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GENERALIZED ALGEBRAIC COMPLEMENT
AND MOORE-PENROSE INVERSE

P. Stanimirovié¢ and M. Stankovié

Abstract. In this paper we prove the well known determinantal representation of
the Moore-Penrose generalized inverse of matrices, introduced by Moore, Arghiri-
ade, Dragomir and Gabriel on an elementary way.

It 1s shown that determinantal representation of 11,2,3}, {1,2,4} and {1,2} in-
verses can be oblained in o similar way.

Funally, we present a short proof for the determinanial representalion of the Moore-
Penrose solution of a system of linear equalions.

1. Introduction

Let € be the n-dimensional complex vector space, C™*" the set of m x 1n
complex matrices, and C"*n = [x g Cmxn . rank(X) = »}. The matrix
A € ™" s called the matrix of the full rank if rank(A) = min{m,n}. The
adjungate matrix of a square matrix B will be denoted by adji(B) and its de-
terminant by [B|. Conjugate, transpose and conjugate-transpose matrix of A
will be denoted by A, AT and A* respectively. Submatrix and minor of A con-

W 2 P Q.. .y
taming rows oy, ... a; and columns By, . .. y B are denoted by A [ ] and

BB
P (a5 A 4 ; . i
A Bi. .. By respectively, and its algebraic complement corresponding to element

tji 18 Ayj (;11 ;:: ; ;fj: ;:) = {‘l)’vﬂfl (gf zi:ll B:: ;:) For any ma-
trix A € C™*" | vector x € C™ and j € {1,... ,n}, matrix obtained by replacing
the jth column of A with 2 is denoted by A(j — =).

Penrose [12] has shown the existence and uniqueness of a solution X € (rXm of
the equations

(1) AXA=4, (2) XAX =X, (3) (AX)y*=AX, (4 (XA = XA

for A e Cmxn |

For a subset & of the set {I,2,3,4} the set of matrices (& obeying the conditions
tepresented in § will he denoted by A{S}. A matrix (7 in A{S} is called an
S-inverse of A and denoted by A), In particular for any A € C"%? the set
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A{l1,2,3,4} conststs of a single element, The Moore-Penrose inverse of A, denoted

by AT
In the following theoretn has described an useful representation of 14,7, k} gene-

ralized inverses [13].
Theorem 1.1. Let A = PQ be a full-rank factorization [9] of A € oy, K
A7, € O and Wy € Cr*m gre some matrices such that rank(QWy) = rank(WsP)
= rank(A4) =, then
A2 = W QW)™ (Wa P) ™' W
AG23) = Wy QW) (P P) T P”
A2 = QHQQ™) T (W P) ™' W
AJ[ o= QTPT — Q*{QQ*)*l(‘P*P)—I P*.

Concept of determinant Le. algebraic complement is intimately related to the
concept of inversion of matrices.
Moore in [10], [11] announced the following identities, giving the element aL- of

Al as the ratios of sums of determinants.

Theorem 1.2. For A € C™*" the (i, j)-th element of AT is given by

oA Gruomaltal)

?7_2<.——<'i;

J2< <
(1.1) al; = TN T
> Ao (hoy)

81K L8y

<. <ty

Arghiriade and Dragomir in [1] bave generalized the concept of the algebralc
complement to derive a determinantal representation of the Moore-Penrose pseu-
doinverse of a full-rank matrix. In this paper they did not cite the Moore’s result.

Theorem 1.3. For a given full rank matriz A € Cmxn generalized algebraic comp-
lement corresponding to the element agj s equal to
ey (s | S m U ovenomes sisl 9TV .
. e (ﬂl o ﬁ) Aij (ﬂl i ﬁm) y mEn
B i< P ;
i % : 3
g .. b Qg i ' 1 [ S < § ) b %
Z ‘4( ljl e )T )A” ( J1 R ) ! n.s m
<. Lty
the norm of A 18

