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Abstract. Type-2 fuzzy sets (T2FSs) are the extension of type-1 fuzzy sets (T1FSs), which can convey more
uncertainty information in solving multi-criteria decision-making (MCDM) problems. Motivated by the
extension from interval numbers to triangular fuzzy numbers, three-trapezoidal-fuzzy-number-bounded
type-2 fuzzy numbers (TT2FNs) are defined on the basis of interval type-2 trapezoidal fuzzy numbers
(IT2TFNs), and they can convey more uncertainty information than T1FSs and IT2FSs. Moreover, the
drawbacks of the existing computational models of generalized fuzzy numbers are analyzed, and a new
computational model of fuzzy numbers is proposed, which is further extended to TT2FNs. Besides, a
MCDM method is proposed to deal with the evaluation information given in the form of TT2FNs. Finally,
an illustrative example and comparison analysis are provided to demonstrate the feasibility and validity of
the proposed method.

1. Introduction

In practice, decision-makers are usually required to choose the best alternative among several alterna-
tives. They evaluate each alternative under several criteria, and then the best alternatives are chosen. This
is so-called multi-criteria decision-making (MCDM) problem [1, 2]. In MCDM problems, if it is doubtless
that one of the alternatives is the best one under all criteria, then there is obviously no difficulty or dilemma.
However, this situation does not happen frequently. As a result, various kinds of schemes have been
proposed to assist decision-makers to solve MCDM problems and one of the most commonly used schemes
is the aggregation operator [3–10].

With the increasing complexity of decision-making environment and the limitation of decision-makers’
knowledge, it is tough to express their preference using exact numbers. Firstly, a number of methods
[11, 12] have been developed to cope with MCDM problems based on type-1 fuzzy sets (T1FSs) introduced
by Zadeh [13]. In a T1FS, each element’s membership degree is a crisp number in the interval [0, 1].
Subsequently, various extensions of T1FSs have emerged in order to depict the fuzziness and vagueness
of information as precisely as possible; these extensions include type-2 fuzzy sets (T2FSs) [14, 15], type-n
fuzzy sets [15], interval-valued fuzzy sets [15], intuitionistic fuzzy sets [16–19], interval-valued intuitionistic
fuzzy sets [20], hesitant fuzzy sets [21, 22], neutrosophic sets [23–25] and so on. These extensions differ from

2010 Mathematics Subject Classification. Primary 90B50; Secondary 03E72
Keywords. Multi-criteria decision-making, Generalized fuzzy number, Type-2 fuzzy set, Fuzzy ranking method, Interval type-2

fuzzy set
Received: 18 November 2014; Accepted: 03 February 2015
Communicated by Predrag Stanimirović
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each other when describing the membership degree and/or the non-membership degree of an element, and
focus on quantitative information. Fuzzy numbers are a special kind of fuzzy sets, and the relative studies
have been carried out [26–30].

Among these extensions of T1FSs, T2FSs, which have grades of membership being fuzzy themselves,
can describe the uncertain information in a three-dimensional (3D) model and are more flexible in handling
fuzzy MCDM problems [31, 32]. Mendel and John [33] gave a new representation of T2FSs, which can
be used to define the basic operations of T2FSs more easily. Thus, the studies related to T2FSs have been
widely carried out [34–37], including similarity measures, inclusion measures, entropy measures and so on.
Because of the computational simplification, Interval type-2 fuzzy sets (IT2FSs) are the widely used type of
T2FSs and have been successfully applied in fault tolerant system [38], expert system [39], control [40–42],
pattern recognition [43, 44], and so on. Besides, IT2FSs can be used as a fuzzy model of linguistic terms to
capture more uncertainties than T1FSs, and have been successfully applied to linguistic decision-making
problems [45–51].

Trapezoidal fuzzy numbers, such as type-1 trapezoidal fuzzy numbers (T1TFNs) and interval type-
2 trapezoidal fuzzy numbers (IT2TFNs), are the most widely used fuzzy numbers. The commonly used
arithmetic operations of IT2TFNs [45, 46, 52, 53] were defined based on those of T1TFNs [27, 29]. However, if
these arithmetic operations are combined with the corresponding ranking methods, especially considering
generalized fuzzy numbers, the monotonicity of the addition operation cannot be satisfied. In order to
solve this problem, a new computational model of fuzzy numbers, including the arithmetic operations and
a ranking method, will be proposed in this paper. What is more, the fact that all the secondary grades equal
to 1 means no new information is conveyed in the third dimension of an IT2FS, which restricts the capability
of IT2FSs to express more uncertain information. Accordingly, a new type of T2FSs will be introduced in
this paper, that is, three-trapezoidal-fuzzy-number-bounded type-2 fuzzy numbers (TT2FNs), which are
bounded and can be represented by three T1TFNs. Such an extension is inspired by the extension from
interval numbers to triangular fuzzy numbers, and can depict the uncertain information given in the form
of T2FSs more comprehensively than IT2TFNs.

The rest of paper is organized as follows. In Section 2, some basic concepts on fuzzy sets and fuzzy
numbers are reviewed. The arithmetic operations of fuzzy numbers are also discussed. In Section 3, a
new computational model of fuzzy numbers, including T1TFNs and IT2TFNs, are proposed, and some
properties are also analyzed. TT2FNs are defined in Section 4 and the corresponding operations are
developed. Section 5 contains a MCDM method based on the proposed TT2FNs. An illustrative example of
linguistic decision-making problems is given to show the feasibility and validity of the proposed approach
in Section 6, together with the comparison analysis with two existing methods. This paper is concluded in
Section 7.

2. Preliminaries

This section briefly reviews the definitions of T1FSs, T2FSs, IT2FSs, and fuzzy numbers. Some properties
of them are discussed as well.

2.1. Fuzzy sets
Definition 1 [13]. A T1FS A on the universe of discourse X can be characterized by its membership function
µA(x), and represented as follows:

A = {(x, µA(x))|∀x ∈ X, µA(x) ∈ [0, 1]}. (1)

Definition 2 [33]. A T2FS Ã on the universe of discourse X can be characterized by its membership function
µÃ(x,u), and represented as follows:

Ã = {((x,u), µÃ(x,u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]}, (2)

where 0 ≤ µÃ(x,u) ≤ 1, the subinterval Jx in the interval [0, 1] is called the primary membership of x,
and µÃ(x,u) is called the secondary membership function that defines the possibilities of the primary
membership.
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Uncertainty in the primary memberships of a T2FS Ã consists of a bounded region. This region is
called the footprint of uncertainty (FOU), denoted by FOU(Ã) = ∪x∈X Jx , and is the union of all primary
memberships [33]. For an arbitrary x′ ∈ X, the two-dimensional (2D) plane whose axes are Jx′ and whose
secondary function are µÃ(x′,u) is called a vertical slice of Ã. A specific Ã can be plotted in a 3D graph, as
shown in Figure 1.
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Figure 1: (a) A T2FS Ã in X, which are bounded by two triangular functions, and every vertical slice of Ã is a triangular fuzzy set;
(b) Ã and a vertical slice of Ã;
(c) A vertical slice of Ã where x = x′.

Definition 3 [54]. The 2D plane containing all primary membership whose secondary grades are greater
than or equal to the specific value α, denoted by Ãα, is called an α-plane of the T2FS Ã or a plane of Ã at
level α, i.e.,

Ãα = {(x,u) | µÃ(x,u) ≥ α, x ∈ X,u ∈ Jx}. (3)

IT2FSs are a special case of T2FSs, and all secondary membership grades of IT2FSs are equal to 1, i.e.,
µÃ(x,u) = 1. IT2FSs are the most widely used T2FSs because they are computationally simple to use [55].

