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ON URYSOHN, ALMOST REGULAR,
AND SEMIREGULAR FUNCTIONS

F. Cammaroto and G. Nordo

Abstract. In this paper we introduce Lhe notions of Urysohn, almost-regular and
semaregular function. Problems of heredity have been studied Jor this kinds of func-
tiens. It is also shown that every almost regolar Hausdor(f funclion is an Urysohn

Junction and that a function is regular if and only if il is almos! regular and sciireg-
ular,

1. Introduction

During the last two decades the idea to Investigate the mappings as objects more
general than spaces become rather popular.

First approaches to this matter are due to Russian school and particularly to
B.A. Pasynkov [PA;, PA 2].

The concept of of a P-function, i.e. a continuous function that satisfies a topolog-
ical property P is introduced by the authors to extend the corresponding properties
of P-spaces. For a topogical property P, we define the property P for a function
such that every continuous function onto a P-space is always a P-function,

At present the main problem for this area 1s to extend classic results of P-spaces
to P-function. Recently Cammaroto, Fedorchuk and Porte [CFP] have introduced
and studied the concept of H-closed function.

In this paper we introduce the P-functions for the topological properti es P=T,,,
almost regularily, semiregularity and we show that every almost regular Hausdor(l
function is an Urysohn function and that a continnous function is regular if and
only il it is almost regular and seiniregular,

Throughtout this paper, all hypothesized functions are assumed o be conbinuous.
2. Preliminaries

For notations and definitions not explicitly mentioned here we refer to [E] and
[PW].
Let X be a topological space, then sequel, 7(X) will denote the set of open sets

of X, o{X) will denote the set of closed sets of X and U, will denote the filter of
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neighbourhoods of a point # € X. If Z is a subset of X, then 7(X)jz will denote
the relative topology on Z of 7(X). If X and Y are spaces, then ¢/ (X,Y) denote
the set all continuous mappings from X into ¥

We introduce some well-known definitions and properties that we shall use after-
wards.

Let X be a topological space, a subset 4 C X is said regular open if it Is the
interior of its own closure or, equivalently, if it is the interior of some closed set,
while it is said regular close d if it is the closure of its own interior or, equivalently,
if it is the closure of some open set. We denote by RO(X) 1cspect1vely the set of

regular open subsets of X and the set of regular closed subsets of X.

Let X be a topological space and let A, B, X' C X be subsets of X. Then A
and B are said to be separated by 11e11.,hb01uhoods in X' if the sets A N X'
and BN X' have disjoint neigh bourhoods in the topological space X' relative to
X, that is there are open sets U,V € 7(X') such that AN X' clU, BnX' CV,
Unv=_0.

A topological space X is said to be almost regular (see [SA]) if any regu lar

closed set any singleton digjoint from it can be separated by neighbourhoods in the
space X.

It is easy to check that every regular space is almost regular.

It is known that the set RO(X) forms an open base for a topology on X. The
topological space X equipped with the topology generated by RO(X) is usually
denoted by X(s) and is called the semiregularization of X.

A topological space X4 is said to be semiregular if the set RO(X) of the regular
open subsets of X forms an open base for X, i.e. if X = X(s).

The usual property of topological bases y|e|d~ the following characterization of
semiregular spaces.

Proposition 2.1. A {opological space X is semiregular iff for each 7 € T(X) and
for each x € I/, there ts some R € RO(X) such that 2 € B C A.

Let X and ¥ be two topological spaces, and f € (/(X,Y) a function from X into
Y. Then we will say that:

- fis Tq if for each 2,y € X such that # # y and f(z) = fly) there is some
neighbourhood U7 € U, which does not contain y or some {/' € U, which does
not contain x;

- {is Ty if for each z,y € X such thal x :;é y and f(z) = f(y) there is some
neighbourhood U7 € U/, which does not contain y;

- [ is Hausdorff(Ty) if for each x,y € X such that © # y and f(xz) = f(y) there
are two disjoint open sets containing and ;

~ f is vegular if for each closed set F' and each x € X \ I there is some open
neighbourhood O € Uy, such that {x} and F are separated by neighbourhoods
in f(0).

