GENERALIZED ALGEBRAIC COMPLEMENT AND MOORE-PENROSE INVERSE

P. Stanimirović and M. Stanković

Abstract. In this paper we prove the well known determinantal representation of the Moore-Penrose generalized inverse of matrices, introduced by Moore, Arghiriade, Dragomir and Gabriel on an elementary way.

It is shown that determinantal representation of $\{1, 2, 3\}$, $\{1, 2, 4\}$ and $\{1, 2\}$ inverses can be obtained in a similar way.

Finally, we present a short proof for the determinantal representation of the Moore-Penrose solution of a system of linear equations.

1. Introduction

Let \mathbb{C}^n be the n-dimensional complex vector space, $\mathbb{C}^{m \times n}$ the set of $m \times n$ complex matrices, and $\mathbb{C}^{m \times n}_r = \{X \in \mathbb{C}^{m \times n} : rank(X) = r\}$. The matrix $A \in \mathbb{C}^{m \times n}$ is called the matrix of the full rank if $rank(A) = min\{m,n\}$. The adjungate matrix of a square matrix B will be denoted by adj(B) and its determinant by |B|. Conjugate, transpose and conjugate-transpose matrix of A will be denoted by \overline{A} , A^T and A^* respectively. Submatrix and minor of A containing rows $\alpha_1, \ldots, \alpha_t$ and columns β_1, \ldots, β_t are denoted by $A \begin{bmatrix} \alpha_1 \ldots \alpha_t \\ \beta_1 \ldots \beta_t \end{bmatrix}$ and $A \begin{pmatrix} \alpha_1 \ldots \alpha_t \\ \beta_1 \ldots \beta_t \end{pmatrix}$ respectively, and its algebraic complement corresponding to element a_{ji} is $A_{ij} \begin{pmatrix} \alpha_1 \ldots \alpha_{p-1} & i & \alpha_{p+1} & \ldots & \alpha_t \\ \beta_1 & \ldots & \beta_{q-1} & j & \beta_{q+1} & \ldots & \beta_t \end{pmatrix} = (-1)^{p+q} A \begin{pmatrix} \alpha_1 & \ldots & \alpha_{p-1} & \alpha_{p+1} & \ldots & \alpha_t \\ \beta_1 & \ldots & \beta_{q-1} & j & \beta_{q+1} & \ldots & \beta_t \end{pmatrix}$. For any matrix $A \in \mathbb{C}^{m \times n}$, vector $x \in \mathbb{C}^m$ and $j \in \{1, \ldots, n\}$, matrix obtained by replacing the jth column of A with x is denoted by $A(j \to x)$.

Penrose [12] has shown the existence and uniqueness of a solution $X \in \mathbb{C}^{n \times m}$ of the equations

(1)
$$AXA = A$$
, (2) $XAX = X$, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$ for $A \in \mathbb{C}^{m \times n}$.

For a subset S of the set $\{1,2,3,4\}$ the set of matrices G obeying the conditions represented in S will be denoted by $A\{S\}$. A matrix G in $A\{S\}$ is called an S-inverse of A and denoted by $A^{(S)}$. In particular for any $A \in \mathbb{C}^{m \times n}$ the set

Received 20.02.1994

¹⁹⁹¹ Mathematics Subject Classification: 15A09, 15A60, 65F35 Supported by Grant 0401A of RFNS through Math. Inst. SANU

 $A\{1,2,3,4\}$ conststs of a single element, The Moore-Penrose inverse of A, denoted by A^{\dagger} .

In the following theorem has described an useful representation of $\{i, j, k\}$ generalized inverses [13].

Theorem 1.1. Let A = PQ be a full-rank factorization [9] of $A \in \mathbb{C}_r^{m \times n}$. If $W_1 \in \mathbb{C}^{n \times r}$ and $W_2 \in \mathbb{C}^{r \times m}$ are some matrices such that $rank(QW_1) = rank(W_2P)$ = rank(A) = r, then

$$A^{(1,2)} = W_1(QW_1)^{-1}(W_2P)^{-1}W_2$$

$$A^{(1,2,3)} = W_1(QW_1)^{-1}(P^*P)^{-1}P^*$$

$$A^{(1,2,4)} = Q^*(QQ^*)^{-1}(W_2P)^{-1}W_2$$

$$A^{\dagger} = Q^{\dagger}P^{\dagger} = Q^*(QQ^*)^{-1}(P^*P)^{-1}P^*.$$

Concept of determinant i.e. algebraic complement is intimately related to the concept of inversion of matrices.

Moore in [10], [11] announced the following identities, giving the element a_{ij}^{\dagger} of A^{\dagger} as the ratios of sums of determinants.