Definition 4 [56]. An IT2FS Ã on the universe of discourse X can be characterized by its upper membership
function (UMF) and lower membership function (LMF), and denoted as follows:

Ã = {〈µAU (x), µAL (x)〉 | x ∈ X}, (4)

where AU is called the upper T1FS whose membership function µAU (x) = max{Jx} (x ∈ X) and AL is called
the lower T1FS whose membership function µAL (x) = min{Jx} (x ∈ X).

2.2. Fuzzy numbers
Fuzzy numbers are a special kind of fuzzy sets. A fuzzy number is a fuzzy set that are bounded, convex,

and its universe of discourse is the set of real numbers R [57]. Trapezoidal fuzzy numbers are the most
widely used fuzzy numbers. To distinguish this kind of fuzzy numbers defined in terms of T1FSs from the
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kind defined in terms of T2FSs, we call them type-1 trapezoidal fuzzy numbers (T1TFNs).

Definition 5 [57]. A fuzzy number, denoted by A = [a, b, c, d, h(A)], is a T1TFN, if its membership function
is given by:

µA(x) =


h(A) · x−a

b−a , a ≤ x < b;
h(A), b ≤ x ≤ c;
h(A) · d−x

d−c , c < x ≤ d;
0, otherwise,

(5)

where 0 < h(A) ≤ 1 is the height of the T1TFN A.
If h(A) = 1, then A is called a normal fuzzy number. If h(A) < 1, then A is called a non-normal fuzzy

number.
If a ≥ 0, then A is called a non-negative T1TFN. If b = c, then A is reduced to a type-1 triangular fuzzy

number (T1TrFN). If a = b and c = d, then A is reduced to an interval number. If a = b = c = d, then A is
reduced to a crisp number.

The graphical representation of T1TFNs is shown in Figure 2(a).
Definition 6 [27, 29]. Assume that A1 = [a11, a12, a13, a14, h(A1)] and A2 = [a21, a22, a23, a24, h(A2)] are two
arbitrary T1TFNs, and then the addition and multiplication operations for T1TFNs are defined as follows:

(1) Addition:

A1 + A2 = [a11 + a21, a12 + a22, a13 + a23, a14 + a24,min(h(A1), h(A2))];

(2) Multiplication:

A1 × A2 = [a11 · a21, a12 · a22, a13 · a23, a14 · a24,min(h(A1), h(A2))].

Definition 7 [58]. Let Ã = 〈AU; AL
〉 = 〈aU

1 , a
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4 , h(AU); aL

1 , a
L
2 , a

L
3 , a

L
4 , h(AL)〉 be an IT2FS on the set of real

numbers R. Ã is a interval type-2 trapezoidal fuzzy number (IT2TFN) if its upper membership function
µAU (x) and lower membership function µAL (x) are defined as below:

µAU (x) =


h(AU) ·

x−aU
1

aU
2 −aU

1
, aU

1 ≤ x < aU
2 ;

h(AU), aU
2 ≤ x ≤ aU

3 ;

h(AU) ·
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4 −x
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4 −aU
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, aU

3 < x ≤ aU
4 ;

0, otherwise,

µAL (x) =


h(AL) ·

x−aL
1
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1
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2 ;

h(AL), aL
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3 ;

h(AL) ·
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3
, aL
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4 ;

0, otherwise.

(6)

The graphical representation of T1TFNs is shown in Figure 2(b).
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For MCDM problems based on IT2TFNs, though several methods have been reported [45, 46, 52, 53],
they use the same arithmetic operations for IT2TFNs, which are defined based on Definition 6.

Definition 8 [45, 46, 52, 53]. Let Ã1 = 〈AU
1 ; AL

1〉 = 〈aU
11, a

U
12, a

U
13, a

U
14, h(AU

1 ); aL
11, a

L
12, a

L
13, a

L
14, h(AL

1)〉 and Ã2 =

〈AU
2 ; AL

2〉 = 〈aU
21, a

U
22, a

U
23, a

U
24, h(AU

2 ); aL
21, a

L
22, a

L
23, a

L
24, h(AL

2)〉 be two IT2TFNs, and then the addition and multi-
plication operations for IT2TFNs are defined as follows:

(1) Addition:

Ã1 + Ã2 =〈aU
11 + aU

21, a
U
12 + aU

22, a
U
13 + aU

23, a
U
14 + aU

24,min(h(AU
1 ), h(AU

2 ));

aL
11 + aL

21, a
L
12 + aL

22, a
L
13 + aL

23, a
L
14 + aL

24,min(h(AL
1), h(AL

2))〉;

(2) Multiplication:

Ã1 × Ã2 =〈aU
11 · a

U
21, a

U
12 · a

U
22, a

U
13 · a

U
23, a

U
14 · a

U
24,min(h(AU

1 ), h(AU
2 ));

aL
11 · a

L
21, a

L
12 · a

L
22, a

L
13 · a

L
23, a

L
14 · a

L
24,min(h(AL

1), h(AL
2))〉.

2.3. The ranking methods of fuzzy numbers
Several computational models of fuzzy numbers, including T1TFNs and IT2TFNs, have been proposed,

but they are possibly unreasonable when applied to MCDM problems. A computational model of fuzzy
numbers usually involves their arithmetic operations and a ranking method. In the related literatures,
we have found that the arithmetic operations for fuzzy numbers are almost the same as those given in
Definitions. 6 and 8, but the ranking methods differ with each other. Subsequently, we are going to analyze
the shortcomings of existing computational models of fuzzy numbers.

When a new ranking method is proposed, some specific examples are used to demonstrate its advantages
or feasibility. However, the arithmetic operations are also essential when justifying the reasonability of the
ranking method, but fail to be taken into consideration in the existing studies of fuzzy numbers, especially
generalized fuzzy numbers (non-normal fuzzy numbers). For example, for four fuzzy numbers, ã1, ã2, ã3
and ã4, where ã1 > ã3 and ã2 > ã4, ã1 + ã2 ≤ ã3 + ã4 is obviously unreasonable but ã1 + ã2 > ã3 + ã4 is acceptable,
because of the monotonicity of the addition operation. However, we have found that most ranking methods
for generalized fuzzy numbers, combined with the addition operation given in Definition 6, cannot satisfy
the property of monotonicity, which can be illustrated in Example 1.
Example 1. Let Ai (i = 1, 2, 3, 4) be four T1TFNs that are generalized fuzzy numbers. A1 = [1, 2, 3, 4, 0.8],
A2 = [2, 3, 4, 5, 0.3], A3 = [2, 3, 3, 4, 0.4] and A4 = [2, 2.5, 4, 5, 0.3]. If the addition operation given in Definition
6 is used, A5 = A1 + A2 = [3, 5, 7, 9, 0.3] and A6 = A3 + A4 = [4, 5.5, 7, 9, 0.3]. The ranking results by using
different ranking methods are shown in Table 1. We can find that the ranking methods given in [59–62]
can get the same ranking results, that is, A1 � A3, A2 � A4, but A5 = A1 + A2 ≺ A3 + A4 = A6, which do
contradict with the property of monotonicity.

