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Abstract. As duality is an important and interesting feature of optimization problems, in this paper,
we continue the effort of Long and Huang [X. J. Long, N. J. Huang, Optimality conditions for efficiency
on nonsmooth multiobjective programming problems, Taiwanese J. Math., 18 (2014) 687-699] to discuss
duality results of two types of dual models for a nonsmooth multiobjective programming problem using
convexificators.

1. Introduction

Considerable attention has been given recently to characterize the Pareto-optimality conditions for
multiobjective optimization problems, under various types of conditions. A number of optimzations are
actually multilbjective optimization problems, where the objectives are conflicting. As a result, there
is usually no single solution which optimize all objectives simultaneously. An important concept in
multiobjective programming problems is that of a Pareto optimal solution. Since the 1970s, a new branch
of optimization theory, nonsmooth optimization, has been the subject of intensive study. Nonsmooth
optimization refers to the general problem of minimizing (or maximizing) functions that are typically not
differentiable at their minimizers (or maximizers).

In recent years, there has been a growing interest in studying the development of optimality conditions
for nonsmooth multiobjective programming problems. Many authors established and employed some
different Kuhn-Tucker type necessary conditions or other type necessary conditions to research Pareto
optimal solutions; for a fairly extensive list of references dealing with various aspects of Kuhn-Tucker type
necessary conditions and other type necessary conditions the reader may consult [3, 8, 10, 11, 13] and
references therein.

Recently, the idea of convexificators has been employed to extend and strengthen various results in
nonsmooth analysis and optimization due to convexificators are in general closed sets unlike the well known
subdifferentials which are convex and compact. For a wealth of information pertaining to various aspects
of convexificators, the reader is referred to [2, 3, 5, 10, 11]. In [11], Li and Zhang derived stronger Kuhn-
Tucker type necessary optimality conditions that are expressed in terms of upper convexificators for an
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inequality constrained nonsmooth multiobjective optimization problem, where the objective functions are
directionally differentiable. Moreover, Li and Zhang[11] also presented the relationship between different
types of constraint qualifications. Very recently, the results established by Li and Zhang [11] have been
generalized by Long and Huang [10] for a large class of nonsmooth multiobjective programming problems
without assuming that the objective functions are directionally differentiable.

Duality is a fruitful theory in mathematical programming and is useful both theoretically and practi-
cally. In the recent past many authors have made contributions in the development of duality theory for
nonsmooth multiobjective programming problems (see, for example, [1, 4, 6–8]). Gulati and Agarwal [4]
discussed the optimality conditions and duality theorems for a nonsmooth multiobjective programming
under generalized (F, α, π, d)-type I functions. In [1], Ahmad and Sharma introduced a new class of (F, ρ, σ)-
type I functions for a nonsmooth multiobjective program and derived optimality conditions and duality
theorems.

Motivated by what have been mentioned above, the purpose of the present paper is to extend the corre-
sponding one in recent results of Long and Huang [10] to discuss two types dual models for a nonsmooth
multiobjective programming problem. Moreover, this paper extends earlier works, in which duality results
have been obtained for a nonsmooth multiobjective programming problem by applying convexity, general-
ized convexity assumptions imposed on functions involved in a nonsmooth multiobjective programming
problem (see, for example, [1, 4, 7, 8]).

This paper is structured as follows. After a short introduction, in Section 2 we recall some basic tools and
several auxiliary results from nonsmooth analysis. In Section 3 and 4 we describing duality relations. More
precisely, we explore a type of Wolfe dual problem in Section 3, and a type of Mond-Weir dual problem in
Section 4. Finally, some concluding remarks are given in Section 5.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ be its nonnegative orthant. In the sequel, we use

the following conventions for vectors in Rn:
x 5 y if and only if xi 5 yi, for all i = 1, 2, ...,n;
x ≤ y if and only if xi 5 yi, for all i = 1, 2, ...,n and x , y;
x < y if and only if xi < yi, for all i = 1, 2, ...,n.

We consider the following nonsmooth multiobjective programming problem:
(VP) Minimize f (x) = ( f1(x), f2(x), ..., fp(x)),

subject to 1(x) = (11(x), 12(x), ..., 1m(x)) 5 0,
where f : X→ Rp and 1 : X→ Rm are locally Lipschitz functions on a real Banach space X. Let I = {1, 2, ..., p},
and let J = {1, 2, ...,m} be any index set. Let D = {x ∈ X|1 j(x) 5 0, j ∈ J} denote the set of all feasible solutions
of (VP). For such vector optimization problems, the solution is defined in terms of a Pareto optimal solution
(efficient solution) in the following sense.

