorem 3.1 Assume that
(i) α ∈ Cp [[t0, t0 + T] ,R] , β ∈ Cp [[τ0, τ0 + T] ,R] and

Dqα (t) ≤ f (t, α (t)) + 1
(
t, β (t)

)
, α0
≤ x0,

Dqβ (t) ≥ f
(
t, β (t)

)
+ 1 (t, α (t)) , β0

≥ x0,

where α0 = Γ
(
q
)
α (t) (t − t0)p

|t=t0 , β0 = Γ
(
q
)
β (t) (t − τ0)p

|t=τ0 , x0 = Γ
(
q
)

x (t) (t − s0)p
|t=s0 and t0 < s0 < τ0.

(ii) f , 1 ∈ C [R+ × R,R] and f (t, x) is nondecreasing in x and 1
(
t, y

)
is nonincreasing in y or each t.

(iii) f and 1 are nondecreasing in t for each x.
(iv) α (t) is nonincreasing on (t0, t0 + T] while β (t) is nonincreasing on (τ0, τ0 + T] and α (t) ≤ β

(
t + η1

)
, t ∈

(t0, t0 + T] , η1 = τ0 − t0.
Then, we obtain monotone sequences {αn (t)} ,

{
βn (t)

}
in Cp [[s0, s0 + T] ,R] such that (t − s0)p αn (t) →

(t − s0)p ρ(t) and (t − s0)p βn (t) → (t − s0)p r(t) as n → ∞ uniformly and monotonically on [s0, s0 + T] and
(ρ, r) are coupled minimal and maximal solutions of (1.2) on (s0, s0 + T] respectively, which means that they
satisfy the following equations

Dqρ (t) = f
(
t, ρ (t)

)
+ 1 (t, r (t)) , Γ

(
q
)
ρ (t) (t − s0)1−q

|t=s0= x0, s0 < t ≤ s0 + T,

Dqr (t) = f (t, r (t)) + 1
(
t, ρ (t)

)
, Γ

(
q
)

r (t) (t − s0)1−q
|t=s0= x0, s0 < t ≤ s0 + T.

Proof. We define β̂0 (t) = β
(
t + η1

)
, α̂0 (t) = α (t) , t ≥ t0.Utilizing the monotonicity properties in (ii)-(iv), we

get

Dqβ̂0 (t) = Dqβ
(
t + η1

)
≥ f

(
t + η1, β

(
t + η1

))
+ 1

(
t + η1, α

(
t + η1

))
≥ f

(
t, β̂0 (t)

)
+ 1

(
t, α

(
t + η1

))
≥ f

(
t, β̂0 (t)

)
+ 1

(
t, α̂0 (t)

)
.

Similarly,

Dqα̂0 (t) = Dqα (t)
≤ f (t, α (t)) + 1

(
t, β (t)

)
≤ f

(
t, α̂0 (t)

)
+ 1

(
t, β

(
t + η1

))
= f

(
t, α̂0 (t)

)
+ 1

(
t, β̂0 (t)

)
on (t0, t0 + T] . Also, we have

β̂0
0 = Γ

(
q
)
β̂0 (t) (t − t0)1−q

|t=t0= Γ
(
q
)
β
(
t + η1

)
(t − t0)1−q

|t=t0= Γ
(
q
)
β (t) (t − τ0)1−q

|t=τ0= β0

which gives

α̂0
0 ≤ x0

≤ β̂0
0,

showing that α̂0 (t) and β̂0 (t) are coupled lower and upper solutions of type I on (t0, t0 + T].
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Now, we consider the following fractional differential equations

Dqα̂n+1 (t) = f
(
t + η2, α̂n (t)

)
+ 1

(
t + η2, β̂n (t)

)
, Γ

(
q
)
α̂n+1 (t) (t − t0)1−q

|t=t0= x0, (3.1)

Dqβ̂n+1 (t) = f
(
t + η2, β̂n (t)

)
+ 1

(
t + η2, α̂n (t)

)
, Γ

(
q
)
β̂n+1 (t) (t − t0)1−q

|t=t0= x0, (3.2)

where η2 = s0 − t0.Observe that there exist unique solutions α̂n+1 (t) and β̂n+1 (t) in Cp[[t0, t0 + T] ,R] for (3.1)
and (3.2), respectively.