It easy to check that every 7Th-function is a 7i-function, that every T-function
is a Ty-function and also that cach function defined on a To, 11, Ty or regular
function.

The following characterization of regnlar functions is easy but useful.
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Proposition 2.2. Lel X and Y be two topological spaces. Then [ € (X, Y) is
regular iff for each A € T(X) and each = € A there are O € Uty and U € 7(f—(0))
such that v € U C Cly—0y(U) C AN f=(0).

3. Urysohn functions

Definition 3.1. Let X and Y be two topological spaces and f € C(X,Y) a funclion
from X into Y We say thal f s Urysohn ('T2%') of for each #,y € X such that £y
and f(x) = f(y) there are some that z € U,yeV and C‘Zl,r_(o)(U)ﬂCf[fH(QJ(IT/) =
0.

Proposition 3.2. Ruery function [ X =Y defined on a Urysohn space X 45 a
Urysohn function.

Proof. Set O =Y in the definition. [

In general, the converse of 3.2 is false, i.e. there is a Urysohn function whose
domain is not Urysohn space. In fact we Lave the following:

Example 3.3. Let X be the topological space defined by X = {a, b, ¢} and (X) =
{:{a}, {b,¢}, X}. Clearly X is not a Ty space, hence it is not Ty, Ty or Tyy. Con-
suder the function f € F(X, X) defined by fla) = f(e) = b and f(h) = c. It easy to
verify that f is a Urysohn funetion. O

Remark 3.4. The previous gwes also an example of Ty, Ty, Th- Junction defined on
a space Ty, 77, TYy.

Proposition 3.5. Every Urysohn function fX 1+ Y is Hausdorff

Proof. Suppose 2,y € X, ¢ #Fy,and f(z) = f(y). As fisa Urysohn function, there
are an open neighbourhood O of f(z) in ¥ and open sets [,V € 7(f~(0)) such that
v ell,yeV, and Clr—oy(U) N Clyo)(V) =. Nowx € U € T(X),yeVer(X)
and /' NV =. Thus f is a Hausdorff function, [J

The converse of 3.5 is false as there are HausdorfT functions which are not
Urysohn. This is illustrated in the following example.

Example 3.6,

(L) Let X be the space defined by = {a,b,¢,d}, 7(X) = {,{a)}, {b, e}, {a,b,c}, X}
and Y the space defined by V = {e, 8,1}, 7(Y) = w(Y) = {,Y}. We consider
the function f € F{X,Y) defined by fla) = f(b) = o, fle) = 8, f(d) =v. Tt
easy to verify that f is a Hausdorff non Urysohn function. O

(2) Let X be a Hausdorff non Urysohn space. Lel, P — {0}, be any are point space,
have the diserete topology and define J € C(X,P) by f(z) = o for eachz € X.
Then fis Hausdorff but not Urysohn. O
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4. Almost regular functions

Definition 4.1. Let X and Y be two topological spaces. A funclion f € C(X,Y)
is almost regular if for each €' € RC{X) there is an © € X\C' there 15 an open
neighbourhood O € Uy(x) such that {z} and C are separated by neighbourhoods in
F7(0).

By setting O =Y in this definition we have:

Proposition 4.2. Fvery funciion defined on an almost regular space is an almost
reqular function.

Preof. In fact, if X is an almost regular space and f € C'(X, YY), it follows that [
is almost regular by setting O =Y in the definition of almost regular function.

In general the converse of 4.2 is false, as the following example shows.
Example 4.3. Let X be the lopological space defined by X = {a,b,c} and 7(X) =
{,{a},{b,c}, X}. I is casy lo prove that the function f € F(X,X) is defined by
fla) = f(b) = a and f(e) = ¢ is almost regular though X is not an almost regular
space,

Now we give a characterization of almost regular functions which will be useful
to abtain the main resulls.