Theorem 1.2. For $A \in \mathbb{C}_r^{m \times n}$ the (i, j)-th element of A^{\dagger} is given by

(1.1)
$$a_{ij}^{\dagger} = \frac{\sum\limits_{\substack{i_2 < \dots < i_r \\ j_2 < \dots < j_r}} A^* \begin{pmatrix} i_1 & i_2 & \dots & i_r \\ j_2 & \dots & j_r \end{pmatrix} A \begin{pmatrix} j_2 & \dots & j_r \\ j_2 & \dots & j_r \end{pmatrix}}{\sum\limits_{\substack{s_1 < \dots < s_r \\ t_1 < \dots < t_r}} A \begin{pmatrix} s_1 & \dots & s_r \\ t_1 & \dots & t_r \end{pmatrix} A^* \begin{pmatrix} t_1 & \dots & t_r \\ s_1 & \dots & s_r \end{pmatrix}}.$$

Arghiriade and Dragomir in [1] have generalized the concept of the algebraic complement to derive a determinantal representation of the Moore-Penrose pseudoinverse of a full-rank matrix. In this paper they did not cite the Moore's result.

Theorem 1.3. For a given full rank matrix $A \in \mathbb{C}^{m \times n}$ generalized algebraic complement corresponding to the element aij is equal to

lement corresponding to the element
$$a_{ij}$$
 is equal to
$$(1.2) A_{ij}^{\dagger} = \begin{cases} \sum_{\beta_1 < \dots < j < \dots < \beta_m} \overline{A} \begin{pmatrix} 1 & \dots & \dots & m \\ \beta_1 & \dots & j & \dots & \beta_m \end{pmatrix} A_{ij} \begin{pmatrix} 1 & \dots & \dots & m \\ \beta_1 & \dots & j & \dots & \beta_m \end{pmatrix}, & m \leq n \\ \sum_{\alpha_1 < \dots < i < \dots < \alpha_n} \overline{A} \begin{pmatrix} \alpha_1 & \dots & i & \dots & \alpha_n \\ 1 & \dots & \dots & n \end{pmatrix} A_{ij} \begin{pmatrix} \alpha_1 & \dots & i & \dots & \alpha_n \\ 1 & \dots & \dots & n \end{pmatrix}, & n \leq m \end{cases};$$

the norm of A is

(1.3)
$$||A|| = \begin{cases} \sum_{1 \le \beta_1 < \dots < \beta_m \le n} \overline{A} \begin{pmatrix} 1 & \dots & m \\ \beta_1 & \dots & \beta_m \end{pmatrix} A \begin{pmatrix} 1 & \dots & m \\ \beta_1 & \dots & \beta_m \end{pmatrix}, & m \le n \\ \sum_{1 \le \alpha_1 < \dots < \alpha_n \le m} \overline{A} \begin{pmatrix} \alpha_1 & \dots & \alpha_n \\ 1 & \dots & n \end{pmatrix} A \begin{pmatrix} \alpha_1 & \dots & \alpha_n \\ 1 & \dots & n \end{pmatrix}, & n \le m \end{cases},$$

and (i,j)-th element of the Moore-Penrose inverse $A^{\dagger} = \left\{ \begin{array}{ll} A^*(AA^*)^{-1}, & m \leq n \\ (A^*A)^{-1}A^*, & n < m \end{array} \right.$ equal to $a_{ij}^{\dagger} = \frac{1}{||A||} A_{ij}^{\dagger}$, $\begin{pmatrix} 1 \leq i \leq n \\ 1 \leq j \leq m \end{pmatrix}$.

In [8] R. Gabriel obtain the same result discovering an explicit formula for (i, j)-th entry of the matrix expressions $\frac{A^* \cdot adj(AA^*)}{|AA^*|}$ or $\frac{adj(A^*A) \cdot A^*}{|A^*A|}$.

In [5] is showed that determinantal representation of the Moore-Penrose inverse can be generalized to an arbitrary matrix and in that way derived again the determinantal representation originated by Moore.

Theorem 1.4. Element lying on the i-row and j-column of the Moore-Penrose pseudoinverse of a given matrix $A \in \mathbb{C}_r^{m \times n}$ can be represented in terms of determinant of square matrices as follows:

$$(1.4) a_{ij}^{\dagger} = \frac{A_{ij}^{\dagger}}{\|A\|} = \frac{\sum\limits_{\substack{1 \leq \beta_1 < \dots < \beta_r \leq n \\ 1 \leq \alpha_1 < \dots < \alpha_r \leq m}} \overline{A} \begin{pmatrix} \alpha_1 & \dots & j & \dots & \alpha_r \\ \beta_1 & \dots & i & \dots & \beta_r \end{pmatrix} A_{ji} \begin{pmatrix} \alpha_1 & \dots & j & \dots & \alpha_r \\ \beta_1 & \dots & i & \dots & \beta_r \end{pmatrix}}{\sum\limits_{\substack{1 \leq \delta_1 < \dots < \delta_r \leq n \\ 1 \leq \gamma_1 < \dots < \gamma_r \leq m}} A \begin{pmatrix} \gamma_1 & \dots & \gamma_r \\ \delta_1 & \dots & \delta_r \end{pmatrix} \overline{A} \begin{pmatrix} \gamma_1 & \dots & \gamma_r \\ \delta_1 & \dots & \delta_r \end{pmatrix}}.$$

Matrix whose elements are equal to A_{ij}^{\dagger} is written as $adj^{\dagger}(A)$ and called the generalized adjoint matrix of A.