Next, we aim to show that

α̂0 ≤ α̂1 ≤ α̂2 ≤ ... ≤ α̂n ≤ β̂n ≤ ... ≤ β̂2 ≤ β̂1 ≤ β̂0 on (t0, t0 + T] . (3.3)

Set p (t) = α̂0 − α̂1 on (t0, t0 + T] . Then, in view of (i), (iii) and (3.1), we obtain

Dqp (t) = Dqα̂0 (t) −Dqα̂1 (t)

≤ f
(
t, α̂0 (t)

)
+ 1

(
t, β̂0 (t)

)
−

(
f
(
t + η2, α̂0 (t)

)
+ 1

(
t + η2, β̂0 (t)

))
≤ 0,

and p0 = Γ
(
q
)

p (t) (t − t0)1−q
|t=t0≤ 0, that is, Dqp (t) ≤ 0 and p0

≤ 0. By corollary 2.1, it follows that p (t) ≤ 0 on
(t0, t0 + T] which yields α̂0 (t) ≤ α̂1 (t), t ∈ (t0, t0 + T] . Similarly, we can prove that β̂1 (t) ≤ β̂0 (t) on (t0, t0 + T] .
For this purpose, take p (t) = β̂1 (t) − β̂0 (t), then, we get

Dqp (t) = Dqβ̂1 (t) −Dqβ̂0 (t)

= Dqβ̂1 (t) −Dqβ
(
t + η1

)
≤ f

(
t + η2, β̂0 (t)

)
+ 1

(
t + η2, α̂0 (t)

)
−

(
f
(
t + η1, β̂0 (t)

)
+ 1

(
t + η1, α̂0 (t)

))
≤ 0,

and

p0 = Γ
(
q
)

p (t) (t − t0)1−q
|t=t0≤ 0,

where we have used the fact that η2 < η1 and nondecreasing property of f and 1with respect to first variable
t. Thus, by corollary 2.1, we achieve β̂1 (t) ≤ β̂0 (t) on (t0, t0 + T]. Next, we consider p (t) = α̂1 (t)− β̂1 (t) . Then,
by taking into account the nondecreasing nature of f and nonincreasing nature of 1 in x and y respectively,
we have

Dqp (t) = Dqα̂1 (t) −Dqβ̂1 (t)

= f
(
t + η2, α̂0 (t)

)
+ 1

(
t + η2, β̂0 (t)

)
−

(
f
(
t + η2, β̂0 (t)

)
+ 1

(
t + η2, α̂0 (t)

))
= f

(
t + η2, α̂0 (t)

)
− f

(
t + η2, β̂0 (t)

)
+ 1

(
t + η2, β̂0 (t)

)
− 1

(
t + η2, α̂0 (t)

)
≤ 0,

and

p0 = Γ
(
q
)

p (t) (t − t0)1−q
|t=t0= 0,

Therefore, we reach p (t) ≤ 0, i.e., α̂1 ≤ β̂1 on (t0, t0 + T] proving the following inequality

α̂0 ≤ α̂1 ≤ β̂1 ≤ β̂0
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on (t0, t0 + T]. Now using the mathematical induction principle, assume that for some integer k > 1,

α̂k−1 ≤ α̂k ≤ β̂k ≤ β̂k−1 on (t0, t0 + T] .

We intend to show that

α̂k ≤ α̂k+1 ≤ β̂k+1 ≤ β̂k on (t0, t0 + T] .

To do so, put p (t) = α̂k (t) − α̂k+1 (t) on (t0, t0 + T] .Then,

Dqp (t) = Dqα̂k (t) −Dqα̂k+1 (t)

= f
(
t + η2, α̂k−1 (t)

)
− f

(
t + η2, α̂k (t)

)
+ 1

(
t + η2, β̂k−1 (t)

)
− 1

(
t + η2, β̂k (t)

)
≤ f

(
t + η2, α̂k (t)

)
− f

(
t + η2, α̂k (t)

)
+ 1

(
t + η2, β̂k (t)

)
− 1

(
t + η2, β̂k (t)

)
= 0

due to the nondecreasing nature of f and nonincreasing nature of 1 in x and y respectively. It follows that
α̂k (t) ≤ α̂k+1 (t) on (t0, t0 + T] upon using corollary 2.1. In a similar manner, one can prove that β̂k+1 ≤ β̂k and
α̂k+1 ≤ β̂k+1 on (t0, t0 + T] . Therefore, we have shown that the inequality (3.3) hold on (t0, t0 + T] for all n.