(1.2) Al =

— <f Jﬁl('d “-ﬁl)A(ﬁ .“i;n)l m < n
(l ‘3) HAH = L<hi<, . <fm<n L 8 1 - PFom -
1< < < A( 11 C:I } ( 1 {:1” )1 n < Im
< Laysm
/dl (A_/jl ) l| m < n

and (3, 7)-th element of the Moore-Penrose inverse Al = ) i 18
' (A*A)"1A", n<m

: i i
equal to (LL— = WAL- i (]lé;é’;) .
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In [8] R. Gabriel obtain the same resulf discovering an explicit formula for (i, j)-th
Tadj{AAY) adj{ATA) - A%

AA| T A

In [5] is showed that determinantal representation of the Moore-Penrose inverse
can be generalized to an arbitrary matrix and in that way derived again the deter-
winantal representation originated by Moore.

entry of the matrix expressions

Theorem 1.4. Elemenl lying on the i-row and j-column of the Moore-Penrose
psendoinverse of a given matriz A € C" can be represented in terms of determi-
nant of square matrices as follows:
AL o g oo O noe P iy,
A (,HL e § s ,(ir) Aji (;jl i ¥ o ;j,)
4 1<fi<...<f.<n
Sy l<an <...<a, <m
(1'4) U”:[f: 0 = = .= gt - AT g
| X AGZI)AG )
1<6:1<..<6,<n
L<yi<..<yrS<m

Matrix whose elements are equal to A}T? is written as adj(A4) and called the
generalized adjoint matriz of A.

In [6], [7], [8] R. Giabriel defined concept of the generalized algebraic complements
and matrix norms of different orders, using matrices with elements taken from an
arbitrary field.

The Moore-Penrose solution of a linear system Az = b, Ae C*" heCPis
represented in terms of minors of A in [4].

Theorem 1.5. The ith component of the Moare-Penrose solution z of the linear
system Ax = z posseses the following determinantal representation
S o A L Py TR s e Pry ..
5 A . A . (i—pa)
o B o KO (P )

(1.5) ol = 1&m<..<p.Sm
0 o =

ATl !
where ,z denoles the vector {z,,,... 2, }.

The main results of this paper are as folows:

(1) Obtain determinantal representation of the Moore-Penrose inverse using new
method, based on a full rank factorization, Cauchy-Binet theorem and the known
results for full rank matrices (Theorem 2.1).

(2) Develop an elegant proof for the Moore-Penrose solution of systems of linear
equations (Theorem 3.1).

(3) Discover determinantal representation for {i, 4, k} generalized inverses and gen-
eralization of the algebraic complement of rectangular matrices (Theorem 2.2).

2. Determinantal representation of the Moore-Penrose inverse

Determinantal representation of the Moore-Penrose inverse we obtain as a trivial
consequence of the following two lemmas.
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Lemma 2.1. For a reclangular matriz A € C™*™ and rectangular matrices P €
Cmxr Q€ Cr*n, such that A= PQ the following equation us valid

‘ d [ G U, U 1 s B wre HF _ BT o B e Qe
(2.1) L; Py, ( 11 i o ) Qi (;31 osi B ,-’;‘,.) = Aji (,3,1 T ;Bq.) ’

Proof. Fquation A = P@) implies P [alj a"} Q) [ﬁ], {;T} =A {gi c;’r] Suppose

| 4
that 7 is contained in combination aq < ... < @, and j is contained in combination
B1 < o < Beydes g < <oy =g <L) < b ey <y and
B <...<B=0 <...B8j-1 <Jj<Pyp1 < Pr. Then we obtain

Qp o Wpel Opl e Op > Loy s i o o e @1 Wpl oo g
P { OO & ] Q [111 i By v ﬁr] A l:,fh o Bg=1 Bopr - Br
An application of the theorem Cauchy-Binet leads to
PF ¥
v pe1 Qpgt e Qp N
A (ﬂl v Byt Bygr o ,!j,,) =
Qo Q] Qg e O ANy i e wx o oam YEs1y
Z P (‘1’1 "P"r—l) Q (,ﬁl v Byt Byr o e ) -
1€91<. L Yr1 £
r
o o (L e Bp—l Gphl e cv, | S - N
= Z[ (1 o B—1 kDo }Q (ﬁl, Bacy Byp o gj,)}
which represents an equivalent form of the equation (2.1). u

From Lemma 2.1, if A = PQ is a full-rank factorization of A then adj(A) =
adi(Q) - adj( P). In Lemma 2.2 is showed that generalized adjoint mairiz of a rank
deficient matrix A can be obtained as product of generalized adjeint matrices of
two full rank matrices.