In [6], [7], [8] R. Gabriel defined concept of the generalized algebraic complements and matrix norms of different orders, using matrices with elements taken from an arbitrary field.

The Moore-Penrose solution of a linear system Ax = b, $A \in \mathbb{C}_r^{m \times n}$, $b \in \mathbb{C}^n$ is represented in terms of minors of A in [4].

Theorem 1.5. The ith component of the Moore-Penrose solution x of the linear system Ax = z posseses the following determinantal representation

System
$$Ax = z$$
 posseses the following determinantal representation
$$\sum_{\substack{1 \leq q_1 < \dots < q_r \leq n \\ 1 \leq p_1 < \dots < p_r \leq m}} \overline{A} {p_1 \dots p_r \choose q_1 \dots q_r} \Big(A {p_1 \dots p_r \choose q_1 \dots q_r} (i \rightarrow_p z) \Big)$$

$$x_i^{\dagger} = \frac{1 \leq p_1 < \dots < p_r \leq m}{\|A\|}$$

where pz denotes the vector $\{z_{p_1}, \ldots, z_{p_r}\}$.

The main results of this paper are as follows:

- (1) Obtain determinantal representation of the Moore-Penrose inverse using new method, based on a full rank factorization, Cauchy-Binet theorem and the known results for full rank matrices (Theorem 2.1).
- (2) Develop an elegant proof for the Moore-Penrose solution of systems of linear equations (Theorem 3.1).
- (3) Discover determinantal representation for $\{i, j, k\}$ generalized inverses and generalization of the algebraic complement of rectangular matrices (Theorem 2.2).

2. Determinantal representation of the Moore-Penrose inverse

Determinantal representation of the Moore-Penrose inverse we obtain as a trivial consequence of the following two lemmas.

Lemma 2.1. For a rectangular matrix $A \in \mathbb{C}_r^{m \times n}$ and rectangular matrices $P \in \mathbb{C}_r^{m \times r}$, $Q \in \mathbb{C}_r^{r \times n}$, such that A = PQ the following equation is valid

(2.1)
$$\sum_{k=1}^{r} P_{jk} \begin{pmatrix} \alpha_1 \dots j \dots \alpha_r \\ 1 \dots k \dots r \end{pmatrix} Q_{ki} \begin{pmatrix} 1 \dots k \dots r \\ \beta_1 \dots i \dots \beta_r \end{pmatrix} = A_{ji} \begin{pmatrix} \alpha_1 \dots j \dots \alpha_r \\ \beta_1 \dots i \dots \beta_r \end{pmatrix}.$$

Proof. Equation A = PQ implies $P\begin{bmatrix} \alpha_1 & \dots & \alpha_r \\ 1 & \dots & r \end{bmatrix} Q\begin{bmatrix} 1 & \dots & r \\ \beta_1 & \dots & \beta_r \end{bmatrix} = A\begin{bmatrix} \alpha_1 & \dots & \alpha_r \\ \beta_1 & \dots & \beta_r \end{bmatrix}$. Suppose that i is contained in combination $\alpha_1 < \dots < \alpha_r$, and j is contained in combination $\beta_1 < \dots < \beta_r$, i.e. $\alpha_1 < \dots < \alpha_r = \alpha_1 < \dots \alpha_{p-1} < i < \alpha_{p+1} < \alpha_r$ and $\beta_1 < \dots < \beta_r = \beta_1 < \dots \beta_{q-1} < j < \beta_{q+1} < \beta_r$. Then we obtain

$$\beta_{1} < \dots < \beta_{r}, \text{ i.e. } \alpha_{1} < \dots < \alpha_{r} = \alpha_{1} < \dots \alpha_{p-1} < t < \alpha_{p+1} < \alpha_{r}$$

$$\beta_{1} < \dots < \beta_{r} = \beta_{1} < \dots \beta_{q-1} < j < \beta_{q+1} < \beta_{r}. \text{ Then we obtain}$$

$$P \begin{bmatrix} \alpha_{1} & \dots & \alpha_{p-1} & \alpha_{p+1} & \dots & \alpha_{r} \\ 1 & \dots & \dots & \dots & r \end{bmatrix} Q \begin{bmatrix} 1 & \dots & \dots & \dots & r \\ \beta_{1} & \dots & \beta_{q-1} & \beta_{q+1} & \dots & \beta_{r} \end{bmatrix} = A \begin{bmatrix} \alpha_{1} & \dots & \alpha_{p-1} & \alpha_{p+1} & \dots & \alpha_{r} \\ \beta_{1} & \dots & \beta_{q-1} & \beta_{q+1} & \dots & \beta_{r} \end{bmatrix}.$$