We can show that the constructed sequences
{
(t − t0)p α̂n

}
,

{
(t − t0)p β̂n

}
are equicontinuous and uni-

formly bounded on [t0, t0 + T]. Therefore, employing Ascoli-Arzela theorem, we find subseqeunces{
(t − t0)p α̂nk

}
,

{
(t − t0)p β̂nk

}
converging uniformly to functions (t − t0)p ρ̂ and (t − t0)p r̂ on [t0, t0 + T] re-

spectively. Since the sequences
{
(t − t0)p α̂n

}
,
{
(t − t0)p β̂n

}
are monotonic, we infer that the whole sequences

converge uniformly and monotonically to (t − t0)p ρ̂ and (t − t0)p r̂ on [t0, t0 + T] , respectively when n→∞.
Establishing the continuous extensions of corresponding Volterra integral forms of α̂n+1, β̂n+1, we get

(t − t0)p α̂n+1 =
x0

Γ
(
q
) +

(t − t0)p

Γ
(
q
) t∫

t0

(t − ξ)q−1
[

f
(
ξ + η2, α̂n (ξ)

)
+ 1

(
ξ + η2, β̂n (ξ)

)]
dξ,

(t − t0)p β̂n+1 =
x0

Γ
(
q
) +

(t − t0)p

Γ
(
q
) t∫

t0

(t − ξ)q−1
[

f
(
ξ + η2, β̂n (ξ)

)
+ 1

(
ξ + η2, α̂n (ξ)

)]
dξ.

We now pass to limit as n→∞ and consider the convergence properties of the sequences, it follows

ρ̂ =
x0

Γ
(
q
) (t − t0)q−1 +

1
Γ
(
q
) t∫

t0

(t − ξ)q−1 [
f
(
ξ + η2, ρ̂ (ξ)

)
+ 1

(
ξ + η2, r̂ (ξ)

)]
dξ,

r̂ =
x0

Γ
(
q
) (t − t0)q−1 +

1
Γ
(
q
) t∫

t0

(t − ξ)q−1 [
f
(
ξ + η2, r̂ (ξ)

)
+ 1

(
ξ + η2, ρ̂ (ξ)

)]
dξ,

implying that (ρ̂, r̂) are coupled solutions of (1.2) on J respectively, namely, they satisfy

Dqρ̂ (t) = f
(
t + η2, ρ̂ (t)

)
+ 1

(
t + η2, r̂ (t)

)
, Γ(q)ρ̂ (t) (t − t0)1−q

|t=t0= x0,

Dqr̂ (t) = f
(
t + η2, r̂ (t)

)
+ 1

(
t + η2, ρ̂ (t)

)
, Γ(q)r̂ (t) (t − t0)1−q

|t=t0= x0.

It remains to prove that (ρ̂, r̂) are coupled minimal and maximal solutions of (1.2). Hence we have to
show that if x̂ (t) is a solution of the equation

Dqx̂ (t) = f
(
t + η2, x̂ (t)

)
+ 1

(
t + η2, x̂ (t)

)
, Γ

(
q
)

x̂ (t) (t − t0)1−q
|t=t0= x0
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such that α̂0 ≤ x̂ ≤ β̂0 on J, then the inequality α̂0 ≤ ρ̂ ≤ x̂ ≤ r̂ ≤ β̂0 must hold on J. To do so, suppose that
for some n, α̂n ≤ x̂ ≤ β̂n on J and set p (t) = α̂n+1 (t) − x̂ (t). Thus by the monotone properties of f and 1 and
employing the induction hypothesis yields

Dqp (t) ≤ Dqα̂n+1 (t) −Dqx̂ (t)

≤ f
(
t + η2, α̂n (t)

)
+ 1

(
t + η2, β̂n (t)

)
− f

(
t + η2, x̂ (t)

)
− 1

(
t + η2, x̂ (t)

)
≤ 0

and p0 = 0. Applying corollary 2.1, we have α̂n+1 (t) ≤ x̂ (t) on J. Similarly, it can be shown that x̂ ≤ β̂n+1.
Therefore,

α̂n+1 (t) ≤ x̂ (t) ≤ β̂n+1on J. (3.4)

We obtain by induction that α̂n ≤ x̂ ≤ β̂n on (t0, t0 + T] for all n implying that (t − t0)p α̂n ≤ (t − t0)p x̂ ≤
(t − t0)p β̂n on J̄. This, by the continuity of the functions ρ̂, x̂ and r̂, gives that ρ̂ ≤ x̂ ≤ r̂ on J. Accordingly, ρ̃
and r̃ are coupled extremal solutions.

