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THE BOLZANO PROPERTY

Wladyslaw Kulpa

Abstract. It is proved a combinatorial lemma of the Sperner type and some ils
applications to products of spaces are quen . We shall inlroduce a subclass of the
class of the limits of inverse sequences of n-dimensional cubes, where Jized point
and invariance domain properties are investigated. This paper gives a new simple
proofs of classical results and their generalizations from Euclidean Spaces to spaces
of very complicated structure. '

1. Introduction

Bernard Bolzano (1781 - 1848), the Czech outstanding thinker, philosopher and
mathematician, proved that if a function I, continuous in a closed interval [a,b]
changes signs at the endpoints; f(a)- f(b) < 0, then this function equals zero at one
point of the interval at least. N early a hundred years after the mathematicians have
extended the Bolzano theorem. Tt was Henri Poincaré who in 1883 in the Comptus
Rendus [15] and in the Bulletin Astronomique [16] announces without proof the
following result ( cf. Browder (5] ):

"Let fi,..., fa be n continuous functions of n variables zy, .., x,: the variable x; I8
subjected to vary between the limits +a; and —a;. Let us suppose that for Lo =ay,
fi Is constantly positive, and that for Ti = —aj, f; is constantly negative; I say there
will exists, a system of values of x which all the f’s vanish”

In 1886 Poincaré [17] published the argurment on the continuation invariance
of the index which is basis for the proof. The result obtained by Poincaré has
come to be known as the theorem of Miranda [14], who in 1940 showed that it
was equivalent to the Brouwer fixed point theorem. The Poincaré theorem was
mmplicitly rediscovered in 1911 by Brouwer [4] who proved that

" Under a continuous map of the unit cube into itself which displaces every point
less than half a unit, the image has an Interior point ”

The Brouwer fixed point theorem for n — 3 was proved by him in 1909 ; an
equivalent result was established earlier by Bohl [3] in 1904. It was Hadamard [7]
who in 1910 gave (using the Kronecker index) the first proof for an arbitrary n. In
1912 Brouwer gave another proof using the simplicial approximation technique, and
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notions of degree. A short and simple proof of the Bohl-Brouwer theorem was given
in 1929 by Knaster-Kuratowski-Mazurkiewicz . The proof is based on the lemma
of Sperner. The above described Bolzano property can characterized dimension of
topological spaces. In the book of Alexandroff and Pasynkov [1], in a proof of a
theorem on partitions on page 342 one can deduice the following characterization of
dimension for metric separable space X;

rdimX > n, if and only if there exists a sequence (Aq, B1), o (An, B,) of n
pairs of digjoint closed nonempty subsets of X having the following property; If
#: X — R" is a continuous map such that fi(A;) = {—1} and fi(B:) = 11} for
each i = 1,..,n; then there Is a pomnt ¢ € X such that f(e) =07,

In this paper we prove the Poincaré-Miranda theorem using a combinatorial
lernma for cubes which can be regarded as a kind of the well-known lemma of
Sperner. 1t will be shown that such a lemma can be applied to spaces having a
tructure similar to a Cartesian product of topological spaces.

2. A combinatorial Lemma

Let (Z,+4) be the group of integers, and 77 -the Cartesian product of n-copies
of the set Z ;

7" ={z:{l,.,n}—Z | zisa map}
The set Z® will be equipped with a structure of a group, a partial order and a
metric:
z=u+v iff z(i)=wu(i)+ v(i) foreachi=1,..,n
w<v iff u(i) <wo(@) for eachi=1,..,n

where u, v,z € Z™ . i

Using the Cartesian notation let 0 := (0,...,0) be the neutral element of the
group 2", e; := (0, ..., 0, 1,0,..,0), e;(i) = 1, the i-th unit vector, and e := (1, ..., 1).
Denote by P(n) the set of permutation of the set {1,...,n};

a € Pn) iff «: {1, costih—t {1,..,n} isa l-1 map

Definition. An ordered set S = [z, o zp) C Z7 is said to be a (n—dz'mcnsz'ona!)

simplez iff
zg < 21 & i B = 2 &

It is easy to observe that
An ordered set [2q, ...zn) is a simplex iff there exists a permutation e € P(n) such
that
71 =20+ €a(1)y 22= %1+ E€a(2)yen  Fn T Fn-t + €a(n)
or '
An ordered set [#g, ..y 2n) C 2" is a simplex iff the two following conditions hold:
(a) for each 1 <n there is an r < n such that ziy1 — 2 = €rs
(b) for each 1 £ Figpr— % £ zjg1 — %
Two simplexes 5, T C Z™ are said to be adjacent if they have n cominon points;
[sNTY =mn-
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Observation. Let S = [z, oy Zn] T Z™ be a simplex. Then for each point z € S
there exisls czaclly one simplex T = STi] such that

ST = {20, ey 21, Zig1 oy Zn }-

Proof. We shall define i-neighbour S[z] of the simplex $

1) If0 < i< n,then S[] := [z, sy Zim 1y Biy Zig 1, oy Bn), Where @y = 2,00 4 (244 —
L,) °