Definition 2.1. A feasible point x̄ is said to be a Pareto optimal solution (efficient solution) for (VP) if and only if
there exists no x ∈ D such that f (x) ≤ f (x̄).

Throughout this paper, we assume that X is a real Banach space. The dual space of X is denoted by X∗

and is equipped with weak∗ topology (A weak∗ topology on X∗ is defined as the weak topology generated
by X, viewed as a subset of X∗∗, where X∗∗ is the dual of X∗). The closure of a nonempty subset S of the
Banach space X is denoted by clS, the convex hull and the closed convex hull of S are denoted respectively
by coS and clcoS.

We first recall the notion of the contingent cone which is defined in Ursescu [14].

Definition 2.2. The contingent cone or Bouligand cone to the subset S of X at x ∈ clS is the set defined by

T(S, x) = {v ∈ X|∃(tn, vn)→ (0+, v) such that x + tnvn ∈ S}.
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Observe that T(S, x) is a closed cone in X.

We define upper and lower Dini directional derivative as follows.
Let h : X→ R be a real-valued function.

h−(x, d) = lim
t→0+

inf
h(x + td) − h(x)

t
,

h+(x, d) = lim
t→0+

sup
h(x + td) − h(x)

t

denote, respectively, the lower and upper Dini directional derivatives of h at x ∈ X in the direction d ∈ X.

It is clear from the Long and Huang [10] that, the optimality conditions expressed in terms of upper
convexificators or upper semiregular convexificators for the optimization problems involving locally Lip-
schitz functions are sharper than those expressed in terms of Clarke subdifferentials. Now, we begin with
the definitions of convexificators given by Jeyakumar and Luc [5].

Definition 2.3. A function h : X→ R is said to admit a lower convexificator ∂∗h(x) ⊆ X∗ at x ∈ X if ∂∗h(x) is weak∗

closed and
h+(x, d) = inf

x∗∈∂∗h(x)
〈x∗, d〉 , ∀d ∈ X,

where 〈., .〉 denotes the inner product of the vectors.

Definition 2.4. A function h : X → R is said to admit an upper convexificator ∂∗h(x) ⊆ X∗ at x ∈ X if ∂∗h(x) is
weak∗ closed and

h−(x, d) 5 sup
x∗∈∂∗h(x)

〈x∗, d〉 , ∀d ∈ X.

A weak∗ closed set ∂∗h(x) is said to be a convexificator of h at x if it is both an upper and lower
convexificator of h at x.

Remark 2.5. [2] convexificators are not necessarily weak∗ compact or convex.

Definition 2.6. A function h : X → R is said to admit an upper semiregular convexificator ∂∗h(x) ⊆ X∗ at x ∈ X if
∂∗h(x) is weak∗ closed and

h+(x, d) 5 sup
x∗∈∂∗h(x)

〈x∗, d〉 , ∀d ∈ X. (1)

If equality holds in (1), then ∂∗h(x) is called an upper regular convexificator of h at x.

Remark 2.7. Since h−(x, d) 5 h+(x, d), for all d ∈ X, an upper semiregular convexificator is an upper convexificator
of h at x. But the converse is not true (see, Dutta and Chandra [3]).

Also, It is clear from the above that every upper regular convexificator of h at x is an upper convexificator of h at x.

Remark 2.8. [5] Let ∂∗h(x) be an upper regular convexificator of h at x. Then for all λ > 0, λ∂∗h(x) is an upper
regular convexificator of λh at x.

Lemma 2.9. [5] Assume that the functions h1, h2 : X → R admit upper convexificators ∂∗h1(x) and ∂∗h2(x) at x,
respectively, and that one of the convexificators is upper regular at x. Then, ∂∗h1(x)+∂∗h2(x) is an upper convexificator
of h1 + h2 at x.

We give below the definitions of strong pseudoconvex and quasiconvex functions with the tool upper
Dini derivtive.
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Definition 2.10. [11] A function h : X→ R is said to be strong pseudoconvex at x̄ ∈ X if, for all x ∈ X,

h(x) < h(x̄)⇒ h+(x̄, x − x̄) < 0,

equivalently
h+(x̄, x − x̄) = 0⇒ h(x) = h(x̄).

Definition 2.11. [10] A function h : X→ R is said to be quasiconvex at x̄ ∈ X if, for all x ∈ X,

h(x) 5 h(x̄)⇒ h+(x̄, x − x̄) 5 0,

equivalently
h+(x̄, x − x̄) > 0⇒ h(x) > h(x̄).