Finally, considering α̂n (t) = αn
(
t + η2

)
, β̂n (t) = βn

(
t + η2

)
, ρ̂ (t) = ρ

(
t + η2

)
, x̂ (t) = x

(
t + η2

)
and r̂ (t) =

r
(
t + η2

)
and changing the variables, we can rewrite (3.4) as

ρ (t) ≤ x (t) ≤ r (t) , for t ∈ (s0, s0 + T]

which completes the proof.
Corollary 3.1. Assume that all conditions of previous theorem 3.1 hold. Further, we suppose for x1 ≥ x2

f (t, x1) − f (t, x2) ≤ L1(x1 − x2),
1(t, x1) − 1(t, x2) ≥ −L2(x1 − x2),

where L1 and L2 are positive constants.
Then, we have unique solution of (1.2) such that ρ = x = r.
Proof. Being similar to the given proof in [4, Section 3.2] we omit the details.
Lemma 3.1. Suppose that the assumption (ii) of theorem 3.1 hold. Then there exist initial time difference

coupled lower and upper solutions α ∈ Cp [[t0, t0 + T] ,R] , β ∈ Cp [[τ0, τ0 + T] ,R] , t0,T > 0, τ0 > t0 of type II
of problem (1.2) such that α (t) ≤ β(t + η1) on (t0, t0 + T], where η1 = τ0 − t0.

Proof. Let α (t) = −N + ϕ (t) and β
(
t + η1

)
= N + ϕ (t) , t ∈ J, where ϕ (t) is the solution of

Dqϕ (t) = f (t, 0) + 1 (t, 0) , ϕ (t) (t − t0)1−q
|t=t0= x0. (3.5)

Here f , 1 ∈ C [R+ × R,R] .
Clearly, the solution ϕ (t) exists on [t0, t0 + T] and we choose N > 0 sufficiently large so that α (t) ≤

0 ≤ β
(
t + η1

)
for t ∈ J. Since f (t, x) is nondecreasing in x and 1

(
t, y

)
is nonincreasing in y for each t, it

follows that

Dqα (t) = Dqϕ (t) −DqN

= f (t, 0) + 1 (t, 0) −N
1

Γ
(
1 − q

) (t − t0)−q

≤ f (t, 0) + 1 (t, 0)
≤ f

(
t, β

)
+ 1 (t, α) .

Similarly,
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Dqβ
(
t + η1

)
= Dqϕ (t) + DqN

= f (t, 0) + 1 (t, 0) + N
1

Γ
(
1 − q

) (t − t0)−q

≥ f (t, 0) + 1 (t, 0)
≥ f (t, α) + 1

(
t, β

)
on J.

Theorem3.2. Assume that the assumptions (ii)-(iv) of theorem 3.1 hold and let α ∈ Cp [[t0, t0 + T] ,R] ,
t0,T > 0, β ∈ Cp [[τ0, τ0 + T] ,R], τ0 > t0 be the same as the functions derived from Lemma 3.1. Then for any
solution x (t) of the problem

Dqx (t) = f (t, x (t)) + 1 (t, x (t)) , Γ
(
q
)

x (t) (t − s0)1−q
|t=s0= x0 (3.6)

with α (t) ≤ x
(
t + η2

)
≤ β

(
t + η1

)
, t ∈ J and t0 < s0 < τ0, there exist alternating monotone flows satisfying

α̂0 (t) ≤ α̂2 (t) ≤ ... ≤ α̂2n (t) ≤ x
(
t + η2

)
≤ α̂2n+1 (t) ≤ ... ≤ α̂3 (t) ≤ α̂1 (t) , (3.7)