Proposition 4.4. Let X and Y be two topological spaces and f € C/(X,Y). The
following arc equivelent:

(1) [ 1s elmost regular

(2) for each V € RO(X) and x € V there are O € Uppy and U € RO(fF™ (0))
such thal & € U C Cly—(op(7) C V' N F7(0)

(3) for cach z € X and V € Ugey there are O € Usiey and U € RO(f—(0))
such that © € U € Cly—0y(U) C intx (Clx (V) N~ (0)

(4) for each x € X and V € Uz there are O €Uy and U € r(f~(0)) such

that v € U C Ulpon(U) C intx (Clx (V)N f~(0)
Proof. (1) = (2) Let f be an almost regular function, V' € RO(X) and z € V.
There are O € Ujpeey and U, W € (£~ (0)) such that U NW = el (X\V)N
F(0) C W. So, Cly—o)(U) C F(ON\W C VN f~(0). The proof of (1) =>{2)
is completed as z € UV C 'iwi,f—(o)((,-'/_f—(o)(U)J C Cly—o (V).

(2) == (3) is clear as V Cinix (Clx V) for each V € 7(X).

(3) = (4) is immediate as RO(f—(0)) C 7(f~(0))-

(4) = (1) Let ¢! € RC(X) and & € X\C. So X\C € RO(X) C (X)
and in particular X\C' € Uppy. By hypothesis, there are O € Ug(q) and W €
7(f~(0)) such that x € W C Cly—o)(W) C intx (Clx (X\C)Nf(0) = (X\cHn
(D) = F O\, So; O f{&) C Fo(ONClL—oy(W) € 7(f~ (0)). Since
W N (f~(O\Cli—(0)(W)) = 0, the proof that f is almost regnlar is done.

Proposition 4.5. Every regular funclion is almost reqular.
Proof. It follows from the definitions and RC(X) C a(X).

The converse of 4.5 is false, i.e. there are almost regular functions which are not

regular. This is demonstrated in the following:
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Example 4.6. Lel X be an almost regular space which is not reqular, P = {o} a
singleton and f € C(X, P) defined by f(z) = o for each € X. Then [ is almost
regular bul not regular,

5. Semiregular functions

Definition 5.1. Let X and Y be two spaces. A function f € (X, V') is semuregular
of for each A € 7(X) and & € A there are an open neighbourhood O € Ugizy and a
regular open subsel B € RO(f(0)) such that x € R C AN J=(0).

Proposition 5.2. Every function defined on a semiregular space 1s a semireqular
funciion.

Proof. Set O =Y in the definition.

By 5.2 1t is clear that the fanction s(f) introduced in [CTP] is semiregular.
In general the converse of 5.2 is false, i.e. there are semiregular functions whose
domain is not semiregular. In fact ‘we have the following:

Example 5.3. Let X be the topological space defined by X = {a,b,¢e} and 7(X) =
{0}, {a}, {bH{a,b},{a,c}, X}. Let Y be the topological space defined by Y = {«, 8}
and 7(Y) = {0, {a},Y} and let f € F(X, Y) be the function defined by f(a) =
F(b) = a and Ie) = 8. Il is eaysy to check that f is a semareqgular function but X
s not a semiregular space.

"The following characterization of semiregular functions will be useful to establish
the main results.

Proposition 5.4. Let X and Y be two spaces. Then e C(X,Y) is semiregular
f for each @ € X and V € U(z) there are O € Upzy and U € 7X such that
el Cintx(Clx(U)Nf=(O)CcvVn F(0).

Proof. The proof is similar to the proofs of (1) = (2) and (4) = (1) of 4.4,
Proposition 5.5. Every regular function is semarcgular,

The converse of 5.5 is false: there are semiregular functions which are not regular.
This is shown in the following:

Example 5.6. Lel X be a semiregular space which is not reqular, P = {0} a space

having only one point and f € (/(X, P) defined f(z) = O for each z € X. Then f
is semaregular bul not regular.

6. Questions of heredity

Definition 6.1. Let X and Y be two Lopological spaces, f € C(X,Y) and 1X «
subset of X. The restriction Jux € CUX,Y) of f to1X is said to be open (dense)
if his domain 1X is an open (dense) subsel of X.

The following is easy to check.
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Propostion 6.2. The Tp, Ty and Ty properties for funclions are hereditary, t.e.
every restriction of a Ty, Ty or Ta-function is Tp, Ty or Th, respectively.

Proposition 6.3. The Urysohn property for funclions is hereditary.