Let x ∈ D. On the lines of Li and Zhang [11], for each i ∈ I, define the sets
Q(x) = {y ∈ X| f (y) 5 f (x) and 1(y) 5 0},
Qi(x) = {y ∈ X| fk(y) 5 fk(x), k ∈ I \ {i} and 1(y) 5 0},
Qi(x) = Q(x), if p = 1,
C(Q(x), x) = {d ∈ X| f−i (x, d) 5 0, i ∈ I, and 1−j (x, d) 5 0, j ∈ J(x)},
C(Qi(x), x) = {d ∈ X| f−k (x, d) 5 0, k ∈ I \ {i}, and 1−j (x, d) 5 0, j ∈ J(x)}.

By using above notation Long and Huang [10] derived following Lemma 2.12, which shows that the
relationship between the tangent cones T(Qi(x), x) and the set C(Q(x), x).

Lemma 2.12. Let x ∈ D. If f−i (x, .) and 1−j (x), with i ∈ I and j ∈ J(x), are convex functions on X, then,⋂
i∈I

clcoT(Qi(x), x) ⊆ C(Q(x), x).

It is well known (see, for example, [7, 9]) that the Kuhn-Tucker conditions are necessary for optimality in
such vector optimization problems (VP) under the assumption that a suitable constraint qualification is
fulfilled. We use the following generalized Guignard constraint qualification (GGCQ) in the sequel of the
paper.

Definition 2.13. [11] For problem (VP), the generalized Guignard constraint qualification (GGCQ) is said to hold
at a point x ∈ D if

C(Q(x), x) ⊆
⋂
i∈I

clcoT(Qi(x), x).

The following Lemma 2.14 is important to derive stronger Kuhn-Tucker type conditions for problem
(VP).

Lemma 2.14. [11] Let x be an efficient solution to problem (VP). If f +
i0

(x, .) is concave for some i0 ∈ I, then{
d ∈ X| f +

i0 (x, .) < 0
}
∩

⋂
i∈I

clcoT(Qi(x), x) = ∅.

Using this lemma, the following result can be obtained (see [10]), which will be needed in the proof of
strong duality theorem.

Theorem 2.15. (Stronger Kuhn-Tucker Type Necessary Conditions). Let x̄ ∈ D be an efficient solution to problem
(VP). Assume that

(i) generalized Guignard constraint qualification (GGCQ) holds at x̄,
(ii) fi and 1 j admit respectively the upper semiregular convexificators ∂∗ fi(x̄) and upper convexificators ∂∗1 j(x̄),

with i ∈ I and j ∈ J,
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(iii) f +
i0

(x̄, .) is concave on X for some i0 ∈ I,
(iv) f +

i (x̄, .) is convex on X for all i ∈ I,
(v) 1−j (x̄, .) is convex on X for all j ∈ J(x̄),

(vi) there exist d ∈ X such that 1−j (x̄, d) < 0, for all j ∈ J(x̄).

Then, there exist vectors ᾱ ∈ Rp
+ with ᾱ , 0 and β̄ ∈ Rm

+ such that

0 ∈ cl

∑
i∈I

ᾱico∂∗ fi(x̄) +
∑
j∈J

β̄ jco∂∗1 j(x̄)

 ,
β̄ j1 j(x̄) = 0, j = 1, 2, ...,m.

3. Wolfe Duality

It is well-known that duality is a very elegant and important concept in the field of mathematical
programming as sometimes finding an initial feasible solution to the dual is much easier than finding one
for the primal. Wolfe [15] presented a dual problem with a primal non-linear programming problem and
proved various duality theorems under the assumptions of convexity. In this section, we consider the
following Wolf-type dual in terms of convexificators which is more general than the duals existing in the
literature.

(WD) maximize f (y) + βT1(y)e,

subject to

0 ∈ cl

∑
i∈I

αico∂∗ fi(y) +
∑
j∈J

β jco∂∗1 j(y)

 , (2)

α ∈ Rp, α > 0, αTe = 1, β ∈ Rm, β = 0,

where, e = (1, 1, ..., 1) ∈ Rp and the symbol T denotes the transpose of a matrix.
Let W denote the set of all feasible solutions of (WD). Further, we denote by Y the set Y = {y ∈ X|(y, α, β) ∈

W}.

Now, we will prove duality results for the pair of problems (VP) and (WD).