An application of the theorem Cauchy-Binet leads to

$$A\begin{pmatrix} \alpha_1 & \dots & \alpha_{p-1} & \alpha_{p+1} & \dots & \alpha_r \\ \beta_1 & \dots & \beta_{q-1} & \beta_{q+1} & \dots & \beta_r \end{pmatrix} = \sum_{1 \le \gamma_1 < \dots < \gamma_{r-1} \le r} P\begin{pmatrix} \alpha_1 & \dots & \alpha_{p-1} & \alpha_{p+1} & \dots & \alpha_r \\ \gamma_1 & \dots & \dots & \dots & \gamma_{r-1} \end{pmatrix} Q\begin{pmatrix} \gamma_1 & \dots & \dots & \dots & \gamma_{r-1} \\ \beta_1 & \dots & \beta_{q-1} & \beta_{q+1} & \dots & \beta_r \end{pmatrix} = \sum_{k=1}^r P\begin{pmatrix} \alpha_1 & \dots & \alpha_{p-1} & \alpha_{p+1} & \dots & \alpha_r \\ 1 & \dots & k-1 & k+1 & \dots & r \end{pmatrix} Q\begin{pmatrix} 1 & \dots & k-1 & \dots & k+1 & r \\ \beta_1 & \dots & \beta_{q-1} & \beta_{q+1} & \dots & \beta_r \end{pmatrix},$$

which represents an equivalent form of the equation (2.1).

From Lemma 2.1, if A = PQ is a full-rank factorization of A then $adj(A) = adj(Q) \cdot adj(P)$. In Lemma 2.2 is showed that generalized adjoint matrix of a rank deficient matrix A can be obtained as product of generalized adjoint matrices of two full rank matrices.

Lemma 2.2. If
$$A = PQ$$
 is a full rank factorization of A , then $adj^{\dagger}(A) = adj^{\dagger}(Q)adj^{\dagger}(P)$

Proof. For a full rank matrix the proof is evident. Suppose now that $rank(A) < min\{m,n\}$. An element lying on the *i*-th row and *j*-th column of $adj^{\dagger}(Q)adj^{\dagger}(P)$ can be evaluated as follows:

$$\begin{split} \sum_{k=1}^{r} Q_{ik}^{\dagger} P_{kj}^{\dagger} &= \sum_{k=1}^{r} \left[\sum_{1 \leq \beta_{1} < \ldots < \beta_{r} \leq n} \overline{Q} \begin{pmatrix} 1 & \ldots & \ldots & r \\ \beta_{1} & \ldots & i & \ldots & \beta_{r} \end{pmatrix} Q_{ki} \begin{pmatrix} 1 & \ldots & \ldots & r \\ \beta_{1} & \ldots & i & \ldots & \beta_{r} \end{pmatrix} \right] \times \\ & \times \left[\sum_{1 \leq \alpha_{1} < \ldots < \alpha_{r} \leq m} \overline{P} \begin{pmatrix} \alpha_{1} & \ldots & j & \ldots & \alpha_{r} \\ 1 & \ldots & \ldots & r \end{pmatrix} P_{jk} \begin{pmatrix} \alpha_{1} & \ldots & j & \ldots & \alpha_{r} \\ 1 & \ldots & \ldots & r \end{pmatrix} \right] = \\ & = \sum_{\substack{1 \leq \alpha_{1} < \ldots < \alpha_{r} \leq m \\ 1 \leq \beta_{1} < \ldots < \beta_{r} \leq n}} \overline{A} \begin{pmatrix} \alpha_{1} & \ldots & j & \ldots & \alpha_{r} \\ \beta_{1} & \ldots & i & \ldots & \beta_{r} \end{pmatrix} \sum_{k=1}^{r} P_{jk} \begin{pmatrix} \alpha_{1} & \ldots & j & \ldots & \alpha_{r} \\ 1 & \ldots & \ldots & r \end{pmatrix} Q_{ki} \begin{pmatrix} 1 & \ldots & \ldots & r \\ \beta_{1} & \ldots & i & \ldots & \beta_{r} \end{pmatrix}. \end{split}$$

Finally, an application of the Lemma 2.1 leads to $\sum_{k=1}^{r} Q_{ik}^{\dagger} P_{kj}^{\dagger} = A_{ij}^{\dagger}$.