Proof. Let f € (/(X,Y) be a Urysohn function and fi,x € C(1X,Y) the restriction
of f on a subspace X’ of X. Then for each #,y € /X such that z # y and
f(x) = f(y), as [ is Urysohn, there are O € Ug(z) and U,V € 7(f7(0)) such that
zc U, yeV and Uli—0)(U) N Clp—oy(U) = . Obviously £,%(Q) C f~(0). So,
for 17 = U N f5(0) and 1V =V N f5(0), we have 1,1V € {5 (0)), « € 4T,
y € 1V and moreover, (»'l‘f&(o)(.'U)ﬂ(l‘!f&(o')(!l/) C (f!‘fk(o)(U)ﬂ('f!f—(())(U.) ={.
Thus f,x is Urysohn.

In the sequel the following proposition will be useful.

Proposition 6.4. The regularily properly for funclions is hereditary, i.c. every
restriction of a regular function s regular.

Proof. Let f € C/(X,Y) be a regular function and f,x € C(1X,Y) the restriction
of f on subspsce X' of X. Let /4 € 7(1X) and = € /4. So, there is A € 7(X)
such that 14 = AN1X. As f is regular, by Propsition 2.2, there are O € Ug(y
and U € r(f~(0)) such that 2 € U C Cly—oy(U) C AN f=(0). So, 1 =
UN fux (0) subset AN f=(O)N flx(0) = AnrX N fix(0) = 1tAN fi,x(0). Thus, by
Proposition 2.2, fi,x is regular.

Notation 6.5. Lel X and Y be (wo spaces and f € C(X,Y) e funclion from X
lo Y, we consider the set 8 = {intx (Clx(U)) N f~(0) : U € 7(X),0 € 7(Y)} =
{inty—(0)(Cly—on(W))} : W € (f~(0)),0 € 7(Y)}. It easy to verify that S
forms an open base for a topology on X. The sel X equipped wilh lopology generated
by S will be demole by X (s, f).

It casy to verify the following proposition .

Proposition 6.6. Let X and Y be spaces, U € 7(X), F € o(X) and f € C(X,Y).
Then :

(1) if X is Hausdorff, so is X (s, f)

(2) T(X(s)) C 7(X(s, f)) C T(X)

(3) Clx (U) = Clx(s,py(U),intx (F) = intx(s, 1y (F)

(/;) ’i'?'LtX(C;T[)(([I)) = ’I:?li)((s)_f)((,/i}((_,,‘f)(u)), C:!X (“HX(F)} = (jl_)((s‘f)(?:'?l.i_x(sjf)(F))
(5) RO(X) = RO(X(s, f)), RO(X) = RC(X(s, [))

(6) (X(s, /))(5, ) = X (5, f)

Therefore the space X (s, f) satisfies the same properties like the semiregulariza-
tion X (s) (see [PW]); for this reason it is natural to call in the f-semiregularization
of X. We say also that X is f-semiregular if X = X(s, f).

Notation 6.7. Lel X and Y be two spaces and [ € C(X,Y). We denote by
f:X(s,f) =Y.

By definition of S, it is clear that f(s) € C(X(s, f),Y).

From Proposition 5.4 it follows
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Proposition 6.8. If X and ¥ are spaces and f € C(X,Y), then f is semiregular
iff X s S-semiregular,

Remark 6.9. Obviously f = fs) ff X = X (s, F) and so, we can that f is semareg-
wlar off [ = f(s). Hence if is obvious that f(s) is semiregular.

Proof. (1) Let f be Hausdorff and Z,y € X such that @ # y and f(z) = Fly). Then,
there are 7, V € 7(X) such that z € UyeVand UNV =10. So, il x (Clx (U))n
?'ﬂ.t,\'((-»‘!ix(]’/r)) = m, with Z?’.'f)g((1[;((U))I.Ttlfg(o‘,((fn’f«-(())(mj)) = T(:fY(S, }')), T e
mtx (Clx(U)) and y € mix (Clx (V). Thus f(s) € C(X(s, f),Y) is Hausdorff,

Counversely, let f(s) be Hausdorff and £,y € X such that z # y and Flx) = f(n.
Then, there are O & Upey and U,V € (f~(0)) such that z € Uy € V and
intx (Clx(U)) N intx (Clx (V) = 9. Since (X (s, f)) € 7(X), it is clear that fis
Hausdorff.