Theorem 3.1 (Weak Duality). Let x and (y, α, β) be feasible solutions of (VP) and (WD), respectively. Assume
that

(i) ∂∗ fi(y), i ∈ I and ∂∗1 j(y), j ∈ J are upper regular convexificators of fi(.), i ∈ I and 1 j(.), j ∈ J, respectively, at y
on D ∪ Y,

(ii)
∑

i∈I αi fi(.) +
∑

j∈J β j1 j(.) is a strong pseudoconvex at y on D ∪ Y.

Then f (x) � f (y) + βT1(y)e.

Proof. Suppose, contrary to the result that f (x) ≤ f (y) + βT1(y)e. This implies that for each i ∈ I,

fi(x) 5 fi(y) + βT1(y), (3)

with strict inequality holding for at least one index i0 ∈ I.
Using the feasibility of x in (VP) together with β ∈ Rm, β = 0, we obtain

βT1(x) 5 0. (4)
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Since α ∈ Rp, α > 0 and, then, using (3) together with (4), we obtain

αi fi(x) + αiβ
T1(x) 5 αi fi(y) + αiβ

T1(y), i ∈ I,

and for at least one i0 ∈ I,

αi0 fi0 (x) + αi0β
T1(x) < αi0 fi0 (y) + αi0β

T1(y).

Adding both sides of the above inequalities, we get∑
i∈I

αi fi(x) +
∑
j∈J

β j1 j(x)
∑
i∈I

αi <
∑
i∈I

αi fi(y) +
∑
j∈J

β j1 j(y)
∑
i∈I

αi. (5)

From the constraints of (WD), αTe = 1. Thus, (5) yields∑
i∈I

αi fi(x) +
∑
j∈J

β j1 j(x) <
∑
i∈I

αi fi(y) +
∑
j∈J

β j1 j(y). (6)

Since
∑

i∈I αi fi(.) +
∑

j∈J β j1 j(.) is a strong pseudoconvex at y on D ∪ Y, we have from (6),∑
i∈I

αi f +
i (y, x − y) +

∑
j∈J

β j1
+
j (y, x − y) < 0.

Since ∂∗ fi(y) and ∂∗1 j(y) are upper regular convexificators of fi(.), i ∈ I and 1 j(.), j ∈ J, respectively, at y on
D ∪ Y, we get∑

i∈I

αi sup
ξi∈∂∗ fi(y)

〈
ξi, x − y

〉
+

∑
j∈J

β j sup
ζ j∈∂∗1 j(y)

〈
ζ j, x − y

〉
< 0. (7)

Denote

C(y) =
∑
i∈I

αi∂
∗ fi(y) +

∑
j∈J

β j∂
∗1 j(y). (8)

As α ≥ 0, β = 0, it is clear from the Remark 2.8 and Lemma 2.9 that C(y) is an upper convexificator of∑
i∈I αi fi(.) +

∑
j∈J β j1 j(.).

By (7) and (8), it follows that

sup
δ∈C(y)

〈
δ, x − y

〉
=

∑
i∈I αi sup

ξi∈∂∗ fi(y)

〈
ξi, x − y

〉
+

∑
j∈J β j sup

ζ j∈∂∗1 j(y)

〈
ζ j, x − y

〉
< 0.

Thus,

sup
δ∈C(y)

〈
δ, x − y

〉
< 0. (9)

By the upper convexificator of C(y) and the usual calculus of support functions, we observe that

sup
δ∈C(y)

〈
δ, x − y

〉
= sup
δ∈clco(C(y))

〈
δ, x − y

〉
. (10)

From (9) and (10), we get〈
δ, x − y

〉
< 0, for all δ ∈ clco(C(y)),
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which in turn implies that

0 < clco

∑
i∈I

αi∂
∗ fi(y) +

∑
j∈J

β j∂
∗1 j(y)

 .
Since co(S1 + S2) = co(S1) + co(S2), where S1 and S2 are subsets of X∗. Therefore the above relation can
rewritten as

0 < cl

∑
i∈I

αico∂∗ fi(y) +
∑
j∈J

β jco∂∗1 j(y)

 ,
which contradicts (2). Hence the proof.

Now, we demonstrate the weak duality Theorem 3.1 by the following example.