Lemma 2.2. If A = PQ s a full rank factorization of A, then
adjt(A) = adi' (Q)adjT (P

Proof. For a full rank matrix the proof is evident. Suppose now that rank(A) <
min{m,n}. An element lying on the i-th row and j-th column of adit (Q)adit (P

can be evaluated as follows:
4

Z@*P*:Z Y Q(nria) ()| x

k=1 | 1<A1<...<fr<n

. Y, FPlEioviadolawls

1<y <. Carlm

,T cint B s 1 r
= Z A(/j] ? i ijk(ﬂ] - - )Qk“(,ﬁl... i ...m)'
1Lwi<...<ar<m '
1<f1<...<fr-Zn
Finally, an application of the Lemma 2.1 leads to E Q T = AT |

In the following theorem we obtain determinantal representation of the Moore-
Penrose inverse as an easily consequence of Lemma 2.2.
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Theorem 2.1. Let A € Cn%n gpd < min{m,n}. The element on the i-row and
J-eolumn of Moore-Penrose inverse At of A can be expressed by

Lo AR A (g g

1<pi<.. <, <n o By
a,J.f. = i T = 1fan<.. < <m
ool 2 A(G ) A(R g

1<p1<..<f,<n
1<, Cndarsm

Proof. Let A=PQ, Pe¢c i

Q € C7*" be a fullrank factorization of A.
The matrices P and ) are rank maxi

mal, and satisfy relatious from Theorem 1.3
Furthermore, using AT = Q'PT, Lemma 2.2 and 1PN = |A|], we
.o .

1 Lo ot it t
alesic b o R m
" TPl & e = rap Al

obtain:

Main properties of generalized adjoint matri

z, obtained from determinantal rep-
resentation of the Moore-Penrose inverse

are presented in the following lemma:

Lemma 2.3. For A € O™ 44 4 complex nu
(l) [MIHT{CA) = Ercr—la([j(Tﬂ')A;
(i) ads? (A7) = (adt(AT))";

(ii1) (cA) = et At where ot = {

mber ¢ s valid:

fore#10
fore=0"

O o=

Proof. The well known result (478) [2] follows from (4) and properties of || A||. |

In a similar way, using Theorem 1.1 and Lemma 2.1, we introduce a detrminantal
representaton of {1, 2,3}, {1,2,4} and {1,2} inverses. For the briefness and theo-
retical sake we introduce the notion of the universal alg
senting a natural generalization of the
in Theorem 1.3 and Theorem 1.4-

ebraic complement, repre-
generalized algebraic complement introduced

Definition 2.1. Let 4 Crx™ and R € UM% ensures rank
=r. Unwersal algebraic complement of A is equal to

en A L, R ().
1<p << fi,<n e SN

lgcn(.._-(a,‘gm

(AR™) = rank(R*A)

Theorem 2.2, IfA e Cr*m gnd A = PQ is a full rank factorization of A,
and if Wi € CX" and Wy € ©'XT gre some inairices such that rank(QW,) =
rank(WaP) = rank(A), then (1, j)-elements aE}‘E’SJ e AML23) rzﬂ(;“j”“ € AlL2Y
and aS’z) € AL gre given by
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ey pyT (g d ) A (B )
(1,2,3) _ 1Za<...<a<m
L > AR WP (G
1<8 <. <6 En v P
Lg'y|<“.<'y,.£m
(1 wee J oo g

1< <Z<ﬁ s (@ Wa)T (3 406 ) A (B diler
(1“:2,4) _ 1§fﬂ:‘j<,?.‘<(\-‘:—§n‘1
’ x AGIR @G
< B R
lTyll<...<'yr§?ra
L () A )
L0 1201 <. ConZm
’ o, ARTR T )
T
1§7:'<‘..<’Y:—§rn

Proof. Tt is easily from Definition 2.1 that

oW S W3)
2 Qi ' 'ij E
(2.3) P =
iy [QW,]-[WaF| .

