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Abstract. In this paper, we establish some fixed point theorems in G-metric spaces involving generalized
cyclic contractions. Some subsequent results are derived. The presented results generalize many well
known results in the literature. Moreover, we provide some concrete examples and an application on the
existence and uniqueness of solutions to a class of nonlinear integral equations.

1. Introduction and Preliminaries

The fixed point theory is very important and useful in Mathematics. It can be applied in various areas,
for instant, variational inequalities, optimization, and approximation theory [17, 18, 31, 32]. There were
many authors introduced generalizations of metric spaces such as Mustafa and Sims [23]. Since then,
several fixed point and coupled fixed point theorems in the framework of generalized metric spaces have
been investigated in [1, 4–8, 12, 14, 16, 21–30, 36, 38–43, 45].

The concept of that generalized metric space was introduced as follows:

Definition 1.1. (see [23]). Let X be a non-empty set, G : X×X×X→ [0,∞) be a function satisfying the following
properties:
(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X with x , y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y , z,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).
Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the pair (X,G) is called a
G-metric space.

Definition 1.2. (see [23]). Let (X,G) be a G-metric space and let (xn) be a sequence of points of X, therefore, we say
that (xn) is G-convergent to x ∈ X if limn,m→+∞ G(x, xn, xm) = 0, that is, for any ε > 0, there exists N ∈N such that
G(x, xn, xm) < ε, for all n,m ≥ N. We call x the limit of the sequence and write xn → x or lim xn = x.
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Proposition 1.1. (see [23]). Let (X,G) be a G-metric space. The following are equivalent:
(1) (xn) is G-convergent to x,
(2) G(xn, xn, x)→ 0 as n→ +∞,
(3) G(xn, x, x)→ 0 as n→ +∞,
(4) G(xn, xm, x)→ 0 as n,m→ +∞.

Definition 1.3. (see [23]). Let (X,G) be a G-metric space. A sequence (xn) is is called a G-Cauchy sequence if, for
any ε > 0, there is N ∈N such that G(xn, xm, xl) < ε for all m,n, l ≥ N, that is, G(xn, xm, xl)→ 0 as n,m, l→ +∞.

Proposition 1.2. (see [24]). Let (X,G) be a G-metric space. Then the following are equivalent
(1) the sequence (xn) is G-Cauchy
(2) for any ε > 0, there exists N ∈N such that G(xn, xm, xm) < ε, for all m,n ≥ N.

Proposition 1.3. (see [23]). Let (X,G) be a G-metric space. Then, the function G(x, y, z) is jointly continuous in all
three of its variables.

Definition 1.4. (see [23]). A G-metric space (X,G) is called G-complete if every G-Cauchy sequence is G-convergent
in (X,G).

Every G-metric on X defines a metric dG on X by

dG(x, y) = G(x, y, y) + G(y, x, x), for all x, y ∈ X. (1)

Definition 1.5. (see [23]). A G-metric is said symmetric if

G(x, x, y) = G(x, y, y) ∀ x, y ∈ X.

Following [23], each G-metric G on X generates a topology τG on X which has as a base the family of open
G-balls {BG(x, ε), x ∈ X, ε > 0}, where BG(x, ε) = {y ∈ X, G(x, y, y) < ε} for all x ∈ X and ε > 0. Also, a
nonempty subset A in the G-metric space (X,G) is G-closed if Ā = A where

x ∈ Ā⇐⇒ BG(x, ε) ∩ A , 0, for all ε > 0.

We also have

Lemma 1.1. Let (X,G) be a G-metric space and A is a nonempty subset of X. A is said G-closed if for any sequence
(xn) in A such that xn → x as n→∞, then x ∈ A.

The study of fixed points of mappings satisfying cyclic contractive conditions has been the center of
vigorous research activity in the last years. In 2003, Kirk et al. [20] generalized the Banach contraction
principle by using two closed subsets of a complete metric space. Then, Petrus̆el [35] proved some results
about periodic points of cyclic contractive maps. His results generalized the main result of Kirk et al. [20].
Later, Păcurar and Rus [33] proved some fixed point results for cyclic φ-contraction mappings on a metric
space. In 2012, Karapınar [19] obtained a unique fixed point of cyclic weak φ- contraction mappings and
studied well-posedness problem for such mappings (for other results on cyclic contractions, see also [2],
[3], [13], [15],[34] and [44]). Very recently, Bilgili et al. [10, 11] presented some new fixed point results
involving cyclic contractions in the setting of G-metric spaces where two variables x and y in the space X
are considered.

The objective of this paper is to establish some fixed point results for generalized cyclic contractions in
the context of G-metric spaces, of course the third variables x, y, z will be considered. Presented theorems
extend, generalize and improve many existing results in the literature. Our obtained results are supported
by some illustrated examples and an application on the existence and uniqueness of solutions to a class of
nonlinear integral equations.