2) Ii=0, then S[0] := [, ..., 2, @], where g = 2, + (21 — =),

3) Ifdi=m, then S[n] = [z, 20, ..., zp—1], where =, = z;

— (2nt1 — 2a)
We leave to the reader the prove that the simplexes S[i] are well defined and that
they are the only possible i-neighbours of the simplex 5. O

Any subset [2o, ..., zi_1, zi41, ..., 2,] C 8, i = 0, -y My 18 said to be ((n — 1)-dimensi-
onal) i-face of the simplex .5. Let k& > | be a natural number. A subset ¢ C Z™ of
the form

¢ =10, ..., k"

is said to be a comhinatorial (n-dimmensional) cube. Define the i-th opposite faces
of (7;
Cif ={zeCiz() =0}, CFf ={rcC:2(i)=1}
and the houndary
ot i= U{(i_ G b= 1, -
Irom the above lemma we get the following

Observation. Any face of a simplex contained in the cube (' is g face of ecxactly
one or lwo sunpleres from C, depending on whelher or not il lies on the bounduiy
ac.
The Combinatorial Lemma. Let P Ff ct=1,..,n} be a family of subsels
of the combinatorial cube ¢ = {0, ..., k}"* such that
(1) ¢C=FUFt, ¢ CF7, CYCFt foreachi=1,..n

Then there exists a simplex S © € with the following property
(2) FNS#£0#£SNFY  foreachi=1,.. n.
Moreover, the number of such simplezes is odd.

Proof. Since €] C F; we infer that ¢/ = FoU(FF\ ;). Thus without loss of
generalily we may assume that

(3) CinFf=9 foreachi=1, .. n

Define

4)  e(e) =maz{j:z € FY o for each §= 0,..,4}, where Fjf := (.

The map ¢ : ¢'— {1, ..., n} has the following properties:

(5) iz e then w(xr)<i, and ifze Ct, then elz) £i— 1.

From (5) it follows that for each simplex § ¢ )

(6) @w(SNC;)={0,...,n—1} implies that i = n and ¢ = —.

Let us note that from (4) and (1) we get
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(1) iep(z)=i—1ande(y) =i thenz € F” and y € FF,

Let us call n-dimensional simplex S to be proper if ¢(S) = {0, ...,n}. From (7)
it follows that the lemma will be proved if we show that the number p of proper
simplexes will be odd.

Our proof will be by induction on the dimensionality n of (. The lemuma is
obvious for n = 0, because C'= {0},(0) =0,p= 1.

Let us call an (n — 1)-dimensional face s to be proper if ¢(s) = {0,..,n — 1}.
According to (6) any proper face s C 9C lies in (/7 and by our induction hypothesis
the number o of such faces is odd. Let () means the number of proper faces of |
a simplex S C .

Now, if S is a proper simplex, clearly «(5) = 1; while if S 1s not a proper
simplex, we have «(S) = 2 or «(S) = 0 according as ¢(5) = {0,...,n — 1} or
() #£1{0,..,n—1}.

Hence

(&) p=73_ «(S), mod 2

On the other hand, a proper face appears exactly once or twice in ) «e(.5) according
as it is in the boundary of (' or not.

Accordingly

(9) S a(S) = a, mod 2
Whence

(10) a = p, mod 2.

But o 1s odd. Thus p is odd, too. O

3. Classical results

Let B" be the Euclidean space
R*:={z:{l,..,n}— R | xisamap}
and let /™ be the n-dimensional cube

=g e R (5 ), =1

For each 7 < n let us denote

IDi={eel: #i)=0} I ={reR™: z(t)=1}

? ?
the i-th opposite faces.

The Topological Lemma. Lel {H{,H;L c i = 1,...,n} be a family of closed
subsets of the cube I™ such that; I" = HZ UH}Y, I C Hj, oFic BT Br
eachi=1,..,n.

Then the intersection ({H7 N HF 11 =1,...,n} ts non-empty set.

Proof. In order to prove the lemma it suffices to show that

m{H'i_ ﬂHl-"l": i=1,..,n}#0
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Suppose to the contrary that it does not hold. Then, | {UZUU :i = 1, stk = %
where UF := I" \ H. Since the cube " is compact hence there is a real number
¢ > 0 such that any subset of I™ of the diameter less than § 1s contained in some
set U7. For this nurber ¢ there is a natural number & > 1 such that the map
p:C={0,.., k)" — [, where ¢(z) == £, has the following property:
(a) for each simplex S C €' there exists a set Uy such that ¢(S) C UF.
(b)  (C7) C I7 and (C57) I foreachi=1,..,n. Now let us pul; B
e HH), Ffi= e Y (H) fori=1,..,n,
From the property (a) it follows that for each simplex S C (' there exists an i < n
such that
(L) SNF- =0 o SnFF=9.
On the other hand, foreach i = 1,...,n; (/= ¥ Uf‘j, o CFT, C;‘ C Ff
From the Combinatorial Lemuma we infer that there is a simplex 5 C ' such that
(2) FTNS#£SNE" foreachi=1,.. n.
Comparing (2) with (1) we get a contradiction. [

As corollaries we obtain
The Poincaré - Miranda Theorem. Lef f : [ — %, F =T fo), b8 a
continuous map such thal for each i < n, fill7) C (=o0,0] and f;(I}) C [0,00).
Then there exists a poinl ¢ € I such thal fle)=0.