Denominator in (2.3) can be transformed using Theorem Cauchy-Binet. Also, using

Lemma 2.1, it is trivial to verify

~ WY (f,W5 (WL Wa)®
S Q- FYD = AR
B=l

T fay oo J oo Gr O e J o O
Z (M’IIWE) (ﬁ; A ﬁr)Aﬂ(ﬁl,..z‘ sr)'
1€0:1<..<f3:En
'i§m1<...<nr§m
Determinantal representation of {1,2,3} and {1,2,4
a sumilar way. |

1 inverses can be developed in

3. Moore-Penrose solution of a system of linear equations

d a short proof of the known determinant representation

In this section 1s presente
f equations, introduced in [4].

of the Moore-Penrose solution of a linear system o

Theorem 3.1. i-th componeni of the Moore-Penrose solution of a linear sysiem
A g selt; 2E ©™ can be represented by the following

B T e N ot g SOl

q1 -

b M- 21

determinantal representalion:
=

1<q<. <, En

t _ 1<pi<.<prEm
5= AT

where pz denoles the veclor {es5+ 18k

Proof. We can find a full rank factorization of A: A = BC, BE€ Coxr, O E
¥ | so that zf = 1Bz, Hence the starting system Ar = z splits np into the

.
two equivalent systems By = z and C'z = y. The Moore- Penrose solution yf = Bz

of the system By = z, y € C" 1s represented in [4, Theorem 1;
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Ve E‘(Pl] P‘i') (B(Pl - p,‘)(z_ﬁp:))
St 1€pi<<pr<m Sz W 1 o 47
= L IB4B‘ , 1 S S

In the second step the Moore-Penrose solution 2! — CTy! of the system C'w = y
is represented nsing an original method, as follows. Using =t = O*(C G2yt it

is easily that LLT is equal to the scalar product of ith row of the matrix |(.fé.,*l :

("adj(C'C*) and the vector yt, 1 <i < n:

el = ,(,, : (E(( fadj(CC* )Myk)
Elernent on the ¢-th row and j-th column of the matrix CFadj(C'C*) s [7):
T T = i TN\ e (1
(( u’d}((i(‘ ))f.i = z ¢ (ql v 1B goa T) ‘g (q] s 1 ...gr) 1
155’1<---<Q1‘Sn
which 1mplies

g X T(hrinn) ooy )x

k=1q1<...<¢r
1 — N i
CTFE] Do B(RI)BE ) (k- pz) =

1< . <{pr

I<qui<..<¢r-<n
_ 1Epi<<pr<m

APy p,) i Cis ( I T ) B(pl p")(k _ z)
g1 -0 1 . gp o, = k2 q1 e B gy 1 ... r P

18Il
Usmg Ldplace s development on the kth column of the square matrix
(pl ' ) (k — p2z) we get
i " L i
I et e o | Ew% “_%)E%%mW1iﬂ
1<qm<...<gr-<n k=1 =1
.'I‘T _ 1<pi< . <prSim

T 1Al -
— r -
> Aoy o) (Z: 7 m( T, )Bp,k(*? ..:’if>]
1€1<...<qrsn =1 " ¥Z1 i
. 1<pi<...<pr<m
(1Al
In accordance with Lemma 2.1, we obtain
—PL e e s Pr r P1 - Pr
1<q <. <qrin A(‘h 5 ‘fr) El z”*A”f‘(fh v ) qr)

S 1< . <prSm
Y= AT

Finally, using Z zp, Ap i («h Ty Z’) =A (pl ’;:) ( — pz) we complete the
proof. |
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