ON ALEXANDER-NOSHIRO-WARSCHAWSKI THEOREM

N.N. Pascu, M. Obradović* and I. Radomir

Abstract. We give a condition for univalence close to the well-known condition $\operatorname{Re}(e^{i\gamma}f'(z)) > 0$, where $|\gamma| < \pi/2$ and z belongs to a convex domain.

1. Introduction and preliminaries

Let U be the disc $\{z:z\in\mathbb{C},|z|<1\}$ and A be the class of analytic function in $U,f(z)=z+a_2z^2+\cdots$. We denote by S the class of functions $f\in A$, which are univalent in U and by S^* the subclass of the class S, consisting of starlike functions in U.

A beautiful and simple well-known condition for univalence, due independently to Noshiro and to Warschawski, is the following theorem.

Theorem A. Let γ be a real number, $|\gamma| < \pi/2$ and D be a convex domain, $D \subset \mathbb{C}$. If f is an analytic function in D and $\text{Re}(e^{i\gamma}f'(z)) > 0$ in D, then f is univalent in D.

For $\gamma = 0$ and D = U, Theorem A was discovered by Alexander.

Goodman ([2]) has proved that, for all $\epsilon > 0$ and all positive integers γ , there is a function f analytic in U, for which we have: $|\arg f'(z)| < \pi/2 + \epsilon$ in U and f assumes some values, at least, γ times in U.

It results that it is not possible to relax the condition of the Theorem A.

Tims ([3]) proved that for all nonconvex simply-connected domain D, with, at least, two boundary points, there is a function f, analytic in D, $\operatorname{Re} f'(z) > 0$ in D, that is not univalent in D.

The interesting Goodman's and Tims's results were obtained by a modification of the condition $\text{Re}(e^{i\gamma}f'(z)) > 0$ or of the convexity of the domain D proved that this is not possible.

In this note, we prove that it is possible to obtain a condition for univalence, close to the condition of Theorem A, by a modification of the condition $\operatorname{Re}\left(e^{i\gamma}f'(z)\right)>0$ and of the condition for the domain D.

Let γ be a real number, $|\gamma| < \pi/2$ and P_{γ} be the class of analytic functions in U, $h(z) = 1 + b_1 z + \cdots$ for which $\text{Re}(e^{i\gamma}h(z)) > 0$ in U.

Basilievič has proved the following:

Received 25.06.1994

1991 Mathematics Subject Classification: 30C45

^{*} Supported by Grant 0401A of RFNS through Math. Inst. SANU

Theorem B ([1]). Let a, b be real numbers, a > 0, $\alpha = a + ib$. If $g \in S^*$, $h \in P_{\gamma}$ then the function

(1)
$$f(z) = \left[\alpha \int_0^z g^a(u)h(u)u^{ib-1} du \right]^{1/\alpha}$$

belongs to class S. If D = U, then Theorem A is a very particular case of Theorem B, for $\alpha = 1$ and g(z) = z.

2. Main results

Definition 1. Let F be a function of the class A, $z^{-1}F(z)F'(z) \neq 0$ in U and Q(z) = zF'(z)/F(z). The associated set of the function F, denoted by S_F , is defined by

$$S_F = \{ \alpha : \alpha \in \mathbb{C}, \operatorname{Re}[\alpha Q(z) + zQ'(z)/Q(z)] > 0, \forall z \in U \}.$$

Theorem 1. Let $F \in S$, $S_F \neq \emptyset$ and D = F(U). If f is an analytic function, $f(w)/w \neq 0$ in D, f(0) = f'(0) - 1 = 0 and if for a real number γ , $|\gamma| < \pi/2$ and a complex number $\alpha \in S_F$, we have

(2)
$$\operatorname{Re}\left[e^{i\gamma}\left(\frac{f(w)}{w}\right)^{\alpha-1}f'(w)\right] > 0, \ \forall w \in D,$$

then the function f is univalent in D.

Proof. From hypothesis D = F(U), $F \in S$ and

(3)
$$\operatorname{Re}(\alpha Q(z) + zQ'(z)/Q(z)) > 0 \text{ for } z \in U,$$

where Q(z) = zF'(z)/F(z).

If $G: U \mapsto \mathbb{C}$ is the function $G = f \circ F$, then $G \in A$ and G'(z) = f'(w)F'(z), where w = F(z). Replacing in (2) we conclude that $h \in P_{\gamma}$, where

(4)
$$h(z) = \left[\frac{G(z)}{F(z)}\right]^{\alpha - 1} \cdot \frac{G'(z)}{F'(z)}.$$

From (4) it results that

(5)
$$G(z) = \left[\alpha \int_0^z F^{\alpha - 1}(u) F'(u) h(u) du\right]^{1/\alpha}.$$

Let $\alpha = a + ib$, a > 0, $b \in \mathbb{R}$ and $g: U \mapsto \mathbb{C}$ be the function

(6)
$$g(z) = F(z) \left(\frac{F(z)}{z}\right)^{(ib-1)/a} (F'(z))^{1/\alpha} = z + \cdots$$

Because $F \in S$ it results that $g \in A$ and $g(z) \neq 0$ for $z \in U \setminus \{0\}$. From (3) and (6) we obtain

$$\operatorname{Re}[azg'(z)/g(z)+ib] = \operatorname{Re}[\alpha Q(z) + zQ'(z)/Q(z)] > 0$$

and hence $g \in S^*$. Replacing in (5) we obtain

$$G(z) = \left[\alpha \int_0^z g(u)^a h(u) h^{ib-1} du \right]^{1/\alpha}$$

and because $g \in S^*$, $h \in P_{\gamma}$, a > 0, $b \in \mathbb{R}$, from Theorem B it results that $G \in S$. From $G = f \circ F$ it results that $f = G \circ F^{-1}$ and hence f is a univalent function in D.

Observation. We observe that if D is a convex domain D = F(U), where $F \in S$ then $1 \in S_F$ and from Theorem 1 we obtain the Theorem A.

REFERENCES

- [1] I.E. Basilevič, On a case of integrability in quadratures in the Loewner-Kufarev equation (Russian), Mat. Sb. 37, 471-476.
- [2] A.W. GOODMAN, A note of the Noshiro-Warschawski theorem, J. Analysis Math., 25(1972), 401-408 MR 45 # 8819.
- [3] S.R. Tims, A theorem on functions schlicht in convex domains, Proc. London Math. Soc., (3) 1 (1951), 200-205, MR 13-336.

M. Obradović
Department of Mathematics
Faculty of Technology and Metallurgy,
4 Karnegieva Street
11 000 Belgrade, YUGOSLAVIA

N.N. Pascu, I. Radomir Department of Mathematics "Transilvania" University RO – 2200 Brasov ROMANIA