Proof. For each i = 1, ... n let us put; HT = f;l(—oo, 0], H;’ = f;J [0, 00).
The sets H’s satisfy the assumptions of the Topological Lemma and therefore the
intersection

Co=(WHNHY . i=1..n}#0
8 wot empty set. It is clear that fle)=0foreach ce¢. O

The Coincidence Theorem. [f maps g, h 1 [" — I are conlinuous and for
each ¢ = 1,...n; h(I7) C 17 and h(fi"') C Ir, then they have a coincidence
property w.e., there exisls a point ¢ such that g(c) = hie).
Proof. Let us put f(z) := h(x) — g(z) . The map f satisfies the assumptions
of the Poincaré-Miranda Theorem and therefore there is a point ¢ € I™ such that
f(e¢) = 0. But this means that gle)=n{c). O

If i is the identity map then we get

The Bohl-Brouwer Fixed Point Theorem. Any conlinuous map g : [™ —— "
has a fived point.

And applying the Coincidence Theorem to constant maps; g(x) = a, a € I, we
gel

Covollary. Any continuous map h : " — [» salisfying for each i = 1,... n;
MET)C I and A(IF)C LT is "onto”.
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The Borsuk Non-Retraction Theorvem. Lel f : X — R" be a conlinuous
map from a compact set X C R™. If f(2) =z for cach z € Bd X, then X C f(X).

Proof. Let J® be an n-dimensional cube such that X C J™ and extend the map f
to a continuous map h : J® — J" such that h(z) = « for each z € J" \ X. It is
clear that for any i ; h(J;) C J7 and h(JF) C JF. From the above corollary we
infer that J™ C h(J™), and in consequence X C f(X). 0O
Lemmas on extensions of maps. In order to go into further applications of the
Poincaré-Miranda Theorem we need some lemmas on extensions of maps.

Two continuous maps f,g : X — Y are homotapic, f =~ g, if there exists a
continuous map h : X x [0, 1] — Y such that for each » € X,

h(z,0)= f(z) and A(z,1)=yg(z).

The map h is said to be a homotopy from f to g.
One can prove that the relation f ~ ¢ : X — Y is an equivalence relation on the
sel. of maps from X fo V.

The Borsuk Homotopy Extension Lemma. Let f,g: A — "\ {a}, a € K",
be homotopic maps from a closed subsel A of a space X such that the product
X x [0,1] is a normal space. Then, if f has a conlinuous ezlension F: X —
R\ {a} then g also has a continuous extension G2 X — R"\ {a}.

p s

Proof. Since R" \ {0} is homeomorphic to &™ \ {a}, without loss of generality we
may assume that a = 0. Let h: A x I — R\ {0}, I = [0,1], be a homotopy from
ftog. Themap h': X x {0}JUA x I — R*\ {0}

, Pe)  for (a,t) € X x {0}
Mz, t) =
Wz, t) for(z,t) € AxI

is continuous and according to the Urysohn lemma it can be extended to a cou-
tinuous map I’ : U — R™\ {0}, where U/ C X x I is an open sel such that
X % {0}U A x I C U. From the compatness of the segment [ it follows that there
exists an open set VV C X such that A x I C V x I C U. Let u: X — [0,1]
be a continuous function such that w(X \ V) = {0} and u(A) = {l}. The map
H(x,l) == H'(z,{ - u(z)) is a homotopy between the maps F(xz) = H(x,0) and
G(z) = H(z, 1), F~ G : X — R"\ {0}, and (5 is a continuons extension of the
map . 0O

Lemma on Extensions of Maps. Lel A C X be a closed sel of a cempact

subspace X C R™ such thal X \ A is a boundary subsel of R". Then conlinuwous
map f: A — R*\ {0} has a continuous exlension F : X — R*\ {0} , F|A=f.

Proof. Assume that X C K" is a compact subspace, and let T be a simplex such
that X C 7. Extend the map f o a continuous map g : 7' — R" and let us fix an
arbitrary small € > 0 such that f(A) N B(0,5¢) = B, where B(a,n) := {z € It" :
||z —a|| < } means an open ball. Let P be a covering of R™ consisting of open balls
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of diameter less than e and choose a simplicial subdivision () into n-dimensional
simplexes of the simplex 7" such that for each simplex 5’ € @, g(5) is contained in
some element [/ € P. Define a piece-linear map h : T — R in the following way:
if # € 5 and ' is a simplex from 2 spanned by vertices ag, vy G, then let us puy

i T
h{z) = Zti_g(af:), where z = Zﬁ,-(q
=0

i=0

and the coefficients #; are the barycentric coordinates of z.

"The map h is well-defined, it is continuous and [[f(a) —h(a)|| < e for each a € A.
Let us observe that if the points g(ao), ..., g(a,) are linearly dependent then the
set A(5) lies in an (n — 1)-dimensional hiperplane and therefore L(S) is nowhere
dense subset of R". If the points g(ap), -~ 4(an) are linearly independent then
hlS S — 1(S) is a homeomorphism, and therefore R(SN(X\ A4)) is a boundary
subset of R™.