2. Main Results

Our results concern two types of cyclic contractions on G-metric spaces.
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2.1. Cyclic φ-contractions
Denote by Φ the set of functions φ : [0,∞)→ [0,∞) satisfying:

(φ1) φ is non-decreasing;

(φ2) there exist k0 ∈N, a ∈ (0, 1) and convergent series of nonnegative terms
∞∑

k=1

vk such that

φk+1(t) ≤ aφk(t) + vk, (2)

for k ≥ k0 and any t > 0. Following [9], a φ ∈ Φ is called a (c)-comparison function.
Again, From [9] we have

Lemma 2.1. (see [9]). If φ ∈ Φ, then the following properties hold:
(i) (φn(t))n∈N converges to 0 as n→∞, for all t > 0,
(ii) φ(t) < t for any t > 0,
(iii) φ is continuous at 0,

(iv) the series
∞∑

k=0

φk(t) converge for any t > 0.

Lemma 2.2. (see [9]). If φ ∈ Φ, then the function s : (0,∞)→ (0,∞) defined by

s(t) =

∞∑
k=0

φk(t), t > 0, (3)

is non-decreasing and is continuous at 0.

First, consider the Picard iteration (xn) defined by

xn+1 = Txn for all n ≥ 0. (4)

Our first main result is the following.

Theorem 2.1. Let (X,G) be a G-complete G-metric space. Let {Ai}
m
i=1 be a family of nonempty G-closed subsets of X,

m a positive integer and Y = ∪m
i=1Ai. Let T : Y→ Y be a mapping such that

T(Ai) ⊆ Ai+1 for all i = 1, · · · ,m, with Am+1 = Ai. (5)

Suppose also that there exists φ ∈ Φ such that

G(Tx,Ty,Tz) ≤ φ(G(x, y, z)) for all (x, y, z) ∈ Ai × Ai+1 × Ai+1, (for i = 1, · · · ,m). (6)

Then

(I) T has a unique fixed point, say u, that belongs to ∩m
i=1Ai,

(II) the following estimates hold:

G(xn,u,u) ≤ s(φn(G(x0, x1, x1))), n ≥ 1, (7)

G(xn,u,u) ≤ s(G(xn, xn+1, xn+1)), n ≥ 1, (8)

(III) for any x ∈ Y

G(x,u,u) ≤ s(G(x,Tx,Tx)), (9)

where s is given by (3) in Lemma 2.2.



Aydi et al. / Filomat 31:3 (2017), 853–869 856

Proof. Let x0 ∈ Y = ∪m
i=1Ai. Without loss of generality, let x0 ∈ A1. Consider the Picard iteration (xn) defined

by (4) and starting from x0.
If for some integer k, xk = xk+1, so (xn) is constant for any n ≥ k, then (xn) is G-Cauchy in (X,G).
Suppose that xn , xn+1 for all n ≥ 0. For any n ≥ 0, there is in ∈ {1, · · · ,m} such that xn ∈ Ain and

xn+1 ∈ Ain+1. By (6), we have

G(xn+1, xn+2, xn+2) = G(Txn,Txn+1,Txn+1) ≤ φ(G(xn, xn+1, xn+1)). (10)

The function φ is non-decreasing, so by induction

G(xn, xn+1, xn+1) ≤ φn(G(x0, x1, x1)) for all n ≥ 0. (11)

By rectangle inequality and (11), for p ≥ 1

G(xn, xn+p, xn+p) (12)
≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2) + · · · + G(xn+p−1, xn+p, xn+p)

≤ φn(G(x0, x1, x1)) + φn+1(G(x0, x1, x1)) + · · · + φn+p−1(G(x0, x1, x1)).

Denote

Sn =

n∑
k=0

φk(G(x0, x1, x1)), n ≥ 0.

Therefore

G(xn, xn+p, xn+p) ≤ Sn+p−1 − Sn−1. (13)

Since the function φ ∈ Φ and G(x0, x1, x1) > 0, so by Lemma 2.1, (iv), we get that

∞∑
k=0

φk(G(x0, x1, x1)) < ∞,

which implies that there exists a positive real S such that lim
n→∞

Sn = S. Thus, from (13), we have

lim
n→∞

G(xn, xn+p, xn+p) = 0.

This yields that (xn) is a G-Cauchy sequence in (X,G).
Since (X,G) is G-complete, hence there exists u ∈ X such that

lim
n→∞

xn = u. (14)

We shall prove that

u ∈ ∩m
i=1Ai. (15)

Since x0 ∈ A1, we have (xnp)n≥0 ∈ A1. Since A1 is G-closed and (14), by Lemma 1.1, we have u ∈ A1. Again,
(xnp+1)n≥0 ∈ A2. Since A2 is G-closed, from (14) we have u ∈ A2. Continuing this process, we obtain (15).

We claim that u is a fixed point of T. We have that for any n ≥ 0 there exists in ∈ {1, · · · ,m} such that
xn ∈ Ain . Also, from (15), u ∈ Ain+1, so applying (6) for x = xn and y = z = u, we get that

G(xn+1,Tu,Tu) = G(Txn,Tu,Tu) ≤ φ(G(xn,u,u)). (16)

Since φ is continuous at 0 and lim
n→∞

G(xn,u,u) = 0, so

lim
n→∞

G(xn+1,Tu,Tu) ≤ φ(0).
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But, since φ(t) < t for all t > 0 and again φ is continuous at 0, hence we get that φ(0) = 0. We deduce from
above inequality, xn+1 → Tu as n→∞. By uniqueness of limit, it follows that Tu = u.