Table 1: Ranking results by using different ranking methods of T1TFNs
Ranking methods Ranking values Rankings

A1 A2 A3 A4 A5 A6
Chen and Chen’s 0.1943 0.1020 0.1222 0.0976 0.1554 0.1717 A1 � A6 � A5 � A3 � A2 � A4

method [59]
Chu and Tsao’s 1.0000 0.5250 0.6000 0.5021 0.9000 0.9533 A1 � A6 � A5 � A3 � A2 � A4

method [61]
Xu et al’s 0.2614 0.2456 0.2424 0.2368 0.4211 0.4474 A6 � A5 � A1 � A2 � A3 � A4

method [62]
Chen and Sanguansat’s 0.2614 0.2456 0.2424 0.2368 0.4211 0.4474 A6 � A5 � A1 � A2 � A3 � A4

method [60]

Example 2. Let Ai (i = 1, 2, 3, 4) be four T1TFNs that are generalized fuzzy numbers. A1 = [1, 3, 3, 4, 0.4],
A2 = [2, 3, 3, 5, 1], A3 = [1, 3, 3, 4, 0.3] and A4 = [2, 2.5, 4, 5, 0.3]. According to Definition 6, A5 = A1 + A2 =
[3, 6, 6, 9, 0.4] and A6 = A3 + A4 = [3, 5.5, 7, 9, 0.3]. The ranking results by using the ranking method given in
[63] are shown in Table 2. If α = 0, A1 ≺ A3, A2 ≺ A4, and A5 ≺ A6; if α = 1, A1 � A3, A2 � A4, but A5 ≺ A6.
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Therefore, the ranking method [63] cannot always satisfy the property of monotonicity.

Table 2: Ranking results by using the ranking method of T1TFNs given in [63]
Decision-makers’ Ranking values Rankings

optimism (α) A1 A2 A3 A4 A5 A6
0 0.0237 0.0430 0.0300 0.0465 0.1144 0.1188 A6 � A5 � A4 � A2 � A3 � A1
1 0.0980 0.1387 0.0929 0.1310 0.2671 0.3027 A6 � A5 � A2 � A4 � A1 � A3

Example 3. Assume A1 = [3, 3, 6, 9, 0.3] and A2 = [3, 5, 7, 9, 0.3] are T1TFNs. Their centroid points are the
same and are (6, 1, 5). Using the ranking method proposed by Wang and Lee [64], A1 = A2 and this is
obviously unreasonable as well.

3. A New Computational Model of Fuzzy Numbers

In this section, a new computational model of T1TFNs and IT2TFNs will be built to overcome the
shortcomings discussed in Subsection 2.3. Some properties of the proposed model will also be discussed.

3.1. The computational model of T1TFNs
On the basis of the basic operations of triangular intuitionistic fuzzy numbers given in [65], the basic

operations of T1TFNs are put forward as follows.
Definition 9. Let A1 = [a11, a12, a13, a14, h(A1)] and A2 = [a21, a22, a23, a24, h(A2)] be two arbitrary non-negative
T1TFNs and λ ≥ 0. Then some arithmetic operations for them can be defined as follows:

(1) Addition:

A1 + A2 = [a11 + a21, a12 + a22, a13 + a23, a14 + a24,
h(A1) · ‖A1‖ + h(A2) · ‖A2‖

‖A1‖ + ‖A2‖
],

where ‖A1‖ = a11+a12+a13+a14
4 and ‖A2‖ = a21+a22+a23+a24

4 ;
(2) Scalar multiplication:

λA1 = [λa11, λa12, λa13, λa14, h(A1)];

(3) Multiplication:

A1 × A2 = [a11 · a21, a12 · a22, a13 · a23, a14 · a24, h(A1) · h(A2)];

(4) Exponentiation:

Aλ
1 = [(a11)λ, (a12)λ, (a13)λ, (a14)λ, (h(A1))λ].

Property 1. Let Ai = [ai1, ai2, ai3, ai4, h(Ai)] (i = 1, 2, 3) be three non-negative T1TFNs, and then the arithmetic
operations in Definition 9 can satisfy the following properties:

(1) A1 + A2 = A2 + A1;
(2) (A1 + A2) + A3 = A1 + (A2 + A3);
(3) A1 × A2 = A2 × A1;
(4) (A1 × A2) × A3 = A1 × (A2 × A3);
(5) λ1A1 + λ2A1 = (λ1 + λ2)A1, (λ1, λ2 ≥ 0);
(6) λA1 + λA2 = λ(A1 + A2), (λ ≥ 0);
(7) (A1)λ1 × (A1)λ2 = (A1)λ1+λ2 , (λ1, λ2 ≥ 0);
(8) (A1)λ × (A2)λ = (A1 × A2)λ, (λ ≥ 0).

Proof: (1), (3), (4), (7) and (8) of Property 1 are definitely true, and (2), (5) and (6) can be proven as below.
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(2)

(A1 + A2) + A3

=

[
a11 + a21, a12 + a22, a13 + a23, a14 + a24,

h(A1) · ‖A1‖ + h(A2) · ‖A2‖

‖A1‖ + ‖A2‖

]
+ [a31, a32, a33, a34, h(A3)]

=

[
a11 + a21 + a31, a12 + a22 + a32, a13 + a23 + a33, a14 + a24 + a34,

h(A1+2) · ‖A1+2‖ + h(A3) · ‖A3‖

‖A1+2‖ + ‖A3‖

]
,

where ‖A1+2‖ =
a11 + a21 + a12 + a22 + a13 + a23 + a14 + a24

4
= ‖A1‖+‖A2‖ and h(A1+2) =

h(A1) · ‖A1‖ + h(A2) · ‖A2‖

‖A1‖ + ‖A2‖
.

h(A1+2) · ‖A1+2‖ + h(A3) · ‖A3‖

‖A1+2‖ + ‖A3‖

=

h(A1)·‖A1‖+h(A2)·‖A2‖

‖A1‖+‖A2‖
· (‖A1‖ + ‖A2‖) + h(A3) · ‖A3‖

(‖A1‖ + ‖A2‖) + ‖A3‖

=
h(A1) · ‖A1‖ + h(A2) · ‖A2‖ + h(A3) · ‖A3‖

‖A1‖ + ‖A2‖ + ‖A3‖
.

Therefore, (A1 + A2) + A3 = [a11 + a21 + a31, a12 + a22 + a32, a13 + a23 + a33, a14 + a24 + a34, h(A(1+2)+3)], where
h(A(1+2)+3) = (h(A1) · ‖A1‖ + h(A2) · ‖A2‖ + h(A3) · ‖A3‖)/(‖A1‖ + ‖A2‖ + ‖A3‖).

A1 + (A2 + A3)

= [a11, a12, a13, a14, h(A1)] +

[
a21 + a31, a22 + a32, a23 + a33, a24 + a34,

h(A2) · ‖A2‖ + h(A3) · ‖A3‖

‖A2‖ + ‖A3‖

]
=

[
a11 + a21 + a31, a12 + a22 + a32, a13 + a23 + a33, a14 + a24 + a34,

h(A1) · ‖A1‖ + h(A2+3) · ‖A2+3‖

‖A1‖ + ‖A2+3‖

]
,

where h(A2+3) =
h(A2) · ‖A2‖ + h(A3) · ‖A3‖

‖A2‖ + ‖A3‖
and ‖A2+3‖ = ‖A2‖ + ‖A3‖.

Similarly,

h(A1+(2+3)) =
h(A1) · ‖A1‖ + h(A2+3) · ‖A2+3‖

‖A1‖ + ‖A2+3‖

=
h(A1) · ‖A1‖ + h(A2) · ‖A2‖ + h(A3) · ‖A3‖

‖A1‖ + ‖A2‖ + ‖A3‖
= h(A(1+2)+3).