From the above it follows that for each simplex S € @ there exists a point s such
that s € B(0,2) \ 1(S N X). Since h is a continuous map from a compact set, so
for each simplex S' € ) there exists an +> 0 such that B(s,r) N 1(SN X) =0 and
B(s,r) C B(0,¢).

Let us establish Sy, ..., 5, as an enumeration of all the simplexes from ), aud then

choose points sy, ..., s, € B" and reals T1s oy > 0 such that B(s;, ) NA(S;NX)
# for each i = L,...;m and

B(S‘mj?"m) C ows B(Hb?il) £ B(OE)

Choose a point b € B(s,,, ) and les us put: k(x) := h(x) — b, for each v € X .
Then for each ¢ € A we have;
[|f(a) = k(a)|| < 2¢ and 3¢ < [k ()]

The map g(z,1) = (1 —1) k(x) + ¢ f(x) is a homotopy between kA and f,
kA~ f: A — R\{O}, and according to the Borsuk Homotopy Extension Lemma
the map f has a continuous extension /' : X — g» \V{0}. O

The Lemma on Extensions of M aps can be proved by methods of analysis using
the Sard Theorem and the Weierstrass Approximation Theorem. Some indications
for the proof the reader can find in [12].

Theorem on Squeezing of a Cube. Let h: " — pn be a conlinuous map. If
the unage h(I™) is a boundary sel, then for some i —= L, om the images of the i-th
opposite faces have non-empty wntersection; h(I17) N Iy # 0.

Proof. Let us put for each i = L. et

Ai=hI7), Bi:=h((IF), X=hnI), C'= h(8I™)

Assume to contrary that for each i = I,..,n

A;nNB; =10
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Since (' is a normal space, there exists a continuous map ¢ : (! — I™ having the
following property: for each i and 2z € ¢

r€Ad=gi(x)=0 & z€B = m(z)=1
It is clear that for each 1,
g(A) C I, g(B) C I,

and this implies that

g(C)ycar c R\ {0}.

According to the lemma on extensions of maps there exists a continuous extension
(i : X — R"\{0} of the map g. Let us put f := Goh. Themap [ : " — R"\{0}
sabisfies the assumptions of the Poincaré-Miranda Theorem and therefore there
exists a point ¢ € I" such that f(c) = 0, contrary to 0 ¢ futy. o

If m < n then the space R™ can be embedded into R" as a boundary subspace and
this implies that

Corvollary. If [ : I™ — R™, m < n, is o continuous map, then there exisls an ¥
o o b ? b

such that f{I7)N f(LJr) #0.

In the case n = 3, m = 2 the Corollary says that it is not possible to make
a drawing of dI% in the plane 2% so that disjoint faces of I* be disjoint in the
drawing. It is clear that the corollary gives

Theorem on Invariance of Dimension. [fn # m then the Buclidean spaces R"
and R™ are not homeomorphic.

We shall introduce a notion of a removable point and then it will be proved a
Jemina very useful to obtain results on separabion and domain invariance.

Definition. Lel be given a closed subsel A of a compact subspace ¥ C R" and
a continwous map g : Y — R*. A poinl ¢ € K" \ g(A) 1s said 1o be removable
provided that there exists a continuous map (7 : Y — R" such that ¢ & G(Y)
and (7|4 = g|A.

Lemma on Removable Points. Let be given a closed subsel A of a compact
space Y C R™ and a conlinuous map g : Y — R". If c ¢ g(A) is a point such thal
g Ye) C Bd Yorifgt(e) CW, where W\Y # 0 and W C R*\ A is a connecled
open set, then in the both cases the poini ¢ is removable.

Proof. Let B C R" be an open ball and S := dB its boundary. For each point
b€ B let r:™ \{b} — R"\ B means a continuous map (retraction) described as
follows;
(a) if z€ R*\ B, thenr(x)=x,
(b) if # € B\ {b}, then r(2) € S is the unique point such that the points b, x, v(x)
lie on the same line between b and ().
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(I). In the case when i

¢) C Bd Y consider a finite family of open halls
By, ..., By, such that
g ) CBiU..UB, C R"\ A

and for each i < n choose a point

b € B; \ (U{,S',: < npUY).

(I1). In the case when 9 Ye) C W C R" \A, WA\Y # 0 and W is an open
connected set, let Iy, ... T, be a family of open balls such that

g7 e) C U U Ul CW C R\ A

Choose points a; € U/}, ...,a, € Uy and a point by € W\ V.
Since W is an open connected subset of R" there exist
balls such that B, ;N B, # 0 foreachi=1, ..
Now, let us choose points by,
define B, , = U;,

a chain By, ..., B, of open
ysand ay, ..., ap € | J{B; i < s} C W,
c-y by such that for each ¢ = 9, w85 b1, by € By and
byt = a;. Without loss of generality we may assume that

b; ¢ U{.S'z- < s+, and m=s }¢

Now, in the both cases (1) and (IT) let us denote

U= [Bi:j<m),  ¢={y:j< m}

According to the Lemma on Extensions of Maps there exists a continuous map
g1 (YAU)UC — R*\ {0} such that nY\U=g|Y\U. Let r : v — (Y\UHuc

be a composition of maps
r:={(r,o..0 ?"2) o (7'1|V},

where the maps r; © R\ {b;} — R*\ B
(a) and (b).