Example 3.2. Consider the following multiobjective programming problem:

(VP) Minimize f (x) = ( f1(x), f2(x)),

subject to 1(x) 5 0,

where fi : R→ R, i = 1, 2, and 1 : R→ R are given by

f1(x) =

{
1 + x, if x > 0;
1 + x2, if x 5 0; f2(x) =

{
−1 + x

2 , if x > 0;
−1 + 3x2

2 , if x 5 0;

and 1(x) = 2 − x.
Clearly, the set of feasible solutions of (VP) is D = [2,∞).
The corresponding Wolfe-type dual is:

(WD) Maximize f (y) + β1(y)e,

subject to

0 ∈ cl

 2∑
i=1

αico∂∗ fi(y) + βco∂∗1(y)

 ,
where, α = (α1, α2) ∈ R2, α > 0, αTe = 1, β ∈ R, β = 0, and e = (1, 1) ∈ R2.
Now observe that, at y = 0, we have

f +
1 (y, x − y) = f +

1 (0, x) = max {0, x} ,

f +
2 (y, x − y) = f +

2 (0, x) = max
{
0,

x
2

}
,

1+(y, x − y) = 1+(0, x) = max {−x} .

Consider the set
∂∗ f1(0) = {0, 1}, ∂∗ f2(0) =

{
0,

1
2

}
and ∂∗1(0) = {−1} .

Also observe that, at y = 0, we have

max
x∗∈∂∗ f1(0)

〈
x∗, x − y

〉
= max

x∗∈∂∗ f1(0)
〈x∗, x〉 = max{0, x} = f +

1 (0, x).
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Thus it is clear that ∂∗ f1(0) = {0, 1} is an upper regular convexificator of f1 at y = 0. Similarly, we can verify that
∂∗ f2(0) =

{
0, 1

2

}
and ∂∗1(0) = {−1} are upper regular convexificators of f2 and 1 at y = 0, respectively.

Clearly, (y, α1, α2, β) =
(
0, 1

3 ,
2
3 , 0

)
is a feasible solution to (WD).

Now, by the Definition 2.10, it can be easily seen that
2∑

i=1
αi fi(.) + β1(.) is a strong pseudoconvex at y = 0.

For the feasible points x = 2 to (VP) and (y, α1, α2, β) =
(
0, 1

3 ,
2
3 , 0

)
to (WD), we observe that

( f1(x), f2(x)) = (3, 0) � ( f1(y), f2(y)) + β1(y)e = (1,−1).

This verifies the weak duality Theorem 3.1.

Theorem 3.3 (Strong Duality). Let x̄ be an efficient solution for (VP). Assume that the hypotheses of Theorem 2.15
hold. Then, there exist ᾱ ∈ Rp, β̄ ∈ Rm such that (x̄, ᾱ, β̄) is feasible for dual (WD) and the objective values of (VP)
and (WD) are equal. Further, if the hypotheses of weak duality Theorem 3.1 hold for all feasible solutions of (WD),
then (x̄, ᾱ, β̄) is an efficient solution of (WD).

Proof. Since x̄ is an efficient solution of (VP) and all the assumptions of Theorem 2.15 are satisfied, therefore,
there exist vectors 0 , ᾱ ∈ Rp

+ and β̄ ∈ Rm
+ such that

0 ∈ cl

∑
i∈I

ᾱico∂∗ fi(x̄) +
∑
j∈J

β̄ jco∂∗1 j(x̄)

 ,
β̄ j1 j(x̄) = 0, j = 1, 2, ...,m,

which yields that (x̄, ᾱ, β̄) is feasible for (WD) and the corresponding objective values are equal. If (x̄, ᾱ, β̄)
is not an efficient solution for (WD), then there exists a feasible solution (y, α, β) for (WD) such that

f (x̄) + β̄T1(x̄)e ≤ f (y) + βT1(y)e.

From β̄ j1 j(x̄) = 0, j = 1, 2, ...,m, we obtain the inequality

f (x̄) ≤ f (y) + βT1(y)e,

which contradicts the weak duality theorem (Theorem 3.1). Hence (x̄, ᾱ, β̄) is an efficient solution for
(WD).

4. Mond-Weir duality

In 1981, Mond and Weir [12] presented a new model for studying duality which allowed the weakening
of the convexity requirements for the objective and the constraint functions. In this section, we consider the
following Mond-Weir-type dual in terms of convexificators which is more general than the duals existing
in the literature.

(MWD) maximize f (y) = ( f1(y), f2(y), ..., fp(y)),

subject to

0 ∈ cl

∑
i∈I

αico∂∗ fi(y) +
∑
j∈J

β jco∂∗1 j(y)

 , (11)

β j1 j(y) = 0, j ∈ J, (12)

αi > 0, i ∈ I, β j = 0, j ∈ J.