Therefore, (A1 + A2) + A3 = A1 + (A2 + A3).
(5)

λ1A1 + λ2A1

= [λ1a11, λ1a12, λ1a13, λ1a14, h(A1)] + [λ2a11, λ2a12, λ2a13, λ2a14, h(A1)]

=

[
λ1a11 + λ2a11, λ1a12 + λ2a12, λ1a13 + λ2a13, λ1a14 + λ2a14,

h(A1) · (λ1 · ‖A1‖) + h(A1) · (λ2 · ‖A1‖)
(λ1 · ‖A1‖) + (λ2 · ‖A1‖)

]
= [(λ1 + λ2)a11, (λ1 + λ2)a12, (λ1 + λ2)a13, (λ1 + λ2)a14, h(A1)]
= (λ1 + λ2)A1
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(6)

λA1 + λA2 =[λa11, λa12, λa13, λa14, h(A1)] + [λa21, λa22, λa23, λa24, h(A2)]

=

[
λa11 + λa21, λa12 + λa22, λa13 + λa23, λa14 + λa24,

h(A1) · (λ · ‖A1‖) + h(A2) · (λ · ‖A2‖)
(λ · ‖A1‖) + (λ · ‖A2‖)

]
=

[
λ(a11 + a21), λ(a12 + a22), λ(a13 + a23), λ(a14 + a24),

h(A1) · ‖A1‖ + h(A2) · ‖A2‖

‖A1‖ + ‖A2‖

]
=λ(A1 + A2)

Definition 10. Let A = [a1, a2, a3, a4, h(A)] be an arbitrary non-negative T1TFN, and then the expected value
of A is defined as

Eλ(A) =
h(A) · [(1 − λ)(a1 + a2) + λ(a3 + a4)]

2
, (7)

where λ ∈ [0, 1] is the index of optimism which represents decision-makers’ optimistic attitude. If the
decision-maker is optimistic, then λ > 0.5; if the decision-maker is pessimistic, then λ < 0.5; for a moderate
decision-maker, λ = 0.5. Usually 0.5 is used as the default value of λ.

Theorem 1. Let A = [a1, a2, a3, a4, h(A)] be an arbitrary non-negative T1TFN.
(1) a1 · h(A) ≤ E0(A), E1(A) ≤ a4 · h(A) and E0.5(A) = h(A) · ‖A‖;
(2) Eλ(A) ≤ Eλ′ (A) if λ ≤ λ′ and λ, λ′ ∈ [0, 1];
(3) If A is a crisp number, that is, a1 = a2 = a3 = a4, then Eλ(A) = a1 · h(A), which is independent of λ.

Proof: According to the feature of T1TFNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4.
E0(A) = 1

2 · h(A) · (a1 + a2) ≥ 1
2 · h(A) · (a1 + a1) = a1 · h(A).

E1(A) = 1
2 · h(A) · (a3 + a4) ≤ 1

2 · h(A) · (a4 + a4) = a4 · h(A).
E0.5(A) = 1

2 h(A) · [0.5(a1 + a2) + 0.5(a3 + a4)] = h(A) · ‖A‖.

Eλ′ (A) − Eλ(A)

=
1
2

h(A) · [(1 − λ′)(a1 + a2) + λ′(a3 + a4) − (1 − λ)(a1 + a2) − λ(a3 + a4)]

=
1
2

h(A) · [(λ − λ′)(a1 + a2) + (λ′ − λ)(a3 + a4)]

=
1
2

h(A) · (λ′ − λ)[(a3 + a4) − (a1 + a2)] ≥ 0.

Thus, Eλ(A) ≤ Eλ′ (A).
If a1 = a2 = a3 = a4, Eλ(A) = 1

2 h(A) · [(1 − λ)(a1 + a1) + λ(a1 + a1)] = a1 · h(A).

Theorem 2. Let Ai = [ai1, ai2, ai3, ai4, h(Ai)] (i = 1, 2) be two arbitrary non-negative T1TFNs, and then
E0.5(A1 + A2) = E0.5(A1) + E0.5(A2).
Proof: According to Theorem 1, E0.5(A1) = h(A1) · ‖A1‖ and E0.5(A2) = h(A2) · ‖A2‖.

E0.5(A1 + A2) =
1
2

h(A1) · ‖A1‖ + h(A2) · ‖A2‖

‖A1‖ + ‖A2‖
· [0.5 · (a11 + a21 + a12 + a22) + 0.5 · (a13 + a14 + a23 + a24)]

=
h(A1) · ‖A1‖ + h(A2) · ‖A2‖

‖A1‖ + ‖A2‖
· (‖A1‖ + ‖A2‖)

=h(A1) · ‖A1‖ + h(A2) · ‖A2‖

=E0.5(A1) + E0.5(A2)
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Definition 11. Let Ai = [ai1, ai2, ai3, ai4, h(Ai)] (i = 1, 2) be two arbitrary non-negative T1TFNs, and λ be the
index of optimism. If Eλ(A1) > Eλ(A2), then A1 �λ A2; if Eλ(A1) = Eλ(A2), then A1 ∼λ A2.
Example 4. Use the data of Example 1, that is, A1 = [1, 2, 3, 4, 0.8], A2 = [2, 3, 4, 5, 0.3], A3 = [2, 3, 3, 4, 0.4]
and A4 = [2, 2.5, 4, 5, 0.3]. According to Definition 9, A5 = A1 + A2 = [3, 5, 7, 9, 0.5083] and A6 = A3 + A4 =
[4, 5.5, 7, 9, 0.3471]. The corresponding expected values are shown in Table 3. The rankings indicate that the
proposed ranking method can satisfy the property of monotonicity.

Table 3: Expected values of Example 4 by using the proposed ranking method
λ A1 A2 A3 A4 A5 A6 Rankings
0 1.2000 0.7500 1.0000 0.6750 2.0332 1.6487 A1 �0 A3,A2 �0 A4,A1 + A2 �0 A3 + A4

0.2 1.5200 0.8700 1.0800 0.8100 2.4398 1.8743 A1 �0.2 A3,A2 �0.2 A4,A1 + A2 �0.2 A3 + A4
0.5 2.0000 1.0500 1.2000 1.0125 3.0500 2.2125 A1 �0.5 A3,A2 �0.5 A4,A1 + A2 �0.5 A3 + A4
0.8 2.4800 1.2300 1.3200 1.2150 3.6598 2.5512 A1 �0.8 A3,A2 �0.8 A4,A1 + A2 �0.8 A3 + A4
1 2.8000 1.3500 1.4000 1.3500 4.0664 2.7768 A1 �1 A3,A2 �1 A4,A1 + A2 �1 A3 + A4

Example 5. Use the data of Example 3, that is, A1 = [3, 3, 6, 9, 0.3] and A2 = [3, 5, 7, 9, 0.3]. E0(A1) = 1.35 >
E0(A2) = 1.2, E0.5(A1) = E0.5(A2) = 1.8 and E1(A1) = 2.25 < E1(A2) = 2.4. Thus, A1 �0 A2, A1 ∼0.5 A2 and
A1 ≺1 A2.

Theorem 3. Let Ai = [ai1, ai2, ai3, ai4, h(Ai)] (i = 1, 2, 3) be three non-negative T1TFNs. If A1 �0.5 A2, then
A1 + A3 �0.5 A2 + A3.
Proof: If A1 �0.5 A2, then E0.5(A1) > E0.5(A2).

E0.5(A1 + A3) − E0.5(A2 + A3) =E0.5(A1) + E0.5(A3) − (E0.5(A2) + E0.5(A3))
=E0.5(A1) − E0.5(A2) > 0.

Thus E0.5(A1 + A3) > E0.5(A2 + A3) and A1 + A3 �0.5 A2 + A3.
Based on the illustration and our comprehensive analysis, it is very likely that A1 + A3 �λ A2 + A3 can

hold if A1 �λ A2 and λ ∈ [0, 1]. Nevertheless, the proof is so complicated that the valid and efficient solution
has not been found.