In the both cases for the maps G(y) :=(or)y), yeyY we have; e ¢ G(Y)

i are retraction described by the conditions

O

4. New results

In this part we shall introduce a class of spaces for which the results of the

previous paragraph hold.
Definition. A space X belongs to the class K,, X e K,
limit of an inverse sequence of n-dimensional cubes,
X =liminv{pp, : I" — I": k >k le N},
where the bonding maps Pk,i are continuous and satisfy (he following condition
(B)  pra(I5) C I7  foreachi=1,... nande = -+

Denote by pp. : X —— 7 | e N, the projection maps. And finally, lel us say that
X € K provided that X € K, for somen e N

provided that X is the
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Observation. If X € K, and Y € Ky, then X x Y € Kppm-

Indeed, let X = lim inv{pp; : " — "} and Y = lim inv{ggy : ™ — TELE S
Then X x Y = lim inv{ry : "t — jr+m Y where ry (2, y) = (pra(), qr ()
Assuming that maps p’s and ¢’s satisfy the conditicn (B) one can verify that

P (1, <oy My ooy Ty Yy ooes ) = (815 -y My oos Sma ULy ves bR

and
7’};,1(1111 "':£7133-’| 1 "'y"'J: “'1yﬂ) = ('5]1 ")’Q?L5t11 =bby ?1'1 ---;"‘/n):

where 7 € {0, 1}, but this means that the maps i, satisfy the condition (B).

The class K contains spaces of so complicated structure as pseudoarc being the
field of investigation of many authors (cf; Jolly and Rogers [11] or Mioduszewski
[13]). In 195] Hamilton [8] has shown that the pseudoarc has the fixed point
property. From the results which are presented in this paper it follows that the
Cartesian product of arbitrary many pseudoarcs has the fixed point property.

For a given space X € K, let us fix an inverse system {ppg 1" =1 "1 having
the property (B). Define for each i =1, ..., n;

Ay = limvinvd{pp |17 2 17 — 17 } and B; := lim inv{ppa| I I — It}
where I7 and I mean, as usual, the i-th opposite faces of the cube ™.

We shall give a commmon proof of the two following theorems
The Bolzano Theorem. Let f: X — R, f=(f1,...Ja), where X € Ky, be a
continwous map such that for eachi=1,...n

(1) fi(4) C(=o0,0] and  fi(Bi) C [0, oa).

Then there exists a point ¢ € X such that f(c) = 0.

&
The Coincidence Theorem. Let h: X — X, h = (M1, ..., hn), where X € Ky,
be a continwous map such that for cach i =1,..,n

(ﬂ h.g{j-li) C A; and lili(qu) C B;

Then for any continuous map ¢ : X — X there exists a point a € X such that

g(a) = h(a).
Proof. (1). Define for each i = 1,..,nand m € N

Hi:-m‘ = p'm.(.f;‘—.l (_OO) OD) II;I:m = ?JM(f;:l[O' OQ))

From the assumption (1) and the definition of the sets A;, B; it follows that ;

I"=H7, UHY, 7 CH, ILtcHS

i,m 1,m 7,77

According to the Topological Lemma the set

(i = ﬂ{Hi_,m n H:’m ci=1,..n}
is non-empty. Moreover, the sets Cly, are compact and Crpq C Che for each m € N.
Hence the intersection

(= m{(_fm :me N}
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Is a non-empty set. It is clear that f(e) = 0 for each ¢ € C. Thus the Bolzano
theorem is proved.
(). Now, let a map h : X — X satisfies the assumptions of the Coincidence
Theorem and let y : X — X be an arbitrary continuous map. For each m € N let
us put

Jml(2) = (Pm o h)(z) - (Pmog)(z), ze€X

According to the Bolzano Theorem the set

Ap ={ee X fm(.lf’} =0}

is non-emply. Moreover, it is a comnpact set and A1 C Ay for each m € N. Thus
the intersection

A ::ﬂ{Am:mGN}

is non-empty set. [t is clear that g(a) = h(a) for each a € A. O
Now, let & : X — X be the identity map. Then from the Coincidence Theorem
we geb

The Fixed Point Theorem. If X € K, then each conlinuous map g : X —s X
has a fized poind.

R.H. Bing [2, p.103] gives an example of compact set X in B* which is an intersec-
tion of a sequence of 3-cells but for which there is a fixed-point free homeomorphism
of X onto itself. Thus the assumption (B) is essential.

5. The Bolzano property

A family {(A;, B;) : 1= 1,...,n} of pairs of non-empty disjoint closed subsets of
a‘topological space X is said to be an n-dimensional boundary system whenever for
each continuous map f: X — R* f = (f1, .y fn), satisfying for each i < n the
Bolzano condition;

fi"'(Ai) C (—OO, 0]: fl(‘BT-) - [OJ DO)

there exists a point ¢ € X such that f(e) = 0. If a space X has an n-dimensional
boundary system then we say that X has an n-dimensional Bolzano property, X €
B,,. The following relation holds

e K, cCB,.