β̂1 (t) ≤ β̂3 (t) ≤ ... ≤ β̂2n+1 (t) ≤ x
(
t + η2

)
≤ β̂2n (t) ≤ ... ≤ β̂2 (t) ≤ β̂0 (t) (3.8)

on J, provided α̂0 ≤ α̂2 and β̂2 ≤ β̂0 on J.Furthermore, the weighted sequences
{
(t − s0)p α2n (t)

}
,
{
(t − s0)p α2n+1 (t)

}
,{

(t − s0)p β2n (t)
}
and

{
(t − s0)p β2n+1 (t)

}
in C [[s0, s0 + T] ,R] converge uniformly and monotonically to (t − s0)p ρ,

(t − s0)p r, (t − s0)p ρ∗ and (t − s0)p r∗ on [s0, s0 + T] respectively as n→ ∞ and ρ, r, ρ∗, r∗ satisfy the following
relations

Dqρ (t) = f (t, r∗ (t)) + 1 (t, r (t)) , ρ (t) (t − t0)1−q
|t=s0= x0,

Dqr (t) = f
(
t, ρ∗ (t)

)
+ 1

(
t, ρ (t)

)
, r (t) (t − t0)1−q

|t=s0= x0,

Dqρ∗ (t) = f (t, r (t)) + 1 (t, r∗ (t)) , ρ∗ (t) (t − t0)1−q
|t=s0= x0,

Dqr∗ (t) = f
(
t, ρ (t)

)
+ 1

(
t, ρ∗ (t)

)
, r∗ (t) (t − t0)1−q

|t=s0= x0

on (s0, s0 + T], where α̂2n (t) = α2n
(
t + η2

)
, α̂2n+1 (t) = α2n+1

(
t + η2

)
, β̂2n (t) = β2n

(
t + η2

)
, β̂2n+1 (t) =

β2n+1
(
t + η2

)
on J.

Proof. We just provide a brief proof. Initially, we consider the following iteration schemes

Dqα̂n+1 (t) = f
(
t + η2, β̂n (t)

)
+ 1

(
t + η2, α̂n (t)

)
, Γ

(
q
)
α̂n+1 (t) (t − t0)p

|t=t0= x0, (3.9)

Dqβ̂n+1 (t) = f
(
t + η2, α̂n (t)

)
+ 1

(
t + η2, β̂n (t)

)
, Γ

(
q
)
β̂n+1 (t) (t − t0)p

|t=t0= x0 (3.10)

by which we generate monotone sequences
{
α̂2n (t)

}
,
{
α̂2n+1 (t)

}
,
{
β̂2n (t)

}
and

{
β̂2n+1 (t)

}
. Note that β̂0 (t) =

β
(
t + η1

)
, α̂0 (t) = α (t) , t ∈ J.

If we continue in a similar manner discussed in previous theorem, we can prove that

α̂0 ≤ α̂2 ≤ ... ≤ α̂2n ≤ x̂ ≤ α̂2n+1 ≤ ... ≤ α̂3 ≤ α̂1,

β̂1 ≤ β̂3 ≤ ... ≤ β̂2n+1 ≤ x̂ ≤ β̂2n ≤ ... ≤ β̂2 ≤ β̂0

hold on J for all n.
Employing standart techniques, one can show that the sequences

{
(t − t0)p α̂2n (t)

}
,
{
(t − t0)p α̂2n+1 (t)

}
,{

(t − t0)p β̂2n (t)
}

and
{
(t − t0)p β̂2n+1 (t)

}
converge uniformly and monotonically to functions (t − t0)p ρ̂, (t − t0)p r̂,

(t − t0)p ρ̂∗ and (t − t0)p r̂∗ respectively on [t0, t0 + T] as n→∞.
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Finally, constructing the Volterra integral equations corresponding to (3.9) and (3.10) and taking the
limits of both sides as n→∞, we demonstrate that limit functions ρ̂, r̂, ρ̂∗ and r̂∗ satisfy the relations stated
in the theorem.

After setting ρ̂ (t) = ρ
(
t + η2

)
, r̂ (t) = r

(
t + η2

)
, ρ̂∗ (t) = ρ

(
t + η2

)
, r̂∗ (t) = r∗

(
t + η2

)
and changing the

variables, we reach the desired result on (s0, s0 + T] which completes the proof.
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