3.2. The computational model of IT2TFNs

We now extend the computational model of T1TFNs to that of IT2TFNs.
Definition 12. Assume that Ã1 and Ã2 are two arbitrary non-negative IT2TFNs, and λ ≥ 0. Then some
arithmetic operations for them are defined as follows:

(1) Addition:

Ã1 + Ã2

=〈AU
1 + AU

2 ; AL
1 + AL

2〉

=〈aU
11 + aU

21, a
U
12 + aU

22, a
U
13 + aU

23, a
U
14 + aU

24,
h(AU

1 ) · ‖AU
1 ‖ + h(AU

2 ) · ‖AU
2 ‖

‖AU
1 ‖ + ‖AU

2 ‖
;

aL
11 + aL

21, a
L
12 + aL

22, a
L
13 + aL

23, a
L
14 + aL

24,
h(AL

1) · ‖AL
1‖ + h(AL

2) · ‖AL
2‖

‖AL
1‖ + ‖AL

2‖
〉,

where ‖AU
j ‖ =

aU
j1+aU

j2+aU
j3+aU

j4

4 and ‖AL
j ‖ =

aL
j1+aL

j2+aL
j3+aL

j4

4 ( j = 1, 2);
(2) Scalar multiplication:

λÃ1 =〈λAU
1 ;λAL

1〉

=〈λaU
11, λaU

12, λaU
13, λaU

14, h(AU
1 );λaL

11, λaL
12, λaL

13, λaL
14, h(AL

1)〉;
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(3) Multiplication:

Ã1 × Ã2 =〈AU
1 × AU

2 ; AL
1 × AL

2〉

=〈aU
11 · a

U
21, a

U
12 · a

U
22, a

U
13 · a

U
23, a

U
14 · a

U
24, h(AU

1 ) · h(AU
2 );

aL
11 · a

L
21, a

L
12 · a

L
22, a

L
13 · a

L
23, a

L
14 · a

L
24, h(AL

1) · h(AL
2)〉;

(4) Exponentiation:

(Ã1)λ =〈(AU
1 )λ; (AL

1)λ〉

=〈(aU
11)λ, (aU

12)λ, (aU
13)λ, (aU

14)λ, (h(AU
1 ))λ; (aL

11)λ, (aL
12)λ, (aL

13)λ, (aL
14)λ, (h(AL

1))λ〉.

Property 2. Let Ãi (i = 1, 2, 3) be three non-negative IT2TFNs, and then the arithmetic operations in
Definition 12 can satisfy the following properties:

(1) Ã1 + Ã2 = Ã2 + Ã1;
(2) (Ã1 + Ã2) + Ã3 = Ã1 + (Ã2 + Ã3);
(3) Ã1 × Ã2 = Ã2 × Ã1;
(4) (Ã1 × Ã2) × Ã3 = Ã1 × (Ã2 × Ã3);
(5) λ1Ã1 + λ2Ã1 = (λ1 + λ2)Ã1, (λ1, λ2 ≥ 0);
(6) λÃ1 + λÃ2 = λ(Ã1 + Ã2), (λ ≥ 0);
(7) Ã1

λ1
× Ã1

λ2 = Ã1
λ1+λ2 , (λ1, λ2 ≥ 0);

(8) Ã1
λ
× Ã2

λ
= (Ã1 × Ã2)λ, (λ ≥ 0).

The proof is omitted here.

Definition 13. Let Ã = 〈AU; AL
〉 = 〈aU

1 , a
U
2 , a

U
3 , a

U
4 , h(AU); aL

1 , a
L
2 , a

L
3 , a

L
4 , h(AL)〉 be an arbitrary non-negative

IT2TFN, and then the expected value of Ã is defined as

Ẽλ(Ã) =
Eλ(AU) + Eλ(AL)

2
, (8)

where λ ∈ [0, 1] is the index of optimism, which represents decision-makers’ optimistic attitude. If the
decision-maker is optimistic, then λ > 0.5; if the decision-maker is pessimistic, then λ < 0.5; for a moderate
decision-maker, λ = 0.5.

Theorem 4. Let Ãi = 〈AU
i ; AL

i 〉 (i = 1, 2) be two arbitrary non-negative T1TFNs, and then Ẽ0.5(Ã1 + Ã2) =

Ẽ0.5(Ã1) + Ẽ0.5(Ã2).
The proof of Theorem 4 is similar to Theorem 2 and omitted here.

Definition 14. Let Ãi = 〈AU
i ; AL

i 〉 (i = 1, 2) be two arbitrary non-negative IT2TFNs, and λ be the index of
optimism. If Eλ(Ã1) > Eλ(Ã2), then Ã1 �λ Ã2; if Eλ(Ã1) = Eλ(Ã2), then Ã1 ∼λ Ã2.

Example 6. Let Ã1 = 〈0.9, 2, 3, 4, 1; 1, 2, 3, 4, 0.9〉, Ã2 = 〈1, 2, 3, 4, 1; 1, 2, 3, 4, 0.4〉and Ã3 = 〈2, 3, 4, 5, 1; 2, 3, 4, 5, 0.4〉.
According to Definition 12, Ã1 + Ã3 = 〈2.9, 5, 7, 9, 1; 3, 5, 7, 9, 0.6083〉 and Ã2 + Ã3 = 〈3, 5, 7, 9, 1; 3, 5, 7, 9, 0.4〉.
Table 4 shows the ranking values and the corresponding ranking results by using different ranking methods
of IT2TFNs. The rankings obtained by using the proposed method can satisfy the property of monotonicity,
but those by using the methods given in [46] and [52] are not reasonable.
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Table 4: Ranking results by using different ranking methods of IT2TFNs
Ranking methods Ã1 Ã2 Ã3 Ã1 + Ã3 Ã2 + Ã3 Rankings

The proposed method (λ = 0) 1.40 1.05 1.75 3.19 2.80 A1 �0 A2,A1 + A3 �0 A2 + A3
The proposed method (λ = 0.5) 2.36 1.75 2.45 4.81 4.20 A1 �0.5 A2,A1 + A3 �0.5 A2 + A3
The proposed method (λ = 1) 3.33 2.45 3.15 6.43 5.60 A1 �1 A2,A1 + A3 �1 A2 + A3
Chen and Lee’s method [46] 17.70 16.76 22.77 30.86 36.92 A1 � A2,A1 + A3 ≺ A2 + A3

Chen et al’s method [52] 8.46 8.00 14.70 28.18 40.20 A1 � A2,A1 + A3 ≺ A2 + A3

Theorem 5. Let Ãi = 〈AU
i ; AL

i 〉 (i = 1, 2, 3) be three non-negative IT2TFNs. If Ã1 �0.5 Ã2, then Ã1 + Ã3 �0.5

Ã2 + Ã3.
The proof of Theorem 5 is similar to Theorem 3 and omitted here.
Similarly, based on the illustration and our comprehensive analysis, it is very likely that Ã1+Ã3 �λ Ã2+Ã3

can hold if Ã1 �λ Ã2 and λ ∈ [0, 1]. Nevertheless, the proof is so complicated that the valid and efficient
solution has not been found.

4. A New Type of Type-2 Fuzzy Sets

As is known to all, an IT2FS can be used to represent the FOU of a T2FS. However, the IT2FS is obtained
by setting all of the secondary membership grades of the T2FS to be 1, which means no new information
is conveyed in the third dimension of this T2FS. In this way, IT2FSs can greatly decrease the complexity of
T2FSs in modeling and calculation, but may confine the T2FSs’ ability in describing uncertain information.
Motivated by the extension from interval numbers to triangular fuzzy numbers, we propose the concept of
three-trapezoidal-fuzzy-number-bounded type-2 fuzzy numbers (TT2FNs) based on IT2TFNs, and develop
the corresponding operations in this section.