From the Poincaré-Miranda Theorem and the Lemma on Extensions of M aps we
infer that a compact subset X C R™ has the n-dimensional Bolzano property if and
only if it has non-empty interior.

We are going to characterize the n-dimensional Bolzano property in terms of
extensions of maps. It will be convenient to use the cube J* := [—1,1]" instead of
I" =[0,1]". Then J* = {z € R" : |2] < 1}, where |e]:= max {|e] : i = 1,...,n},
& = (x1,...,2y). The norm |- | is equivalent to the Buclidean norm [|-]|. As usual
define J7 = {z € J" 1y =1}, Jt ={aecJ*: 5 = 1} and 8J" =
W U vi= b nd '
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Theorem. Lel X x [0,1] be a normal space. Then X € B, if and only of there
exists a closed set A C X and a confinuous map g : A — AJ" such that for each
its continuous exiension (1 X — R™ we have; J" C G(X).

Proof. (I). Assume that X & Bn and let (Al,Bl) oy (A, Bn) be a boundary
system. Define A 1= J{A4; U B; : i < n}. Since X is a normal space, there exists a
continuous map g1 : X — J" su(h that for each 4, g, (4;) C J7 and ¢1(B;) C f+
Now, let us put g := ¢1]A. As in the section 3 in the ploof of the conmdmlce
theorem we infer that for any continuous extension (¢ : X — R™ of g; J" C G/(X).

(IT). Let g : A — 3J™ be a continuous map such that for each its continuous
extension (¢ : X — R*; J™ C ((X). We shall show that the family {(A;, B;) : 1 =
L,..,n}, where A; == ¢~ '(J;) and B; := g~ (J;) formns a boundary system.

To prove it consider a continuous map f: X — R", f = (f1, ..., fu), such that
fi(Ai) C (—00,0], fi(B;) C [0,00) . Define a continuous map f : A x [0, 1] — R
M, t):=(1—¢t)-flz)+ 1t ¢ ( ). Let us observe that h(x,t) # 0 for each (z,1) €
Ax [0, 1].

Indeed, suppose that there exists a point (z,t) € A x [0, 1] such that A(z,1) = 0.
It means that for each ¢ < n,

(1—1) fi(e)+t-gi(x) =0

Choose an i < n such that € A; U B;. In the case when & € B; we obtain that
fi(z) > 0 and g;(«) = 1; and consequently the above equation holds whenever ¢ = 0
and fi(z) = 0. Since f(x) # 0 we obtain that h(ug 0) £ 0. Similarly h{z,t) # 0, in
the case when = € A4;. 'z

We have proved that & is a homotopy between' maps f|A, g|4 : A — R™\ {0}.
Since for each continuous extension (7 : X — K" of the map g we have; J™ C G/(X).
Hence by the Borsuk Extension Lemma we obtain that J™® C f(X). O

Let us assume that for any space X € B,, we have established an n-dimensional
boundary system and define; 9X = [ {A; UB; :i=1,..,n}.

As in secfion 3 we get

The Coincidence Theorem. If X € B, and h : X — R" is a conlinuous map
such that  h(A;) C I7 and h(B;) C I, for each i = L, ...,n, then I" C h(X)
and for each continuous map g : X — [ there extsts a point ¢ € X such thal

g(e) = hie).

In view of the Coincidence Theorem let ug observe that an existence of a normal
space X € B, implies the Brouwer fixed point theorem.

Indeed, let (A1, By), ..., (An, Bn) be a boundary system of a normal space X, and
let hy : X —[0,1],7 = 11 ...,n, be continnous functions such that  h;(A4;) = {0}
and h;(B;) = {1}. Then for the map h = (hy,...,hn) : X — I™ we have; h(A;) C
I7 and h(B;) C I for each i = 1,...,n. Now, let g : I" — [" be an arbitrary
continuous map. According to the Coincidence Theorem there exists a point @ € X
such that  h(a) = (g o h)(a). Thus the point ¢ = h(a) is a fixed point of the map
g.
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The dimension theory says nothing how to construct an n-dimensional boundary
system for a space X € B,. We show that the Combinatorial Lemina gives a
possibility to find such a system. Let X1, ..., Xp be compact connected Hausdorff
spaces. For each i < n choose two distinct points a;,b; € X;. In the Cartesian
product X := X; x ..x X,, define Ai={r € X :2; = a;} and B; =
it € X : @ = b;}). We shall show that the pairs (A;, B;), -, (Ai, B;) form an
n-dimensional boundary system.