Now, we prove that u is the unique fixed point of T. Assume that v is another fixed point of T, that is,
Tv = v. We have v ∈ ∩m

i=1Ai. Suppose that u , v, so G(u, v, v) > 0. Taking x = u and y = z = v in (6), we get
that

0 < G(u, v, v) = G(Tu,Tv,Tv) ≤ φ(G(u, v, v)) < G(u, v, v),

which is a contradiction. We deduce u is the unique fixed point of T. This completes the proof of (I).
We shall prove (II). From (12), we have

G(xn, xn+p, xn+p) ≤
n+p−1∑

k=n

φk(G(x0, x1, x1)).

Letting p→∞ in above inequality, we get the estimate (7).
For n ≥ 0 and k ≥ 1, we have

G(xn+k, xn+k+1, xn+k+1) = G(Txn+k−1,Txn+k,Txn+k) ≤ φ(G(xn+k−1, xn+k, xn+k)), (17)

and for k ≥ 2,

G(xn+k−1, xn+k, xn+k) = G(Txn+k−2,Txn+k−1,Txn+k−1) ≤ φ(G(xn+k−2, xn+k−1, xn+k−1)). (18)

By monotonicity of φ, (17) and (18) imply that

G(xn+k, xn+k+1, xn+k+1) ≤ φ2(G(xn+k−2, xn+k−1, xn+k−1)), n ≥ 0, k ≥ 2.

By induction, we get that

G(xn+k, xn+k+1, xn+k+1) ≤ φk(G(xn, xn+1, xn+1)), , n ≥ 0, k ≥ 0. (19)

But, by rectangle inequality

G(xn, xn+p, xn+p) ≤ G(xn, xn+1, xn+1) + · · · + G(xn+p−1, xn+p, xn+p).

Hence, from (19), we have

G(xn, xn+p, xn+p) ≤
n+p−1∑

k=0

φk(G(xn, xn+1, xn+1)).

Letting p→∞ in above inequality, we get that

G(xn,u,u) ≤
∞∑

k=0

φk(G(xn, xn+1, xn+1)) = s(G(xn, xn+1, xn+1)). (20)

This yields (II).
Now we will prove (III). Let x ∈ Y. From (20), for x0 = xn, we have

G(x,u,u) ≤
∞∑

k=0

φk(G(x,Tx,Tx)) = s(G(x,Tx,Tx)),

which is the estimate (9).
As consequences of Theorem 2.1 we have the following results.
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Theorem 2.2. Let T : Y→ Y be defined as in Theorem 2.1. Then

∞∑
n=0

G(Tnx,Tn+1x,Tn+1x) < ∞, for all x ∈ Y, (21)

that is, T is a good Picard operator.

Proof. Let x = x0 ∈ Y. If for some integer k, Tkx0 = Tk+1x0, so the sequence (Tnx0) is constant for all n ≥ k,
hence obviously (21) holds. Otherwise, assume that Tnx0 , Tn+1x0 for all n ≥ 0. By (11) in the proof of
Theorem 2.1, we know that

G(Tnx0,Tn+1x0,Tn+1x0) = G(xn, xn+1, xn+1) ≤ φn(G(x0, x1, x1)) for all n ≥ 0.

Then

∞∑
n=0

G(Tnx0,Tn+1x0,Tn+1x0) ≤
∞∑

n=0

φn(G(x0, x1, x1)) = s(G(x0, x1, x1)).

By Lemma 2.2, it follows that
∞∑

n=0

G(Tnx0,Tn+1x0,Tn+1x0) < ∞, so T is a good Picard operator.

Theorem 2.3. Let T : Y→ Y be defined as in Theorem 2.1. Then

∞∑
n=0

G(Tnx,u,u) < ∞, for all x ∈ Y, (22)

that is, T is a special Picard operator.

Proof. If x = u, then clearly (22) is true. Suppose x , u and x ∈ Y. We rewrite (16) with Tu = u

G(Tn+1x,u,u) = G(Tn+1x,Tu,Tu) ≤ φ(G(xn,u,u)).

By induction and considering the monotonicity of φ, we obtain

G(Tnx,u,u) ≤ φn(G(x,u,u)), for all n ≥ 0.

Therefore

∞∑
n=0

G(Tnx,u,u) ≤
∞∑

n=0

φn(G(x,u,u)) = s(G(x,u,u)).

Consequently,
∞∑

n=0

G(Tnx,u,u) < ∞, so T is a special Picard operator.

The notion of well-posedness of a fixed point has evoked much interest to several mathematicians.
Recently, Karapinar [19] studied a well-posed problem for a cyclic weak φ−contraction mapping on a
complete metric space (see also, [33, 37]). Let F( f ) denote the set of all fixed points of a self map f on a
nonempty set X. We introduce the following definition.

Definition 2.1. Let X be a nonempty set. A fixed point problem of a given mapping f : X → X on X is called
well-posed if F( f ) is a singleton and for any sequence (an) in X with x∗ ∈ F( f ) and lim

n→∞
G(an, f an, f an) = 0 implies

x∗ = lim
n→∞

an.
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Theorem 2.4. Let f : Y→ Y be defined as in Theorem 2.1. Then the fixed point problem for T is well posed, that is,
assuming that there exists (zn) ∈ Y, n ∈N such that lim

n→∞
G(zn,Tzn,Tzn) = 0 implies z = lim

n→∞
zn.