In the practical decision-making environment, if one decision-maker can provide the FOU of a variable
by using an IT2TFN, then it is easy for him to provide a T1TFN between the upper and lower membership
grades of this IT2TFN, which is thought to be the most possible value to represent this variable in an
uncertain domain. That is to say, if an IT2TFN is chosen as the FOU of a certain IT2FS and a T1TFN in the
FOU is chosen as the principal membership function, then a new type of T2FSs can be constructed and is
capable to capture more uncertainty than IT2TFNs.
Definition 15. A T2FS Ã∗ is called as a three-trapezoidal-fuzzy-number-bounded type-2 fuzzy number
(TT2FN) if the following conditions are satisfied:

(1) The FOU of Ã∗ is a IT2TFN, denoted by 〈AU; AL
〉, where 〈AU; AL

〉 = 〈aU
1 , a

U
2 , a

U
3 , a

U
4 , h(AU); aL

1 , a
L
2 , a

L
3 , a

L
4 ,

h(AL)〉;
(2) The principal membership function of Ã∗ is a T1TFN, denoted by AM, where AM = 〈aM

1 , a
M
2 , a

M
3 , a

M
4 ,

h(AM)〉;
(3) For any 0 ≤ α ≤ 1, its α-plane is

Ã∗α =〈aU
1 + α(aM

1 − aU
1 ), aU

2 + α(aM
2 − aU

2 ), aU
3 + α(aM

3 − aU
3 ),

aU
4 + α(aM

4 − aU
4 ), h(AU) + α(h(AM) − h(AU));

aL
1 + α(aM

1 − aL
1), aL

2 + α(aM
2 − aL

2), aL
3 + α(aM

3 − aL
3),

aL
4 + α(aM

4 − aL
4), h(AL) + α(h(AM) − h(AL))〉

In terms of Definition 15, a TT2FN Ã∗ can be identified by just three type-1 trapezoidal fuzzy mem-
bership functions: the UMF, the principal membership function and the LMF. Hence, a TT2FN Ã∗ can be
also denoted by Ã∗ = 〈AU; AM; AL

〉 = 〈aU
1 , a

U
2 , a

U
3 , a

U
4 , h(AU); aM

1 , a
M
2 , a

M
3 , a

M
4 , h(AM); aL

1 , a
L
2 , a

L
3 , a

L
4 , h(AL)〉. For an

arbitrary TT2FN Ã∗, if AU = AL, then Ã∗ reduces to a T1TFN. If aU
1 ≥ 0, then Ã∗ is a non-negative TT2FN.

For example, the TT2FN Ã∗ shown in Figure 3 (a) can be denoted by 〈0, 4, 6, 10, 1; 1, 4, 6, 9, 0.75; 2, 4, 6, 8, 0.5〉.
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Figure 3: A 3D graphical representation of a TT2FN and its α-plane

Definition 16. Assume that Ã∗1 and Ã∗2 are two arbitrary non-negative TT2FNs, and λ ≥ 0. Then some
arithmetic operations for them are defined as follows:

(1) Addition:

Ã∗1 + Ã∗2
=〈AU

1 + AU
2 ; AM

1 + AM
2 ; AL

1 + AL
2〉

=〈aU
11 + aU

21, a
U
12 + aU

22, a
U
13 + aU

23, a
U
14 + aU

24,
h(AU

1 ) · ‖AU
1 ‖ + h(AU

2 ) · ‖AU
2 ‖

‖AU
1 ‖ + ‖AU

2 ‖
;

aM
11 + aM

21, a
M
12 + aM

22, a
M
13 + aM

23, a
M
14 + aM

24,
h(AM

1 ) · ‖AM
1 ‖ + h(AM

2 ) · ‖AM
2 ‖

‖AM
1 ‖ + ‖AM

2 ‖
;

aL
11 + aL

21, a
L
12 + aL

22, a
L
13 + aL

23, a
L
14 + aL

24,
h(AL

1) · ‖AL
1‖ + h(AL

2) · ‖AL
2‖

‖AL
1‖ + ‖AL

2‖
〉,

where ‖AU
j ‖ =

aU
j1+aU

j2+aU
j3+aU

j4

4 , ‖AM
j ‖ =

aM
j1 +aM

j2 +aM
j3 +aM

j4

4 and

‖AL
j ‖ =

aL
j1+aL

j2+aL
j3+aL

j4

4 ( j = 1, 2);

(2) Scalar multiplication:

λÃ∗1 =〈λAU
1 ;λAM

1 ;λAL
1〉

=〈λaU
11, λaU

12, λaU
13, λaU

14, h(AU
1 );λaM

11, λaM
12, λaM

13, λaM
14, h(AM

1 );

λaL
11, λaL

12, λaL
13, λaL

14, h(AL
1)〉;



J. Wang et al. / Filomat 31:2 (2017), 431–450 443

(3) Multiplication:

Ã∗1 × Ã∗2 =〈AU
1 × AU

2 ; AM
1 × AM

2 ; AL
1 × AL

2〉

=〈aU
11 · a

U
21, a

U
12 · a

U
22, a

U
13 · a

U
23, a

U
14 · a

U
24, h(AU

1 ) · h(AU
2 );

aM
11 · a

M
21, a

M
12 · a

M
22, a

M
13 · a

M
23, a

M
14 · a

M
24, h(AM

1 ) · h(AM
2 );

aL
11 · a

L
21, a

L
12 · a

L
22, a

L
13 · a

L
23, a

L
14 · a

L
24, h(AL

1) · h(AL
2)〉;

(4) Exponentiation:

(Ã∗1)λ =〈(AU
1 )λ; (AM

1 )λ; (AL
1)λ〉

=〈(aU
11)λ, (aU

12)λ, (aU
13)λ, (aU

14)λ, (h(AU
1 ))λ;

(aM
11)λ, (aM

12)λ, (aM
13)λ, (aM

14)λ, (h(AM
1 ))λ;

(aL
11)λ, (aL

12)λ, (aL
13)λ, (aL

14)λ, (h(AL
1))λ〉.

Property 3. Let Ã∗i (i = 1, 2, 3) be three TT2FNs, and then the arithmetic operations in Definition 16 can
satisfy the properties listed in Property 2.

The proof is omitted here.
Definition 17. Let Ã∗ = 〈AU; AL

〉 = 〈aU
1 , a

U
2 , a

U
3 , a

U
4 , h(AU); aM

1 , a
M
2 , a

M
3 , a

M
4 , h(AM); aL

1 , a
L
2 , a

L
3 , a

L
4 , h(AL)〉 be an

arbitrary non-negative TT2FN, and then the expected value of Ã∗ is defined as

Ẽ∗λ(Ã∗) =
Eλ(AU) + Eλ(AM) + Eλ(AL)

2
, (9)

where λ ∈ [0, 1] is the index of optimism, which represents decision-makers’ optimistic attitude. If the
decision-maker is optimistic, then λ > 0.5; if the decision-maker is pessimistic, then λ < 0.5; for a moderate
decision-maker, λ = 0.5.
Definition 18. Let Ã∗ be an arbitrary TT2FN. Rλ(Ã∗) is called the ranking value of Ã∗ if

Rλ(Ã∗) =

∫ 1

0 Ẽ∗λ(Ã∗α) · f (α)dα∫ 1

0 f (α)dα
, (10)

where Ẽ∗λ(Ã∗α) is the expected value of the α-plane of Ã∗, and f : [0, 1] → [0,∞) is the weighting function
that can be chosen according to decision-makers’ preference at different levels of uncertainty of Ã∗.