In the following theorem we obtain determinantal representation of the Moore-Penrose inverse as an easily consequence of Lemma 2.2.

Theorem 2.1. Let $A \in \mathbb{C}_r^{m \times n}$ and $r \leq \min\{m, n\}$. The element on the i-row and j-column of Moore-Penrose inverse A^{\dagger} of A can be expressed by

$$a_{ij}^{\dagger} = \frac{1}{\|A\|} A_{ji}^{\dagger} = \frac{\sum\limits_{\substack{1 \leq \beta_1 < \ldots < \beta_r \leq n \\ 1 \leq \alpha_1 < \ldots < \alpha_r \leq m}} \overline{A} \begin{pmatrix} \alpha_1 & \ldots j & \ldots \alpha_r \\ \beta_1 & \ldots i & \ldots \beta_r \end{pmatrix} A_{ji} \begin{pmatrix} \alpha_1 & \ldots j & \ldots \alpha_r \\ \beta_1 & \ldots i & \ldots \beta_r \end{pmatrix}}{\sum\limits_{\substack{1 \leq \alpha_1 < \ldots < \alpha_r \leq m \\ 1 \leq \alpha_1 < \ldots < \alpha_r \leq m}} A \begin{pmatrix} \alpha_1 & \ldots \alpha_r \\ \beta_1 & \ldots \beta_r \end{pmatrix} \overline{A} \begin{pmatrix} \alpha_1 & \ldots \alpha_r \\ \beta_1 & \ldots \beta_r \end{pmatrix}}.$$

Proof. Let A = PQ, $P \in \mathbb{C}_r^{m \times r}$, $Q \in \mathbb{C}_r^{r \times n}$ be a fullrank factorization of A. The matrices P and Q are rank maximal, and satisfy relations from Theorem 1.3. Furthermore, using $A^{\dagger} = Q^{\dagger}P^{\dagger}$, Lemma 2.2 and $\|P\|\|Q\| = \|A\|$, we obtain:

$$a_{ij}^{\dagger} = \frac{1}{\|P\| \|Q\|} \sum_{k=1}^{r} Q_{ik}^{\dagger} P_{kj}^{\dagger} = \frac{1}{\|A\|} A_{ij}^{\dagger} . \qquad \blacksquare.$$

Main properties of generalized adjoint matrix, obtained from determinantal representation of the Moore-Penrose inverse are presented in the following lemma:

Lemma 2.3. For $A \in \mathbb{C}_r^{m \times n}$ and a complex number c is valid:

(i)
$$adj^{\dagger}(cA) = \overline{c}^r c^{r-1} adj^{(\dagger,r)} A;$$

(ii)
$$adj^{\dagger}(A^*) = (adj^{\dagger}(A^T))^*;$$

(iii)
$$(cA)^{\dagger} = c^{\dagger}A^{\dagger}$$
, where $c^{\dagger} = \begin{cases} \frac{1}{c} & \text{for } c \neq 0 \\ 0 & \text{for } c = 0 \end{cases}$.

Proof. The well known result (iii) [2] follows from (i) and properties of ||A||.

In a similar way, using Theorem 1.1 and Lemma 2.1, we introduce a detrminantal representation of $\{1,2,3\}$, $\{1,2,4\}$ and $\{1,2\}$ inverses. For the briefness and theoretical sake we introduce the notion of the *universal algebraic complement*, representing a natural generalization of the *generalized algebraic complement* introduced in Theorem 1.3 and Theorem 1.4:

Definition 2.1. Let $A \in \mathbb{C}_r^{m \times n}$ and $R \in \mathbb{C}_r^{m \times n}$ ensures $rank(AR^*) = rank(R^*A)$ = r. Universal algebraic complement of A is equal to

(2.2)
$$A_{ij}^{(\dagger,R)} = \sum_{\substack{1 \le \beta_1 < \dots < \beta_r \le n \\ 1 \le \alpha_1 < \dots < \alpha_r \le m}} \overline{R} \begin{pmatrix} \alpha_1 \dots j \dots \alpha_r \\ \beta_1 \dots i \dots \beta_r \end{pmatrix} A_{ji} \begin{pmatrix} \alpha_1 \dots j \dots \alpha_r \\ \beta_1 \dots i \dots \beta_r \end{pmatrix}.$$

Theorem 2.2. If $A \in \mathbb{C}_r^{m \times n}$ and A = PQ is a full rank factorization of A, and if $W_1 \in \mathbb{C}^{s \times n}$ and $W_2 \in \mathbb{C}^{n \times r}$ are some matrices such that $\operatorname{rank}(QW_1) = \operatorname{rank}(W_2P) = \operatorname{rank}(A)$, then (i,j)-elements $a_{ij}^{(1,2,3)} \in A^{(1,2,3)}$, $a_{ij}^{(1,2,4)} \in A^{(1,2,4)}$ and $a_{ij}^{(1,2)} \in A^{(1,2)}$ are given by