Indeed, let f = (£, vy Ja) — R™ be a continuous map such that  f;(4;) ¢
(—o0,0] and Ji(Bi) C [0,00). Let us put  H = _f';-_l(koo,UJ and Hb =
71 (—c0,0]. Then it is clear that J(e) =0 if and only if c € (WH NnHY i< n},
Suppose to contrary that the intersection ({H; nH :i < n} is empty. Then
the family Q := {U/f : 4 = 1, ~o ;€ = 4, —} is an open covering of the space X,
where Uf := X \ Hf. Let a covering P = P} x ... x P, be an open refinement of
the covering @, where each P, is an open covering of the space X;. Now, for each
t < n let us choose a chain Ui, .-, Ui, of elements from the covering P such that
w; € Ui 1, by € U; g, and Uij-1NU;; # 0 for each j < k;. And then choose points
Ci 1y Cik; [rom X; such that o; = €1, by = ¢ip, and Cij—1,¢; € Up; for each
J <k Let b = max{k; : i < n} and define;

. cij 5 <k
(pi(J) B { Ci k, ifj > .l‘q

The map ¢ := (g, ..., ©n) 1 {0,..,k}" — X has the following property; if ;- :=
e~ YWH), Ff = @ H(H) then (' = FoUFT and ¢ ¢ F7, CF C Ef for each
t=1,...,n. From the Combinatorial Lemnma it follows that there is a simplex § C ¢
such that S N Ff # () for each i =nand £ = — 4. On the other hand, .S T UE
for some ¢ < n and ¢ € {—, +}. This contradiction concludes our remark.

Theorem on Two Maps. Let be given twoe continuous maps h : X — R™ and
g :h(X) — R", where X € B,, and h(X) is a compact subspace of R", such that
g(h(A;)) C I, and g(h(B;)) C I for each i = L...,n. Then R\ h(0X) is not a
connecled set and for each point a € Int ", g Ya)N Int h(X) # 0.

Proof. From the Coincidence Theorem we infer that for the set A := h(0X) and

the map g : h(X) — R", any point ¢ € Int I" is not removable. Applying the

lemnma on removable points we get that R™ \ h(8X) is not a connected set and

g~ (c) is not a subset of Bdh(X), and consequently g e)NInt H(X)£0. O
As corollaries we obtain

The Domain Invariance Theorem. Iff : 1" — R" is a one-lo-one continuous
map then f(IntI™) is an open subsel of R™.
Proof. Since the cube I is compact, so the map g := f~1 . fI™) — I® ig

continuous. From the theorem on two maps we infer that  f(Int I") C Int Fm).
|
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The Non-Squeezing Theorem. Lel h: X — R"™ be a conlinuous from a com-
pact spaee X € B™ such that h(A;))NI(B;) = 0 for eachi=1,...,n. Then R"\L(0X)
is not ¢ connecled set and the set Int h{X) is nol empty.

Proof. As in the proof of the Squeezing Theorern we get a continuous map g :
h(X) — R™ such that g(h(A:)) C Ij” and g(h(B;)) C ;. In view of the Theorem
on Two Maps the corollary becomes obvious. .

A family {(A;, B;) i =1, .., n} of pairs of non-empty disjoint closed subsets of
topological space X is said to be an n-dimensional weak boundary system whenever
for each continuous map f = (fi,..; fa) : X — R" which for each i < n satisfies

the following condition:
fi(A) = {-1} and fi(B:) = {1}

there exists a point ¢ € X such that f(e) = 0.
It is clear that each n-dimensional boundary system is a weak boundary system.
We shall prove that the converse implication also holds.

Lemma. If X x [0,1] ¢s a normal space then each n-dimensional weak boundary

system is a boundary system.

Proof. Assume that the family {(A; B;) : @ < n} is an n-dimensional wealk
boundary system for a space X and suppose to the contrary that there exists a
continuous map f = (fi,...fa) : X — R" \ {0} such that for each i < n;
Fi(Ai) C (—00,0] and fi(B;) C [0,00). Since X is a normal there exists a con-
tinuous map ¢ = (g1, gn) : X — J" such that for each i < n; gi(A;) = {1}
and gi(Bi;) = {1}. Define a closed set A ;= | J{A:UB; 11 < n} and a continuous
map bt A x [0,1] — R*,  h(z,t) = (1— t) - f(z)+t - g(z). Similarly, as in a
proof one of a previous theorem one can verify that I is a homotopy between maps
flA, glA - A — R™\ {0}. Since the family {(A;, B;) : i < n} is a weak boundary
system hence for each continuous extension G ; X — K™ of the map g|A we have;
0 € G(X). Now, applying the Borsuk Homotopy Extension Lemma we infer that
0 € f(X), contrary to 0 ¢ f(X). O

Now, we can prove the following remark

If X x [0,1] is a normal space and X ¢ Bn1, then dim X < n.