In Definition 18, it can be found that the ranking value of Ã∗ is a weighted average of the expected
values of the α-planes of Ã∗. Thus, different ranking values can be obtained if different weighting functions
are chosen. In addition, the optimistic parameter λ can also influence the value of Rλ(Ã∗).

Several commonly used weighting functions are depicted in Figure 4 and the corresponding function
expression are shown as follows:

fa(x) = x, 0 ≤ x ≤ 1; fb(x) = 1 − x, 0 ≤ x ≤ 1;

fc(x) =


1, x < x1
x2−x
x2−x1

, x1 ≤ x ≤ x2

0, x > x2

; fd(x) =


0, x < x1
x−x1
x2−x1

, x1 ≤ x ≤ x2

1, x > x2

;

fe(x) =

1, x = 0
0, others

; f f (x) =

1, x = 1
0, others

;

f1(x) = 1 − e−
x

2σ , 0 ≤ x ≤ 1, σ > 0;
fh(x) = e−

x
2σ , 0 ≤ x ≤ 1, σ > 0;

fi(x) = 1, 0 ≤ x ≤ 1.
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Figure 4: Some commonly used weighting functions

In this paper, we take σ = 0.2 for f1 and fh.
fa indicates decision-makers assign more importance to the information at a higher plane during ranking.

That is, the preference degree increases gradually from level 0 to level 1. fb means decision-makers attach
more importance to the information at a lower level during ranking. fc and fd have the similar meanings to
fa and fb, and they are usually used to conduct the sensitivity analysis of the ranking results when different
weighting functions are used. fe means the sum of the expect values of AU and AL is considered as the
ranking value of Ã∗, while f f means decision-makers only care the information given via the principle
membership function of Ã∗. f1 and fh are two representatives of non-linear weighting functions. fi means
the ranking value Ã∗ is an arithmetic average of the expected values of all planes.

In the discrete case, we have

Rλ(Ã∗) =
Σn

i=1Ẽ∗λ(Ã∗αi
) · f (αi)

Σn
i=1 f (αi)

, (11)

where {αi ∈ [0, 1] | i = 1, 2, . . . ,n} is a set of discrete values in the interval [0, 1]. The formula given in the
discrete case is very useful in the practical application because in the continuous case the computation may
be a little complex sometimes.
Definition 19. Let Ã∗i = 〈AU

i ; AM
i ; AL

i 〉 (i = 1, 2) be two arbitrary non-negative TT2FNs, and λ be the index of
optimism. If Rλ(Ã∗1) > Rλ(Ã∗2), then Ã∗1 �λ Ã∗2; if Rλ(Ã∗1) = Rλ(Ã∗2), then Ã∗1 ∼λ Ã∗2.

5. A MCDM Method Based on TT2FNs

In this section, we will consider a MCDM problem in which a decision-maker is required to choose a
best alternative from a set of alternatives, denoted by A = {A1,A2, . . . ,Am} where Ai denotes the ith alter-
native. The criteria and the weight vector of criteria have been given by the decision-maker, denoted by
C = {c1, c2, . . . , cn} and W = {w1,w2, . . . ,wn}, respectively, where w j denotes the weight of the criterion c j,
satisfying w j ≥ 0 and

∑n
i= j w j = 1.

For the MCDM problem given above, we propose a MCDM method based on TT2FNs and describe it
as follows.
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Step 1: Construct the decision matrix D.

D = (d̃i j)m×n =


d̃11 d̃12 · · · d̃1n

d̃21 d̃22 · · · d̃2n
...

...
...

...
d̃m1 d̃m2 · · · d̃mn

 ,
where d̃i j = 〈dU

ij , d
M
ij , d

L
ij〉 is a non-negative TT2FN that denotes the evaluation value of the alternative Ai with

respect to the criterion c j.
Note that the decision matrix D constructed here must be a normalized decision matrix, i.e., all evaluation

values in D must comply with the rule that greater is better and they are given on a unified scale.
If the criterion c j is of the minimizing type, which means less is better, then all evaluation values

under this criterion should be normalized to its complementary set on the same scale. For example,
Ã∗ = 〈aU

1 , a
U
2 , a

U
3 , a

U
4 , h(AU); aM

1 , a
M
2 , a

M
3 , a

M
4 , h(AM); aL

1 , a
L
2 , a

L
3 , a

L
4 , h(AL)〉 is given in the interval [0, r], where r ∈ R+,

and then

(Ã∗)c = 〈r− aU
4 , r− aU

3 , r− aU
2 , r− aU

1 , h(AU); r− aM
4 , r− aM

3 , r− aM
2 , r− aM

1 , h(AM); r− aL
4 , r− aL

3 , r− aL
2 , r− aL

1 , h(AL)〉.

For the evaluation values that are given on a different scale, they need to be adjusted based on the
unified scale. For example, if the predefined or unified scale is the interval [0, r], while Ã∗12 is given in the
interval [0, r1]. Then we can normalize Ã∗12 by multiplying each element of Ã∗12 by r/r1.

Step 2: Aggregate the evaluation values of Ai (i = 1, 2, . . . ,m) under all criteria.
According to Definition 16, get the comprehensive evaluation value of Ai, denoted by CAi .

CAi = Σn
j=1w j · d̃i j.

Step 3: Obtain the ranking of the alternatives in terms of the ranking values of CAi (i = 1, 2, . . . ,m).
Choose the weighting function and index of optimism to calculate Rλ(CAi ). In terms of Definition 19,

rank all alternatives based on Rλ(CAi ).

6. Illustrative Example

6.1. The illustration of the proposed method
Assume that there are three cars to be evaluated under four criteria: ”Safety”, ”Price”, ”Appearance”

and ”Performance”; W = (0.4, 0.2, 0.1, 0.3) is the corresponding weight vector given by the decision-maker.
The set of the alternatives is denoted by A. Assume that the decision-maker uses the linguistic terms in the
linguistic term set S to express the evaluation information about the alternatives. The linguistic term set
and their corresponding IT2TFNs were given in [49, 50] and shown in Table 5.

For each linguistic term, the decision-maker can choose a T1TFN in this IT2TFN, which is thought to be
the most possible one to represent the linguistic value in the range defined by this IT2TFN. In this way, the
TT2FNs corresponding to each linguistic term can be constructed as shown in Table 6.

For each alternative under each criterion, the decision-maker select one linguistic term, and then the
linguistic evaluation values of all alternatives can be obtained and shown in Table 7.
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Table 5: Linguistic terms and their corresponding IT2TFNs
Linguistic terms IT2TFNs
Very low (VL) 〈0, 0, 0.14, 1.97, 1; 0, 0, 0.05, 0.66, 1〉

Low (L) 〈0, 0, 0.64, 2.63, 1; 0, 0, 0.09, 0.99, 1〉
Moderate low (ML) 〈0.59, 2, 3.25, 4.41, 1; 2.29, 2.7, 2.7, 3.21, 0.42〉

Moderate (M) 〈3.59, 4.75, 5.5, 6.91, 1; 4.86, 5.03, 5.03, 5.14, 0.27〉
Moderate high (MH) 〈5.38, 7.5, 8.75, 9.81, 1; 7.79, 8.22, 8.22, 8.81, 0.45〉

High (H) 〈7.37, 9.41, 10, 10, 1; 8.72, 9.91, 10, 10, 1〉
Very high (VH) 〈8.68, 9.91, 10, 10, 1; 9.61, 9.97, 10, 10, 1〉

Table 6: The linguistic terms and their corresponding TT2FNs
Linguistic terms IT2TFNs
Very low (VL) 〈0, 0, 0.14, 1.97, 1; 0, 0, 0.1, 1, 1; 0, 0, 0.05, 0.66, 1〉