Proof. Let (zn) ∈ Y, n ∈N such that lim
n→∞

G(zn,Tzn,Tzn) = 0. Applying (9) for z = zn, we have

G(zn, z, z) ≤ s(G(zn,Tzn,Tzn)), (23)

Having in mind from Lemma 2.2 that s is continuous at 0, so letting n→∞ in (23), we have

lim
n→∞

G(zn, z, z) = 0,

so z = lim
n→∞

zn. Hence the fixed point problem for T is well posed.

Theorem 2.5. Let T : Y→ Y be defined as in Theorem 2.1. Let f : Y→ Y such that
1. f has at least one fixed point, say z f ∈ F( f ),
2. there exists ν > 0 such that

G( f x,Tx,Tx) ≤ ν, for all x ∈ Y. (24)

Then G(z f , zT, zT) ≤ s(ν) where F(T) = zT.

Proof. Assume z f , zY. Otherwise, the proof is completed. We apply (9) from Theorem 2.1 for x = x f to
have

G(z f , zT, zT) ≤ s(G(z f ,Tz f ,Tz f ) = s(G( f z f ,Tz f ,Tz f )).

By Lemma 2.2, the function s is non-decreasing, so by (24) with x = z f , it follows that

G(z f , zT, zT) ≤ s(ν).

2.2. Cyclic (ψ,φ)-contractions

Denote by Ψ the set of functions ψ : [0,∞)→ [0,∞) satisfying
(ψ1) ψ is continuous,
(ψ2) ψ is non-decreasing,
(ψ3) ψ(t) = 0 if and only if t = 0.

Also, denote by Λ the set of functions φ : [0,∞)→ [0,∞) satisfying
(φ1) φ is lower semi-continuous,
(φ2) φ(t) = 0 if and only if t = 0.

In 2012, Aydi [7] proved the following result.

Theorem 2.6. Let X be a G-complete G-metric space and T : X→ X. Suppose there exist ψ,φ ∈ Ψ such that

ψ(G(Tx,Ty,Tz)) ≤ ψ(G(x, y, z)) − φ(G(x, y, z)), (25)

for all x, y, z ∈ X. Then T has a unique fixed point.

The objective of this part is to extend Theorem 2.6 to more general classes of mappings involving cyclic
(ψ,φ)-contractions. Note that, in our result the monotony property of the function φ is omitted and the
continuity property of φ is replaced by lower semi-continuity.

The main result of this section is the following.
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Theorem 2.7. Let (X,G) be a G-complete G-metric space. Let {Ai}
m
i=1 be a family of nonempty G-closed subsets of X,

m a positive integer and Y = ∪m
i=1Ai. Let T : Y→ Y be a mapping such that

T(Ai) ⊆ Ai+1 for all i = 1, · · · ,m, with Am+1 = Ai. (26)

Suppose also that there exist ψ ∈ Ψ and φ ∈ Λ such that

ψ(G(Tx,Ty,Tz)) ≤ ψ(G(x, y, z)) − φ(G(x, y, z)) for all (x, y, z) ∈ Ai × Ai+1 × Ai+1, (27)

for i = 1, · · · ,m. Then T has a unique fixed point that belongs to ∈ ∩m
i=1Ai.

Proof. Let x0 ∈ A1. Consider the Picard iteration {xn} defined by xn+1 = Txn for all n ≥ 0.
If for some integer k, xk = xk+1, so (xn) is constant for any n ≥ k, then, (xn) is G-Cauchy in (X,G).
Suppose that xn , xn+1 for all n ≥ 0. For any n ≥ 0, there is in ∈ {1, · · · ,m} such that xn ∈ Ain and

xn+1 ∈ Ain+1. By (27), we have

ψ(G(xn+1, xn+2, xn+2)) = ψ(G(Txn,Txn+1,Txn+1))
≤ ψ(G(xn, xn+1, xn+1)) − φ(G(xn, xn+1, xn+1)) (28)
≤ ψ(G(xn, xn+1, xn+1)).

The function ψ is non-decreasing, so we have

G(xn+1, xn+2, xn+2) ≤ G(xn, xn+1, xn+1) for all n ≥ 0. (29)

Therefore, the sequence (G(xn, xn+1, xn+1)) is non-increasing, so it converges to some real r ≥ 0. Letting
n→∞ in (28), using the continuity of ψ and the lower semi-continuity of φ, we get that

ψ(r) ≤ ψ(r) − φ(r),

which implies that φ(r) = 0. By (φ2), we have r = 0, that is,

lim
n→∞

G(xn, xn+1, xn+1) = 0. (30)

Since G(y, x, x) ≤ 2G(x, y, y) for all x, y ∈ X, hence by (30), we have

lim
n→∞

G(xn+1, xn, xn) = 0. (31)

Now, we prove that (xn) is a G-Cauchy sequence. We argue by contradiction. Assume that (xn) is not a
G-Cauchy sequence. Then, following Proposition 1.2, there exists ε > 0 for which we can find subsequences
(xp(k)) and (xn(k)) of (xn) with n(k) > p(k) > k such that

G(xn(k), xp(k), xp(k)) ≥ ε. (32)

Further, corresponding to p(k), we can choose n(k) in such a way that it is the smallest integer with
n(k) > p(k) > k and satisfying (32). Then

G(xn(k)−1, xp(k), xp(k)) < ε. (33)

Using (33) and the condition (G5)

ε ≤ G(xn(k), xp(k), xp(k)) ≤ G(xn(k), xn(k)−1, xn(k)−1) + G(xn(k)−1, xp(k), xp(k))
< ε + G(xn(k), xn(k)−1, xn(k)−1).