Proof. Consider an (n + 2)-element open covering U = {U1, ..., Unga} of the space
X. To prove that dim X < n it suffices to show that 7 has an open shrinking
{W; :i = 1,...,n+ 2} such that (UW; 1 i < n42} = O (see [6], p. 487). Let
B={Bi:i=1, ...,n+2} be a closed shrinking of the covering /. Put A; := X\Ui,
i=1,..,n+2. According to the lernma on a weak boundary system there exists a
continuous map f = (f1,..., fngr) : X — R*+1\ {0} such that for each i <n +1,
fi(A;) = {1} and fi(Bi) = {1}. Define V; := f 1 (—00,0), W; = f~1(0, 00)
For each i < n+ 1 we have;
(1) A;cV;, B C W; and ViN W = 0

and

(2) X:U{V,-UWg:ign+l}.
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Define  Wips 1= Uyya (UHViri<n+1}
From (2) and the inclusion Byuio CUyyn we get;
() X\ Woss = (X\Unsa) U\ ULV -5 <4 1)) € UWa 20 <k 1)
From (3) and (1) we infer that X — Wi i <n+2}  and W, :i< n+2} C
(HWi i <n+ 130V, i< n+41} =1

[t is obvious that the family {I%; : i < n +2} is an open shrinking of the covering
U. Thus we have proved that dim X <n. 0O

In [12] it was formulated a theorem equivalent to the Brouwer fixed point theo-

rem; the indexed open covering theorem. We are going to strengthen this theorem
by proving

Theorem on Indexed Open Families. IfUs, ..., U, are families of open pairwise
disjoint sels of « normal space X € B, and X = WHU e U; 14 = L,..,n}, then
there ewists an index i < n and o set U € U; such thal ANUA0£UnNB,.

More precisely, we shall prove the following

Theorem. Let {(A;, B;) : i = Ly..on}t be a famaly of non-empty disjoint closed
subsels of a normal space X. Then the Jollowing statements are equivalent:

(i). If f = (fiser fu) 1 X — R"™ is a continuous map such that f;(A;) C
(—o0,0]  and fi(B:) C [0,00) for each i < n, then there cxisis a point ¢ € X such
that f(c) = 0.

(). If pairs (H; , HY), i = 1,...,n, of closed sels are such that X — H UE"
and Ay C H;, B; C HY, then the intersection (WH NHY i< n} s non-emply.

(wi). If Uy,..,U, are families of open pairwise disjoint sels such thai X =
HU eU; :i=1, w0}, then there exists an index <noand a sel U € U; such
that Ay N7 #0 # U N B;.

Proof. (1) = (i4). Suppose that N{H; N H; :i < n} = 0. Since X is a normal
space there exist continuous functions gi, i 0 X — [0, 1] such that

H C g_l(O) =il H;’ Ch™(0)=:D; and ﬂ{(f;; ND; i <n}=40.
Define for each i <n and z € X,

fi(z) == gi(x) — hi(z)

It is clear that fi(A;) C (—o0,0] and f;(B;) C [0,00). From (1) it follows that
there exists a point ¢ € X such that fi(e) = 0. This means that for each 1 < n,
gi(e) = hi(e). But, since X = C;UD; and e € X, we infer that gi(¢) = 0 = h;(c)
for each ¢ = 1, ...,n. This immplies that ¢ € (WCiND; :i < n}. And this leads to a
contradiction with our suppositicn.

(ii) = (ii). Suppose that for each i < npand U e Uy, AAnU =0or B;nl = 0.
Define

Gr = J{UeU;:Uuna; £8), Gf = (Hueti - vna =0
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and then let us put
Hf =X\Gf, snd H} :=X\Gj

We have; A4; C H and B; C H;r. Since G;ﬂGf = weget, X = H U Hf Now,
from (ii) it follows that N{H; N or i< n} #0 But ({H; nEF 1 E w)=
(HX\u{ucfyign}:X\Uggmuﬁwign}:X\quemqign}:w
a contradiction.

(#4t) = (4). Let f = {1, v fn) X —= R"™ be a continuous map such that for
each i < n, fi(4A;) C (—o0,0] and fi(B;) C [0,00) and suppose that 0 ¢ f(X).
Define for each i < n Uy = {V;, W;}, where V; := {z € X : fi(x) < 0} and
W; = {& € X : fi(x) > 0} From the supposition 0 ¢ J(X) it follows that X =
UHU e Ui i <n}.

But according to (iii) we infer that there exists an index ¢ <n and a set U € U;
and points a,b € U such that a € A; and b € B;. We have f;(a) < 0 and fi(b) > 0.
But it is impossible, because in the case when U = V; we have Ji(a), f;(b) < 0 and
in the case when U = W;; fi(a), fi(b) > 0. O

There is a close connection between dimension and the Bolzano property. One
can prove that for a space X such that X x [0,1] is a normal space, dim X < n
if and only if X ¢ B,41. Applying the theorem on indexed open families we are
ready to prove the following implication for a normal space X

Ifdirn X <mn, then X ¢ By41.

Indeed, let {(A;, B;) :i=1,..,n+ 1} be a family of pairs of closed disjoint sets.
Consider an open covering V = IV, o Vi b of X consisting of sets of the form
Vi = (X \Ci:i=1,..,n+1}, where C; = A; or ( = B;. Since dim X < n,
then according to the Ostrand theorem there exist (n + 1) families Uy, ..., Unya,
consisting of open disjoint sets such that the famuly \HU; :i=1,...,n+ 1} covers
X and it is a refinement of the covering V. The family {(A;, B;) : i < n+1} cannot
be a boundary system because according to the theorem on indexed open families
there is an index ¢ < n and an open set U € U; such that A, N U £0+# B;nl.
But it is impossible in view of the definition of the sets Vj’s.
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