Let W̃ denote the set of all feasible solutions of (MWD). Further, we denote by Ỹ the set Ỹ = {y ∈ X|(y, α, β) ∈
W̃}.

Now, we will prove duality results for the pair of problems (VP) and (MWD).
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Theorem 4.1 (Weak Duality). Let x and (y, α, β) be feasible solutions of (VP) and (MWD), respectively. Assume
that

(i) ∂∗ fi(y), i ∈ I and ∂∗1 j(y), j ∈ J are upper regular convexificators of fi(.), i ∈ I and 1 j(.), j ∈ J, respectively, at y
on D ∪ Ỹ,

(ii)
∑

i∈I αi fi(.) is a strong pseudoconvex at y on D ∪ Ỹ,
(iii) β j1 j(.), j ∈ J is a quasiconvex at y on D ∪ Ỹ.

Then f (x) � f (y).

Proof. Suppose, contrary to the result that f (x) ≤ f (y). This implies that for each i ∈ I,

fi(x) 5 fi(y),

with strict inequality holding for at least one index i0 ∈ I. Since αi > 0, i ∈ I, the above inequalities yield∑
i∈I

αi fi(x) <
∑
i∈I

αi fi(y). (13)

Since
∑

i∈I αi fi(.) is a strong pseudoconvex at y on D ∪ Ỹ, we have from (13),∑
i∈I

αi f +
i (y, x − y) < 0. (14)

As β j = 0, j ∈ J, from the feasibility of x and (y, α, β) for (VP) and (MWD), respectively, we obtain

β j1 j(x) 5 0 5 β j1 j(y), j ∈ J,

which by quasiconvexity of β j1 j(.), j ∈ J at y on D ∪ Ỹ, we get

β j1
+
j (y, x − y) 5 0, j ∈ J. (15)

On adding the inequalities (14) and (15), we have∑
i∈I

αi f +
i (y, x − y) +

∑
j∈J

β j1
+
j (y, x − y) < 0.

Now proceeding on the same lines as in Theorem 3.1, we see that

0 < cl

∑
i∈I

αico∂∗ fi(y) +
∑
j∈J

β jco∂∗1 j(y)

 ,
which contradicts (11). Hence the proof.

Theorem 4.2 (Strong Duality). Let x̄ be an efficient solution for (VP). Assume that the hypotheses of Theorem 2.15
hold. Then, there exist ᾱ ∈ Rp, β̄ ∈ Rm such that (x̄, ᾱ, β̄) is feasible for dual (MWD) and the objective values of
(VP) and (MWD) are equal. Further, if the hypotheses of weak duality Theorem 4.1 hold for all feasible solutions of
(MWD), then (x̄, ᾱ, β̄) is an efficient solution of (MWD).

Proof. Since x̄ is an efficient solution of (VP) and all the assumptions of Theorem 2.15 are satisfied, therefore,
there exist vectors 0 , ᾱ ∈ Rp

+ and β̄ ∈ Rm
+ such that

0 ∈ cl

∑
i∈I

ᾱico∂∗ fi(x̄) +
∑
j∈J

β̄ jco∂∗1 j(x̄)

 ,
β̄ j1 j(x̄) = 0, j = 1, 2, ...,m,

which yields that (x̄, ᾱ, β̄) is feasible for (MWD) and the corresponding objective values are equal. If (x̄, ᾱ, β̄)
is not an efficient solution for (MWD), then there exists a feasible solution (y, α, β) for (MWD) such that

f (x̄) ≤ f (y),

which contradicts the weak duality theorem (Theorem 4.1). Hence (x̄, ᾱ, β̄) is an efficient solution for
(MWD).
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5. Conclusion

In the present work, we have proposed Wolfe and Mond-Weir type dual problems for nonsmooth mul-
tiobjective programming problem, and examined weak and strong duality relations using convexificators.
It is well known that convexificator is a weaker generalization of the idea of subdifferentials and is a closed,
but not necessarily convex or compact, set unlike most existing subdifferentials in the literature (see, [3, 5]),
therefore, the results established in the paper extend duality results for nonsmooth multiobjective program-
ming problems in a fairly large number of earlier works (see, for example, [1, 4, 6–8]). It seems that the
techniques employed in this paper can be used in proving similarly results for the nonsmooth variational
and nonsmooth control problems, which will orient the future research of the authors.

Acknowledgment. The authors are highly thankful to anonymous referees for their valuable sugges-
tions/comments which have contributed to the final preparation of the paper.
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