(34)

Letting k→ +∞ in (34) and using (31), we find

lim
k→∞

G(xn(k), xp(k), xp(k)) = ε. (35)
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On the other hand, for all k, there exists j(k), 0 ≤ j(k) ≤ m, such that n(k) − p(k) + j(k) ≡ 1(m). Then xp(k)− j(k)
(for k large enough, p(k) > j − k)) and xn(k) lie in different adjacently labeled sets Ai and Ai+1 for certain
i = 1, · · · ,m. From (27), we have

ψ(G(xn(k)+1, xp(k)− j(k)+1, xp(k)− j(k)+1)) = ψ(G(Txn(k),Txp(k)− j(k),Txp(k)− j(k)))
≤ ψ(G(xn(k), xp(k)− j(k), xp(k)− j(k))) − φ(G(xn(k), xp(k)− j(k), xp(k)− j(k))).

Using the condition (G5),

|G(xn(k), xp(k)− j(k), xp(k)− j(k)) − G(xn(k), xp(k), xp(k))|
≤ 2G(xp(k)− j(k), xp(k)− j(k), xp(k))
≤ 2G(xp(k)− j(k), xp(k)− j(k)+1, xp(k)− j(k)+1) + 2G(xp(k)− j(k)+1, xp(k)− j(k)+2, xp(k)− j(k)+2)
+ · · · + 2G(xp(k)−1, xp(k)−1, xp(k))

= 2
j(k)−1∑

l=0

G(xp(k)− j(k)+l, xp(k)− j(k)+l+1, xp(k)− j(k)+l)

≤ 2
j(k)−1∑

l=0

G(xp(k)− j(k)+l, xp(k)− j(k)+l+1, xp(k)− j(k)+l)→ 0 as k→∞ (from (31))

which implies from (35) that

lim
k→∞

G(xn(k), xp(k)− j(k), xp(k)− j(k)) = ε. (36)

Also

G(xn(k), xp(k)− j(k), xp(k)− j(k)) ≤G(xn(k), xn(k)+1, xn(k)+1) + G(xn(k)+1, xp(k)− j(k)+1, xp(k)− j(k)+1)
+G(xp(k)− j(k)+1, xp(k)− j(k), xp(k)− j(k)),

G(xn(k)+1, xp(k)− j(k)+1, xp(k)− j(k)+1) ≤G(xn(k)+1, xn(k), xn(k)) + G(xn(k), xp(k)− j(k), xp(k)− j(k))
+G(xp(k)− j(k), xp(k)− j(k)+1, xp(k)− j(k)+1).

Letting k→∞ in the two above inequalities and using (30), (31) and (36), we find

lim
k→∞

G(xn(k)+1, xp(k)− j(k)+1, xp(k)− j(k)+1) = ε. (37)

Now, using (36), (37), we get that

ψ(ε) ≤ ψ(ε) − φ(ε),

which yields that ε = 0, which is a contradiction.

This shows that (xn) is a G-Cauchy sequence in (X,G).
Since (X,G) is G-complete, hence there exists u ∈ X such that

lim
n→∞

xn = u. (38)

We shall prove that

u ∈ ∩m
i=1Ai. (39)

Since x0 ∈ A1, we have (xnp)n≥0 ∈ A1. The fact that A1 is G-closed together with (14) yield that u ∈ A1. Again,
(xnp+1)n≥0 ∈ A2. Since A2 is G-closed, from (38) we have u ∈ A2. Continuing this process, we obtain (39).



Aydi et al. / Filomat 31:3 (2017), 853–869 862

We claim that u is a fixed point of T. We have in mind that for any n ≥ 0, there exists in ∈ {1, · · · ,m} such
that xn ∈ Ain . Also, from (39), u ∈ Ain+1, so applying (27) for x = xn and y = z = u, we get that

ψ(G(xn+1,Tu,Tu)) = ψ(G(xn+1,Tu,Tu)) ≤ ψ(G(xn,u,u)) − φ(G(xn,u,u)).

Letting n→∞ in above inequality, we obtain

ψ(G(u,Tu,Tu)) ≤ ψ(0) − φ(0) = 0,

which implies that ψ(G(u,Tu,Tu)) = 0, so G(u,Tu,Tu) = 0. It follows that Tu = u.
Now, we prove that u is the unique fixed point of T. Assume that v is another fixed point of T, that is,

Tv = v. We have v ∈ ∩m
i=1Ai. Taking x = u and y = z = v in (27), we get that

ψ(G(u, v, v)) = ψ(G(Tu,Tv,Tv)) ≤ ψ(G(u, v, v)) − φ(G(u, v, v)),

so φ(G(u, v, v) = 0, that is, u = v.