P. Stanimirovic, M. Stankovic
$$a_{ij}^{(1,2,3)} = \frac{\sum\limits_{\substack{1 \leq \beta_1 < \ldots < \beta_r \leq n \\ 1 \leq \alpha_1 < \ldots < \alpha_r \leq m}} (W_1 P^*)^T \begin{pmatrix} \alpha_1 & \ldots & j & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix} A_{ji} \begin{pmatrix} \alpha_1 & \ldots & j & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}}{\sum\limits_{\substack{1 \leq \delta_1 < \ldots < \delta_r \leq n \\ 1 \leq \gamma_1 < \ldots < \gamma_r \leq m}} A \begin{pmatrix} \gamma_1 & \ldots & \gamma_r \\ \delta_1 & \ldots & \delta_r \end{pmatrix} (W_1 P^*)^T \begin{pmatrix} \gamma_1 & \ldots & \gamma_r \\ \delta_1 & \ldots & \delta_r \end{pmatrix}}$$

$$a_{ij}^{(1,2,4)} = \frac{\sum\limits_{\substack{1 \leq \beta_1 < \ldots < \beta_r \leq n \\ 1 \leq \alpha_1 < \ldots < \alpha_r \leq m}} (Q^* W_2)^T \begin{pmatrix} \alpha_1 & \ldots & j & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix} A_{ji} \begin{pmatrix} \alpha_1 & \ldots & j & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}}{\sum\limits_{\substack{1 \leq \delta_1 < \ldots < \delta_r \leq n \\ 1 \gamma_1 < \ldots < \gamma_r \leq m}} A \begin{pmatrix} \gamma_1 & \ldots & \gamma_r & \ldots & \alpha_r \end{pmatrix} (Q^* W_2)^T \begin{pmatrix} \gamma_1 & \ldots & \gamma_r \\ \delta_1 & \ldots & \delta_r \end{pmatrix}}$$

$$a_{ij}^{(1,2)} = \frac{\sum\limits_{\substack{1 \leq \beta_1 < \ldots < \beta_r \leq n \\ 1 \leq \alpha_1 < \ldots < \beta_r \leq n}} (W_1 W_2)^T \begin{pmatrix} \alpha_1 & \ldots & j & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}}{A \begin{pmatrix} \gamma_1 & \ldots & \gamma_r & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}} A_{ji} \begin{pmatrix} \alpha_1 & \ldots & j & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}}$$

$$a_{ij}^{(1,2)} = \frac{\sum\limits_{\substack{1 \leq \beta_1 < \ldots < \beta_r \leq n \\ 1 \leq \alpha_1 < \ldots < \alpha_r \leq m}} A \begin{pmatrix} \gamma_1 & \ldots & \gamma_r & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}} A_{ji} \begin{pmatrix} \alpha_1 & \ldots & j & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}} A_{ji} \begin{pmatrix} \gamma_1 & \ldots & \gamma_r & \ldots & \alpha_r \\ \beta_1 & \ldots & i & \ldots & \beta_r \end{pmatrix}}$$
It is easily from Definition 2.1 that

Proof. It is easily from Definition 2.1 that

(2.3)
$$a_{ij}^{(1,2)} = \frac{\sum\limits_{k=1}^{r} Q_{ik}^{(\dagger,W_1^*)} \cdot P_{kj}^{(\dagger,W_2^*)}}{|QW_1| \cdot |W_2P|}.$$

Denominator in (2.3) can be transformed using Theorem Cauchy-Binet. Also, using Lemma 2.1, it is trivial to verify

$$\sum_{k=1}^{r} Q_{ik}^{(\dagger,W_1^*)} \cdot P_{kj}^{(\dagger,W_2^*)} = A_{ij}^{(\dagger,(W_1W_2)^*)} = \sum_{\substack{1 \leq \beta_1 < \dots < \beta_r \leq n \\ 1 \leq \alpha_1 < \dots < \alpha_r \leq m}} (W_1W_2)^T \begin{pmatrix} \alpha_1 & \dots & j & \dots & \alpha_r \\ \beta_1 & \dots & i & \dots & \beta_r \end{pmatrix} A_{ji} \begin{pmatrix} \alpha_1 & \dots & j & \dots & \alpha_r \\ \beta_1 & \dots & i & \dots & \beta_r \end{pmatrix}.$$

Determinantal representation of $\{1,2,3\}$ and $\{1,2,4\}$ inverses can be developed in a similar way.

3. Moore-Penrose solution of a system of linear equations

In this section is presented a short proof of the known determinant representation of the Moore-Penrose solution of a linear system of equations, introduced in [4].