(2) Let f be Urysohn and z,y € X such that  # y and f(2) = f(y). Then, there
are O € Upey and U,V € T(f(0)) such that ¢ € Uy € V oand Cli—oy(U) N
(‘-‘[lf‘—(('))([f) = 0. So, intx (Clx (7)), intx (Clx(V)) € RC(f~(0)) and there-
fore (C[fﬁ(o)(?Z:rttf.—(())(i;’),{.x((_J'IX(U))))) n ((L’l‘fk(o)(imff_—(o)(intx((ﬂ;; () =
) with int oy (intx (Clx (I7))), intp—coy(intx (Clx (V) € X (s, 1)),

z e iwztlfh(o}((,}‘l‘f—(o)((_,/’)) and y € 'l-f'lf.f’—(()“)((,j!jh(O)(V)). Thus f(s) € C(X (s, f),
¥ is a Urysohn function.

Conversely, let f(s) be Urysohn and T,y € X such that » # y and Fle) = ).
Then, there are O € Uzy and U,V € T(X(s,j’])lf‘-(o) such that « € U,y € V
and intx (Clx (U)) N mdx (Clx (V) = . Since m(X(s, f)) € 7(X), it follows that
Uve (X)) p—(0y = T(f7(0)) and so f is Urysohn.

Proposition 6.11. Let X and ¥ be (wo spaces and f € C(X,Y). Then f is almost
regular iff f(s) is reqular.

Proof. = Let f € C(X,Y) be almost regular. To use Proposition 2.2, lef
A € 7(X(s,f)) and = € A. So, there are V € 7(X),P € 7(Y) such that z ¢
mnbx (Clx (V) U f=(P) C A. Since f is almost regular, by Proposition 4.4(2),
there are () € Urz) and U € RO(f=(Q)) such that z € U C Cly—y(U) C
ntx (Clx(V)) N f=(Q). Put 0 = PN Q, and W = [/ n F7(0). Then we have
that O Upey,z € W € 7(f~(0)) and C’If‘—(O_)(VV) = Cly—gy(W) N 0) ¢
Cli-t)(UINS(0) Cintx (CLx (V)N F=(@Q)NF(0) = intx (Clx (V)1 = ( 291
J7(O)ycAn JF7(0). Thus, by Proposition 2.2, the function f(s) € C(X(s, .Y
is regular,

= Let f(s) € C(X(s,£),Y) be regular. We use Proposition 4.4.(4). Let
V€ r(X)and z € V. So, in particular, z € intx (Clx (V) € T(X(s, f)). Since
J(s) is regular, by Proposition 2.2, there are O € Ut(zy and U € 7(f~(0)) such
that z € {7 Cli—oy(U) C intx(Clx (V) N £(0). Thus, by Proposition 4.4(4),
the function f € C'(X,¥) is almost regular.
Proposition 6.12. Let X and Y be two spaces, f € C(X,Y) and U € T(X). Then
)i = (1] U)(3).

Proof. Clearly, il suffices to prove that %(U{s,fly)) — T(X(S,f))l[f. Let 4 €
T({«I(S‘f][j)) and @ € A. So, there are V ¢ w0 e 7(Y) such that z
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inty (CU(VY)) N fip(0) C A. Since, from hypothesis, U € m(X), we have that
intr (Cly (V)N fip (0) = (intx (Clx(V)nU)N(f~(O)N ) = (intx (Clx (V)N
F(O)NU with V € 7(X). So, intx (Clx (V) N f~(0) belongs to the base of
(X (s, f)) and A € (X (s, M-

On the order hand, for each A € 7(X(s, ) and z € A, there is some W €
(X (s, f)) such that A = WnU. So, there are V € 7(X),0 € 7(Y) such that
¢ € intx(Clx(V)) N F~(0) ¢ W. Now, we consider vl e (/) and we
ohserve that inty (Clo(V NU)) N fig (0) = (intx(VNU)NU)N(F7(0)N ) C
intx (Clx(V)nf=(O)nU cwWnU = A But z € inty (CLU(V NT))N fl‘E(O)
which belongs to the base of 7(U(s, fiv)). So A€ (U (s, fiy)) and the proposition

is proved.