Remark 1. Taking p = 1, A1 = X and φ ∈ Ψ in Theorem 2.7, we get Theorem 2.6.

If we take ψ(t) = t and φ(t) = (1 − k)t, k ∈ (0, 1), in Theorem 2.7, we get

Corollary 2.1. Let (X,G) be a G-complete G-metric space. Let {Ai}
m
i=1 be a family of nonempty G-closed subsets of

X, m a positive integer and Y = ∪m
i=1Ai. Let T : Y→ Y be a mapping such that

T(Ai) ⊆ Ai+1 for all i = 1, · · · ,m, with Am+1 = Ai.

Suppose also that there exist k ∈ (0, 1) such that

G(Tx,Ty,Tz) ≤ kG(x, y, z),

for all (x, y, z) ∈ Ai × Ai+1 × Ai+1, i = 1, · · · ,m. Then T has a unique fixed point that belongs to ∈ ∩m
i=1Ai.

Now, we derive a fixed point result for cyclic mappings satisfying a contractive condition of integral type.
Denote by Γ the set of functions α : [0,∞)→ [0,∞) satisfying the following hypotheses:

(Γ1) α is a Lebesgue integrable mapping on each compact subset of [0,∞),
(Γ2) for any ε > 0, we have

∫ ε
0 α(s)ds > 0.

It is immediate to have

Theorem 2.8. Let (X,G) be a G-complete G-metric space. Let {Ai}
m
i=1 be a family of nonempty G-closed subsets of X,

m a positive integer and Y = ∪m
i=1Ai. Let T : Y→ Y be a mapping such that

T(Ai) ⊆ Ai+1 for all i = 1, · · · ,m, with Am+1 = Ai.

Suppose also that there exist α, β ∈ Γ such that∫ G(Tx,Ty,Tz)

0
α(s)ds ≤

∫ G(x,y,z)

0
α(s)ds −

∫ G(x,y,z)

0
β(s)ds,

for all (x, y, z) ∈ Ai × Ai+1 × Ai+1, i = 1, · · · ,m. Then T has a unique fixed point that belongs to ∈ ∩m
i=1Ai.

Also, we have
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Corollary 2.2. Let (X,G) be a G-complete G-metric space. Let {Ai}
m
i=1 be a family of nonempty G-closed subsets of

X, m a positive integer and Y = ∪m
i=1Ai. Let T : Y→ Y be a mapping such that

T(Ai) ⊆ Ai+1 for all i = 1, · · · ,m, with Am+1 = Ai.

Suppose also that there exist α ∈ Γ and k ∈ (0, 1) such that∫ G(Tx,Ty,Tz)

0
α(s)ds ≤ k

∫ G(x,y,z)

0
α(s)ds,

for all (x, y, z) ∈ Ai × Ai+1 × Ai+1, i = 1, · · · ,m. Then T has a unique fixed point that belongs to ∈ ∩m
i=1Ai.

Proof. It follows by taking β(t) = (1 − k)α(t) in Corollary 2.1.

Finally, we give the following examples.

Example 2.1. Let X = [0,∞) be equipped with the G-metric G given as follows

G(x, y, z) = max{|x − y|, |x − z|, |y − z|} for all x, y, z ∈ X.

(X,G) is G-complete. Consider A1 = {0, 1}, A2 = {1, 4} and Y = A1 ∪ A2. It is obvious that A1 and A2 are G-closed
subsets of (X,G). We define T : Y→ Y by

T0 = 1, T1 = 1 and T4 = 0.

We have T(A1) ⊆ A2 and T(A2) ⊆ A1. Define ψ(t) = t and φ(t) = 2
3 t. We shall prove that (27) holds for all

(x, y, z) ∈ A1 × A2 × A2 and (x, y, z) ∈ A1 × A1 × A1. To check this we distinguish the following cases:
Case 1. If x = 0 and y = z = 1. Here, we have G(Tx,Ty,Tz) = 0.
Case 2. If (x = 0 and y = 1, z = 4), (x = 0 and y = 4, z = 1) or (x = 0 and y = z = 4). Here, we have

G(Tx,Ty,Tz) = 1 ≤
4
3

=
1
3

G(x, y, z).

Case 3. If x = y = z = 1. We have G(Tx,Ty,Tz) = 0.
Case 4. If (x = 1 and y = 1, z = 4), (x = 1 and y = 4, z = 1) or (x = 1 and y = z = 4). In this case, we have

G(Tx,Ty,Tz) = 1 =
1
3

G(x, y, z).

Case 5. If (x = 1 and y = 0, z = 1), (x = 1 and y = 1, z = 0), (x = y = z = 1) or (x = 1 and y = z = 0). Here, we
have

G(Tx,Ty,Tz) = 0.

Case 6. If (x = 4 and y = 0, z = 1), (x = 4 and y = 1, z = 0) or (x = 4 and y = z = 0). Here, we have

G(Tx,Ty,Tz) = 1 ≤
4
3

=
1
3

G(x, y, z).

Case 7. If x = 4 and y = z = 1. In this case, we have

G(Tx,Ty,Tz) = 1 =
1
3

G(x, y, z).