Theorem 3.1. i-th component of the Moore-Penrose solution of a linear system $Ax=z, A\in \mathbb{C}_r^{m\times n}, x\in \mathbb{C}^n, z\in \mathbb{C}^m$ can be represented by the following determinantal representation:

$$x_{i}^{\dagger} = \frac{\sum\limits_{\substack{1 \leq q_{1} < \ldots < q_{r} \leq n \\ 1 \leq p_{1} < \ldots < p_{r} \leq m}} \overline{A} \binom{p_{1} \ \ldots \ \ldots \ p_{r}}{q_{1} \ \ldots \ i \ \ldots \ q_{r}} \binom{A}{q_{1} \ \ldots \ i \ \ldots \ q_{r}} \binom{p_{1} \ \ldots \ldots \ p_{r}}{q_{1} \ \ldots \ i \ \ldots \ q_{r}} (i \rightarrow_{p} z)}{\|A\|}$$

where $_pz$ denotes the vector $\{z_{p_1},\ldots,z_{p_r}\}$

Proof. We can find a full rank factorization of A: A = BC, $B \in \mathbb{C}_r^{m \times r}$, $C \in$ $\mathbb{C}_r^{r \times n}$, so that $x^{\dagger} = C^{\dagger} B^{\dagger} z$. Hence the starting system Ax = z splits up into the two equivalent systems By=z and Cx=y. The Moore-Penrose solution $y^{\dagger}=B^{\dagger}z$ of the system $By = z, y \in \mathbb{C}^n$ is represented in [4, Theorem 1.]:

$$y_i^{\dagger} = \frac{\sum\limits_{1 \leq p_1 < \ldots < p_r \leq m} \overline{B} {p_1 \cdots p_r \choose 1 \cdots r} \left(B {p_1 \cdots p_r \choose 1 \cdots r} (i \rightarrow_p z) \right)}{|B^*B|}, \quad 1 \leq i \leq r.$$

In the second step the Moore-Penrose solution $x^{\dagger} = C^{\dagger}y^{\dagger}$ of the system Cx = yis represented using an original method, as follows. Using $x^{\dagger} = C^*(CC^*)^{-1}y^{\dagger}$, it is easily that x_i^{\dagger} is equal to the scalar product of *i*th row of the matrix $\frac{1}{|CC^*|}$.

 $C^*adj(CC^*)$ and the vector y^{\dagger} , $1 \leq i \leq n$:

$$x_i^{\dagger} = \frac{1}{|CC^*|} \cdot \left(\sum_{k=1}^r (C^* adj(CC^*))_{ik} y_k^{\dagger} \right).$$

Element on the *i*-th row and *j*-th column of the matrix $C^*adj(CC^*)$ is [7]:

$$(C^*adj(CC^*))_{ij} = \sum_{1 \leq q_1 \leq \dots \leq q_r \leq n} \overline{C} \begin{pmatrix} 1 & \dots & \dots & r \\ q_1 & \dots & i & \dots & q_r \end{pmatrix} C_{ji} \begin{pmatrix} 1 & \dots & \dots & r \\ q_1 & \dots & i & \dots & q_r \end{pmatrix} ,$$

which implies

$$x_{i}^{\dagger} = \frac{1}{|CC^{*}|} \sum_{k=1}^{r} \sum_{q_{1} < \dots < q_{r}} \overline{C} \begin{pmatrix} 1 & \dots & \dots & r \\ q_{1} & \dots & i & \dots & q_{r} \end{pmatrix} C_{ki} \begin{pmatrix} 1 & \dots & \dots & r \\ q_{1} & \dots & i & \dots & q_{r} \end{pmatrix} \times$$

$$\times \frac{1}{|B^{*}B|} \sum_{p_{1} < \dots < p_{r}} \overline{B} \begin{pmatrix} p_{1} & \dots & p_{r} \\ 1 & \dots & r \end{pmatrix} (B \begin{pmatrix} p_{1} & \dots & p_{r} \\ 1 & \dots & r \end{pmatrix}) (k \rightarrow_{p} z)) =$$

$$= \frac{\sum_{\substack{1 \leq q_{1} < \dots < q_{r} \leq n \\ 1 \leq p_{1} < \dots < p_{r} \leq m}} \overline{A} \begin{pmatrix} p_{1} & \dots & \dots & p_{r} \\ q_{1} & \dots & i & \dots & q_{r} \end{pmatrix} \left[\sum_{k=1}^{r} C_{ki} \begin{pmatrix} 1 & \dots & \dots & r \\ q_{1} & \dots & i & \dots & q_{r} \end{pmatrix} B \begin{pmatrix} p_{1} & \dots & p_{r} \\ 1 & \dots & r \end{pmatrix} (k \rightarrow_{p} z) \right]$$