Low (L) 〈0, 0, 0.64, 2.63, 1; 0, 0, 0.5, 1.5, 1; 0, 0, 0.09, 0.99, 1〉
Moderate low (ML) 〈0.59, 2, 3.25, 4.41, 1; 1, 2.5, 3, 4, 1; 2.29, 2.7, 2.7, 3.21, 0.42〉

Moderate (M) 〈3.59, 4.75, 5.5, 6.91, 1; 4, 5, 5, 6, 1; 4.86, 5.03, 5.03, 5.14, 0.27〉
Moderate high (MH) 〈5.38, 7.5, 8.75, 9.81, 1; 6.5, 8, 8.5, 9.5, 1; 7.79, 8.22, 8.22, 8.81, 0.45〉

High (H) 〈7.37, 9.41, 10, 10, 1; 8.5, 9.5, 10, 10, 1; 8.72, 9.91, 10, 10, 1〉
Very high (VH) 〈8.68, 9.91, 10, 10, 1; 9, 9.95, 10, 10, 1; 9.61, 9.97, 10, 10, 1〉

Table 7: The evaluation values given by the decision-maker
Alternatives Safety Price Appearance Performance

A1 MH H VH VH
A2 H MH H H
A3 VH VH M H

Now the proposed MCDM method is employed to assist the decision-maker to choose the most desirable
alternative. The details are described as follows.

Step 1: Construct the decision matrix D, on the basis of the data given in Tables 6 and 7.

D =


d̃11 d̃12 d̃13 d̃14

d̃21 d̃22 d̃23 d̃24

d̃31 d̃32 d̃33 d̃34

 ,
where

d̃11 =d̃11

=〈5.38, 7.5, 8.75, 9.81, 1; 6.5, 8, 8.5, 9.5, 1; 7.79, 8.22, 8.22, 8.81, 0.45〉,

d̃12 =d̃21 = d̃23 = d̃24 = d̃34

=〈7.37, 9.41, 10, 10, 1; 8.5, 9.5, 10, 10, 1; 8.72, 9.91, 10, 10, 1〉,

d̃13 =d̃14 = d̃31 = d̃32

=〈8.68, 9.91, 10, 10, 1; 9, 9.95, 10, 10, 1; 9.61, 9.97, 10, 10, 1〉, and

d̃33 =〈3.59, 4.75, 5.5, 6.91, 1; 4, 5, 5, 6, 1; 4.86, 5.03, 5.03, 5.14, 0.27〉.

All criteria in this case are of the maximizing type and all TT2FNs are given on the unified scale, therefore
no normalization is required.
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Step 2: Aggregate the evaluation values of Ai (i = 1, 2, 3) under all criteria.

CA1 =Σ4
j=1w j · d̃1 j

=〈7.0980, 8.8460, 9.5000, 9.9240, 1.0000; 7.9000, 9.0800, 9.4000, 9.8000,
1.0000; 8.7040, 9.2580, 9.2880, 9.5240, 0.8023〉

CA2 =〈6.9720, 9.0280, 9.7500, 9.9620, 1.0000; 8.1000, 9.2000, 9.7000, 9.9000,
1.0000; 8.5340, 9.5720, 9.6440, 9.7620, 0.9031〉

CA3 =〈7.7780, 9.2440, 9.5500, 9.6910, 1.0000; 8.3500, 9.3200, 9.5000, 9.6000,
1.0000; 8.8680, 9.4580, 9.5030, 9.5140, 0.9608〉

Step 3: Obtain the ranking of the alternatives in terms of the ranking values of CAi (i = 1, 2, 3).
If fi(x) = 1(0 ≤ x ≤ 1) is chosen as the weighting function, the ranking values of alternatives with the

change of the index of optimism λ from 0 to 1 are shown in Figure 5 (a). When λ ≤ 1.936, A2 �λ A3 �λ A1
and A2 is the best alternative; when λ > 1.936, A3 �λ A2 �λ A1 and A3 is the best one.

If fa(x) = x(0 ≤ x ≤ 1) is chosen as the weighting function, the ranking values of alternatives with the
change of the index of optimism λ are shown in Figure 5 (b). When λ ≤ 0.09, A2 �λ A3 �λ A1 and A2 is the
best alternative; when λ > 0.09, A3 �λ A2 �λ A1 and A3 is the best alternative.
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Figure 5: Ranking values with the change of optimistic parameter (i.e. index of optimism)

The ranking results by using fa and fi are generally the same.

6.2. Comparison analysis and discussion
(1) The proposed method is now used based on the data given in [49]. The weighting vector of criteria

is W = [0.25, 0.15, 0.25, 0.35], and the linguistic evaluation matrix given by the decision-maker is

V =

 MH L VH VH
H MH H H

VH VL M H

 .
The ranking values are shown in Figure 6.
Figure 6 (a) shows A2 �λ A1 �λ A3 if fi(x) = 1(0 ≤ x ≤ 1) is chosen as the weighting function; Figure 6

(b) shows A2 �λ A1 �λ A3 if fa(x) = x(0 ≤ x ≤ 1) is chosen as the weighting function. These two ranking
results accord with the result in [49].
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Figure 6: Ranking values when the data in [49] are used

However, compared to the method given in [49], the proposed method has three advantages. First,
the usage of TT2FNs can convey more uncertain information in the production of evaluation values than
IT2TFNs can. Second, according to different preferences of decision-makers at different levels of uncertainty,
different weighting functions can be chosen for ranking alternatives. Third, the proposed method takes the
optimistic attitude of decision-makers into consideration during ranking.

(2) Chen and Wang [66] have recently proposed a MCDM method based on IT2FSs, which is similar to
the method proposed in this paper. The optimistic parameter, i.e., index of optimism, was also considered.
Compared to this method [66], the proposed method has the following advantages. First, the proposed
method can retain the uncertainty of information in aggregating the evaluation values, while Chen and
Wang’s method [66] transformed the evaluation values, which are represented by IT2FSs, into crisp numbers
before aggregating them. Hence, the original evaluation information may be lost greatly in the processing.
Second, the proposed method uses TT2FNs to express the evaluation information, which can retain more
uncertain information of T2FSs. Third, different weighting functions can be chosen for ranking alternatives.
If fe is selected, the ranking results by using the proposed method are indifferent to those by using the
methods based on IT2FSs. In a word, the proposed method is more flexible than the methods based on
IT2FSs.

7. Conclusions

T2FSs, as an extension of T1FSs, have the capability to model more uncertainty than T1FSs. However,
the complexity of computation and theory of T2FSs obstacles the extensive use of T2FSs in the practical
application. In this paper, we made a trade off between the capability of modeling uncertainty and the
complexity of computation, and introduced a new type of T2FSs, that is, TT2FNs. TT2FNs are simpler in
computation than T2FSs, but more complex in representation than IT2TFNs, because each TT2FN includes
an extra T1TFN so as to more comprehensively depict the uncertain information given in the form of T2FSs.

Moreover, the existing computational models of generalized fuzzy numbers, including T1TFNs and
IT2TFNs, do not satisfy the property of monotonicity, as is shown in Section 2. To overcome this, we
proposed new computational models for T1TFNs and IT2TFNs, and then extended them to TT2FNs. Finally,
we developed a new MCDM method based on TT2FNs. The illustrative example of linguistic decision-
making problems and the comparison analysis were also provided to demonstrate the feasibility of the
proposed TT2FNs and MCDM method. When the evaluation values of alternatives are ordered, different
weighting functions and different indices of optimism can be determined depending on the preferences of
decision-makers and levels of uncertainty, which can increase the flexibility of the proposed method.

In the future, the proposed method will be further extended to the situations where the criteria are
dependent on each other, and will be applied to the practical cases, such as personnel selection, engineering
evaluation and so on.
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