Thus, (27) holds. All hypotheses of Theorem 2.6 are satisfied, and u = 1 is the unique fixed point of T. Here,
u = 1 ∈ A1 ∩ A2.
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Example 2.2. Let X = R and G(x, y, z) = |x− y|+ |y− z|+ |x− z| for all x, y, z ∈ X. (X,G) is a G-complete G-metric
space.

Set A1 = [−1, 0], A2 = [0, 1] and Y = A1∪A2 = [−1, 1]. Define T : Y→ Y by Tx = − x
2 . Notice that T(A1) ⊆ A2

and T(A2) ⊆ A1. Also, A1 and A2 are G-closed subsets of (X,G). Take ψ(t) = t and φ(t) = t
2 .

We shall show that (27) is satisfied for all (x, y, z) ∈ A1 × A2 × A2. We have

G(Tx,Ty,Tz) = |
x
2
−

y
2
| + |

y
2
−

z
2
| + |

x
2
−

z
2
|.

It means that

ψ(G(Tx,Ty,Tz)) ≤ ψ(G(x, y, z)) − φ(G(x, y, z)).

All hypotheses of Theorem 2.6 are satisfied, and u = 0 is the unique fixed point of T. Here, u = 0 ∈ A1 ∩ A2.

Example 2.3. Consider X = [0, 1] endowed with the G-metric

G(x, y, z) = |x − y| + |y − z| + |x − z|.

Take

Tx =

 1
5 if x ∈ [0, 1)
0 if x = 1.

Take A1 = [0, 1
5 ] and A2 = [ 1

5 , 1]. We have T(A1) ⊂ A2 and T(A2) ⊂ A1.
Let x ∈ A1 and y, z ∈ A2, so Tx = 1

5 . Take k = 1
2 and φ(t) = kt for all t ≥ 0. We distinguish the following four

cases:
Case 1: If y = 1 and z , 1, we have

G(Tx,Ty,Tz) = G(
1
5
, 0,

1
5

) =
2
5
≤

4
5
≤ k(2 − 2x) = k(|x − 1| + |1 − z| + |z − x|) = kG(x, y, z).

Case 2: If y , 1 and z = 1, we have

G(Tx,Ty,Tz) = G(
1
5
,

1
5
, 0) =

2
5
≤

4
5
≤ k(2 − 2x) = k(|x − y| + |y − 1| + |1 − x|) = kG(x, y, z).

Case 3: If y = z = 1, we have

G(Tx,Ty,Tz) = G(
1
5
, 0, 0) =

1
5
≤ k(2|x − 1|) = kG(x, y, z).

Case 4: If y , 1 and z , 1, we have

G(Tx,Ty,Tz) = G(
1
5
,

1
5
,

1
5

) = 0 ≤ kG(x, y, z).

In all cases, we obtained G(Tx,Ty,Tz) ≤ φ(G(Tx,Ty,Tz)) for all x ∈ A1 and y, z ∈ A2. Therefore, all hypotheses of
Theorem 2.1 are satisfied, so u = 1

5 = A1 ∩ A2 is the unique fixed point of T.

Example 2.4. (The non symmmetric case). Let X = R be endowed with the G-metric
(i) G(x, x, x) = 0,
(ii)

G(x, x, y) = G(x, y, x) = G(y, x, x) =

1 if x < y
2 if x > y,
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(iii) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),
(iv) G(x, y, z) = 2 if all variables are distinct.

Note that G is not symmetric since G(1, 1, 2) = 1 , 2 = G(1, 2, 2).
It is easy that (X,G) is a complete G-metric space. Define T : X→ X be defined by

Tx =


1 if x = 0
2 if x = 1 or 2
1(x) otherwise,

where 1 a given function.
Take A1 = {0, 1} and A2 = {1, 2} .
For all (x, y, z) ∈ A1 × A2 × A2, we have

G(Tx,Ty,Tz) ≤ φ(G(x, y, z)),

for each φ ∈ Φ with φ(2) ≥ 1. It suffices to consider φ(t) = at with 1
2 ≤ a ≤ 1.

All hypotheses of Theorem 2.1 are satisfied, and u = 1 is the unique fixed point of T in Y = A1 ∪ A2.

Example 2.5. (The non symmmetric case). Here, take X = {0, 1, 2} and consider the G-metric given as

G(0, 0, 0) = G(1, 1, 1) = G(2, 2, 2) = 0
G(0, 0, 1) = G(0, 1, 0) = G(1, 0, 0) = G(0, 1, 1) = G(1, 0, 1) = G(1, 1, 0) = 1
G(0, 0, 2) = G(0, 2, 0) = G(2, 0, 0) = 1
G(0, 2, 2) = G(2, 0, 2) = G(2, 2, 0) = G(1, 1, 2) = G(1, 2, 1) = G(2, 1, 1) = 2
G(1, 2, 2) = G(2, 1, 2) = G(2, 2, 1) = 2
G(0, 1, 2) = G(0, 2, 1) = G(1, 0, 2) = G(1, 2, 0) = G(2, 0, 1) = G(2, 1, 0) = 2.

Mention that G(0, 2, 2) , G(0, 0, 2), that is, G is not symmetric. Define T : X→ X by

T0 = T1 = 0 and T2 = 1.