Using Laplace's development on the kth column of the square matrix $B\left(\begin{smallmatrix}p_1&\dots&p_r\\1&\dots&r\end{smallmatrix}\right)(k\to_p z)$ we get

$$x_{i}^{\dagger} = \frac{\sum_{\substack{1 \leq q_{1} < \dots < q_{r} \leq n \\ 1 \leq p_{1} < \dots < p_{r} \leq m}} \overline{A} \begin{pmatrix} p_{1} & \dots & p_{r} \\ q_{1} & \dots & q_{r} \end{pmatrix} \left[\sum_{k=1}^{r} C_{ki} \begin{pmatrix} 1 & \dots & p_{r} \\ q_{1} & \dots & q_{r} \end{pmatrix} \sum_{l=1}^{r} z_{p_{l}} B_{p_{l}k} \begin{pmatrix} p_{1} & \dots & p_{r} \\ 1 & \dots & r \end{pmatrix} \right]}{\|A\|}$$

$$= \underbrace{\sum_{\substack{1 \leq q_1 < \ldots < q_r \leq n \\ 1 \leq p_1 < \ldots < p_r \leq m}} \overline{A} \begin{pmatrix} p_1 & \ldots & \ldots & p_r \\ q_1 & \ldots & i & \ldots & q_r \end{pmatrix}}_{1 \leq p_1 \ldots < p_r \leq m} \left[\sum_{l=1}^r z_{p_l} \sum_{k=1}^r C_{ki} \begin{pmatrix} 1 & \ldots & \ldots & r \\ q_1 & \ldots & i & \ldots & q_r \end{pmatrix} B_{p_l k} \begin{pmatrix} p_1 & \ldots & p_r \\ 1 & \ldots & r \end{pmatrix} \right]$$

In accordance with Lemma 2.1, we obtain

$$x_{i}^{\dagger} = \frac{\sum\limits_{\substack{1 \leq q_{1} < \ldots < q_{r} \leq n \\ r \leq m}} \overline{A} \binom{p_{1} \ldots \ldots p_{r}}{q_{1} \ldots i \ldots q_{r}} \sum\limits_{l=1}^{r} z_{p_{l}} A_{p_{l} i} \binom{p_{1} \ldots \ldots p_{r}}{q_{1} \ldots i \ldots q_{r}}$$

Finally, using $\sum_{l=1}^{r} z_{p_l} A_{p_l i} \begin{pmatrix} p_1 & \dots & \dots & p_r \\ q_1 & \dots & i & \dots & q_r \end{pmatrix} = A \begin{pmatrix} p_1 & \dots & p_r \\ q_1 & \dots & q_r \end{pmatrix} (i \to pz)$ we complete the proof.

REFERENCES

- [1] Arghiriade, E. et Dragomir, A., Une nouvelle definition de l'inverse generalisee d'une matrice, Lincei Rend. Sc. fis. mat. e nat. XXXV (1963),158-165.
- [2] Ben-Israel, A. and Grevile, T.N.E., Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.
- [3] Ben-Israel, A., Generalized inverses of matrices: a perspective of the work of Penrose, Math. Proc. Camb. Phil. Soc. 100 (1986), 407-425.
- [4] Berg, L., Three results in connection with inverse matrices, Linear Algebra Appl. 84 (1986), 63-77.
- [5] Gabriel, R., Extinderea complementilor algebrici generalizati la matrici oarecare, St. Cerc. Mat. 17 -Nr. 10 (1965), 1566-1581.
- [6] Gabriel, R., Das verallgemeinerte inverse einer matrix, deren elemente einem beliebigen Körper angehören, J. Rewie Ansew Math. 234 (1967), 107-122.
- [7] Gabriel, R., Das verallgemeinerte inverse einer matrix, über einem beliebigen Körper analytish betrachtet, J. Rewie Ansew Math. 244(V) (1970), 83-93.
- [8] Gabriel, R., Das allgemeine element des verallgemeinerten inversen von Moore-Penrose, Rev. Roum. math. pures et appl., XXVII, No 6 (1982), 689-702.
- [9] Horn, R.A., Johnson, CH.R., *Matrix Analysis*, Cambridge University Press, Cambridge, 1987.
- [10] Moore, E.H., On the reciprocal of the general algebraic matrix (Abstract), Bull. Amer. Math. Soc. 26 (1920), 394-395.
- [11] Moore, E.H., General Analysis, Part I, The Amer. Philos. Soc., 1935.
- [12] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
- [13] Radić, M., Some contributions to the inversion of rectangular matrices, Glasnik matematički 1(21) No. 1 (1966), 23–37.

University of Niš, Faculty of Philosophy, Departement of Mathematics, Ćirila i Metodija 2, 18000 Niš, Yugoslavia