Lemma 6.13. Lel X be a space, R € RO(X) and D dense subset of X. Then
RN D e RO(D).

Proof. As, obviously, RND € 7(D), it 1s immediate that RND C intp(Clp(RND)).
On the other hand, for each = € intp(Clp(RN D)), we have that Clp(RN D) is
a neighbourhood of # in D. So, there is some U € r(X) such that z € UND C
Clp(RN D). But Clp(RN D) = Clx(RNnD)ND = Clx(RN Clx (D) ND =
Clx(RNX)N D = Clx(R)N D and so, & € Unip C Clx(R)nD. Then,
Clx () =Cix(UnX) = Clx(UNClx (D) = Clx(UND) C Clx (Clx (RYND) C
Clx(Clx(R)) = Clx(R). Hence, z € U C intx (Clx(U)) C intx(Clx(R)) = K
and since @ € D, it follows that = € RN D. So, intp(Cip(RN D))y C RN D and
the lemma is proved.

Proposition 6.14. Let X and Y be {wo spaces, f € C(X,Y) and D a dense
subsel of X. Then f(s)p = (f(s)p)(5)-

Proof. It suffices to prove that a(D(s, f(s)p)) = (X (s, [))p- By using Lemma
6.13, the proof is analogous to the proof of Proposition 6.12.

Finally, we can prove that the semiregularity and almost regukarity for functions
are both open and dense hereditary properties,

Proposition 6.15. The semiregularity for funclions is open hereditary, t.e. every
open restriclion of a semireqular function is semiregular.

Proof. Let f € C(X,Y) be a semiregular function and fiy € C(U,Y) an open
restriction of f. As f is semiregular, by Remark 6.9, we have that [ = f(s).
Then, by Proposition 6.12, (fjz)(s) = f(s)v = fiv and so, by Remark 6.9, firr is
semiregular.

Proposition 6.16. The semiregularity for funclions is dense hereditary.

Proof. Similarly to the proof of Proposition 6.15, using Proposition 6.14 instead of
Proposition 6.12.

In [SA], Singal and Arya have proved that the almost regularity (for spaces) is
regular open hereditary. The following two properties improve that result.
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Proposition 6.17. The almost regularily for funclions is open heredilary, i.c. ev-
ery open restriction of an almost reqular Junelion is almost reqular.

Proof. Let f € C(X,Y) be an almost regular function and Jir € C(U,Y) an open
restriction of f. By Proposition 6.11, f(s) is regular and so, by Proposition 6.4,
f(8)j is also regular. Then, by Proposition 6.12, fu(s) is regular, and so, according
to Proposition 6.11, fiir is almost regular.

In a similar way we have

Proposition 6.18. The almost regularily for functions is dense heredilary.

7. Main results
Theorem 7.1. Fvery almost regular, Haunsdorfl function ts Urysohn.

Proof. Let f € C(X,Y) be an almost regular, Hausdorff function and Yy € X
such that @ # y and f(z) = f(y). As f is Hausdorff, there are U,V € T(X)
such that z € Uy € Vand UNV = 0. Since V & (X),Clx(U)NV = § and
V. C X\CIx(U). Then y € X\Clx(U) € RO(X). Since f is almost regular,
by Proposition 4.4(2) it follows that there are O € Usyy and W € RO(f=(0))
such that y € W C Cly—(o)(W) C (X\CIx(U)) N f~(0) = f~(O\Cix (V) ¢
F=(O)Clx(Un f~(0)) C F=(0)Cl—0)(U N f~(0)). Since & € U N f~(0) we

are done.
From Proposition 5.5 and Theorem 7.1 we have
Corollary 7.2. Every reqular, Hausdorff function is Urysohn.

Theorem 7.3. A function is regular if and only +f it 15 almost regular and semireg-
ular.

Proof. (=) It follows from Propositions 4.5 and 5.5.
( <) Since f is almost regular, by Proposition 6.11, f(s) is regular. As f is
semiregular, by Proposition 6.9, J(5) = [ and so f is regular.
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