Take A1 = {0, 1} and A2 = {0}. Let x ∈ A1 and (y, z) ∈ A2 × A2. We have

G(Tx,Ty,Tz) = G(Tx,T0,T0) = 0 ≤ φ(G(x, y, z)),

for each φ ∈ Φ. All hypotheses of Theorem 2.1 are satisfied, and u = 0 is the unique fixed point of T in Y = A1 ∪ A2.
Here, u = 0 ∈ A1 ∩ A2.

Note that the main result of Mustafa and Sims [23] is not applicable. In fact, taking x = y = 0 and z = 2, we have

G(Tx,Ty,Tz) = 1 > k = k G(0, 0, 2),

for each k ∈ [0, 1).

3. Application

In this section, we present the following application concerning the existence and uniqueness of solutions
to a class of nonlinear integral equations.

We consider the nonlinear integral equation

u(t) =

∫ 1

0
k(t, s,u(s)) ds for all t ∈ [0, 1], (40)
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where k : [0, 1] × [0, 1] ×R→ R is a continuous function.
Let X = C([0, 1]) be the set of real continuous functions on [0, 1]. We endow X with the standard G-metric

G∞(u, v,w) = max
t∈[0,1]

|u(t) − v(t)| + max
t∈[0,1]

|v(t) − w(t)| + max
t∈[0,1]

|w(t) − u(t)|

for all u, v,w ∈ X. It is well known that (X,G) is G-complete. Consider the mapping T : X→ X defined by

Tu(t) =

∫ 1

0
k(t, s,u(s)) ds for all t ∈ [0, 1], (41)

Note that u is a solution of (40) if and only if u is a fixed point of T.
Let (α, β) ∈ X2 and (α0, β0) ∈ R2 such that

α0 ≤ α(t) ≤ β(t) ≤ β0 for all t ∈ [0, 1]. (42)

Assume that, for all t ∈ [0, 1],

α(t) ≤
∫ 1

0
k(t, s, β(s)) (43)

and

β(t) ≥
∫ 1

0
k(t, s, α(s)). (44)

We also suppose that for all t, s ∈ [0, 1], k(t, s, .) is a decreasing function, that is,

x, y ∈ R, x ≤ y =⇒ k(t, s, x) ≥ k(t, s, y). (45)

Finally, let t, s ∈ [0, 1], x, y ∈ R such that for (x ≤ β0 and y ≥ α0) or (x ≥ α0 and y ≤ β0) or (x ≥ α0 and y ≥ α0)

|k(t, s, x) − k(t, s, y)| ≤
1
3
φ(|x − y|), (46)

where φ ∈ Φ. We take

W = {u ∈ X, α ≤ u ≤ β}.

Theorem 3.1. Under the assumptions (42)-(46), Problem (40) has one and only one solution u ∈ W.

Proof. Take

A1 = {u ∈ X, u ≤ β} and A2 = {u ∈ X, u ≥ α}.

A1 and A2 are G-closed. First, we shall check that

T(A1) ⊂ A2 and T(A2) ⊂ A1.

For all u ∈ A1, we have u(s) ≤ β(s). Using assumption (45), we get

k(t, s,u(s)) ≥ k(t, s, β(s))

for all t ∈ [0, 1]. Thus, from (43)

Tu(t) =

∫ 1

0
k(t, s,u(s))ds ≥

∫ 1

0
k(t, s, β(s)) ≥ α(t),
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so Tu ∈ A2.
Similarly, let u ∈ A2, we have u(s) ≥ α(s). Using again assumption (45), we get

k(t, s,u(s)) ≤ k(t, s, α(s))

for all t ∈ [0, 1]. Thus, from (43)

Tu(t) =

∫ 1

0
k(t, s,u(s))ds ≤

∫ 1

0
k(t, s, α(s)) ≤ β(t),

so Tu ∈ A1.
Now, let (u, v,w) ∈ A1 × A2 × A2, that is, for all t ∈ [0, 1]

u(t) ≤ β(t), v(t) ≥ α(t) and w(t) ≥ α(t).

This implies from condition (42) that for all t ∈ [0, 1],

u(t) ≤ β0, v(t) ≥ α0 and w(t) ≥ α0.

In view of (46) and above inequalities, we have

|Tu(t) − Tv(t)| ≤
∫ 1

0
|k(t, s,u(s) − k(t, s, v(s)|

≤
1
3

∫ 1

0
φ(|u(s) − v(s)|)ds

≤
1
3
φ(max

t∈[0,1]
|u(t) − v(t)|) ≤

1
3
φ(G∞(u, v,w)).

Therefore

max
t∈[0,1]

|Tu(t) − Tv(t)| ≤
1
3
φ(G∞(u, v,w)). (47)

Similarly, we have

max
t∈[0,1]

|Tv(t) − Tw(t)| ≤
1
3
φ(G∞(u, v,w)) (48)

and

max
t∈[0,1]

|Tw(t) − Tu(t)| ≤
1
3
φ(G∞(u, v,w)). (49)

Summing (47) to (49), we get

G∞(Tu,Tv,Tw) ≤ φ(G∞(u, v,w)). (50)

All hypotheses of Theorem 2.1 are satisfied and so T has a unique fixed point u ∈ A1 ∩ A2 =W, that is u is
the unique solution of the problem (40).
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