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RANDOM INTEGRAL CONTRACTOR OF STOCHASTIC
INTEGRODIFFERENTIAL EQUATION OF ITO TYPE

Miljana Jovanovié

Abstract. The object of this paper us Lo study a random integral conlractor Jor a
class of stochastic integrodifferential equalion of Ilo type. We consider evislence

and uniqueness theorem of solution of this equalion by using a principle of random
integral contractor.

1. Preliminaries

In this paper, following the basic ideas of Altman ([1]), Kuo ([3]) and immediately
of Murge and Pachpatte ([4]), we study the existence and uniqueness of solution

of one type of stochastic integrodifferential equation. This equ

ation 1s considered
in the paper [2],

in which the proof of existence and uniqueness of solution is,
accordingly, based on the Picard-Lindelsf method of su cessive approximations.

We consider the following stochastic integrodifferential equation (shorter STDE)

(1)

z(t) = e+

fl(.a,;c(.s))+/f2(.-s',fr,az(r))rh“—}—jl_f.g(s,'rj x(r))dW (r) | ds
0 0

i
/
T 8 5
f o'l(.ﬁ,;r:(s)_)+/(rg(s,r,:c(r))rlr—{—/03(317-, w(r) ) dW (r) | dWV(s),
0

L 0 )

+

where W = {(W, 7),t > 0} is a given standard Wiener process and ¢ is
almost surely, independent of W. The random functions fi(,2) and oi(t,z) are
defined and Borel measurable on [0,7] x R x Q and nonanticipating in # for each
z, fi(t,s,z) and o;(t,5,2), i = 2,3 are defined and Borel merasurable on J x
R, J = {(£3): (1,5 & [0,T] x [0,T],s < t}, where fa(t,5,2) and oy(t, 5, 7)
are nonanticipating in ¢ for each (s,2), while Ja(t, s, 2) and o3(l, s, 2) are (o be
nonanticipating in s for each (¢, ).

Let ' be the collection of one-dimensional real-valued stochastic processes de-
lined on an interval [0,T], nonanticipating with respect to the family of o-fields
(F,t > 0), which trajectories are continuons al most surely.
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For arbitrary 2,y € (! let as consider the linear operator Az : ' — ' given by

((Az)y)(t) = y(t)

i 5

+] a(s))yls) + !PHJJ(MWW°$

/ /rq 5,1, 2(r))y(r)dW (r)ds

5

+/ @y (5, 2(5) ‘_E/(S)—F/(]:)Q(H)?‘,.’I?(?‘)):U(_?’)d?‘ dW (s)

0 i

(2)

+ U] O/ (1)3(5',‘,1’, 1(?))U(f)dW(?)dl/V(s)’

where 0 < r < s <t <Tand Ty :[0,T]xR— R, & :[0,T]x R — R,

i xR—=R®:JxR—R, i=23are hounded Borel functions.

Definition 1.1. Suppose lel there exisls a posilive constant K, such thal for all
2,y € C and t €[0,T), the following inequalitics hold almost surely:

3

! l?f-u (t, 2(t) + ((Ax)y)(1) — [ty e(t)) = it =(0))(t)] < Ky(@)]

1t 205) 4 (AL — il 5,55 Tt 2(aNy(s)| < Kl # = 2,3
WWJU+KMJW)—mUﬂn4®UM' o) < Klytd)

lai(t, s, u(s) + ((Ax)y)(5)) — a3(t, 5, 2(s)) — s(t, 5, 2(s))y(s)] < Kly(s) ), £=2,3

Then we say that the functions f; and oi, i =1,2,3 have a bounded random integral
coniractor, denoled by

¢ t 8 t 03
{1—0—] F—;der/szdT(l.s—%-f] LadW (r)ds
(4) ’
/dJ dW (s) // Dodrd W (s) + / / D dW (r)dV (s)}

0

Definition 1.2. We say that a bounded random integral contractor is regular if the
SIDE (2) has a solulion y in ' for anu z and = in .

Definition 1.3. For any z, and » in (! such that z, — & and V (-, 2,(:)) — y
L*([0,7] x Q), a function V : [0,T] x B — R is said {o be stochastically closed iof
y(t) = V (1, 2(1)) holds for every t €[0,T].

Note that the analogue definition applies for a function U 1 J X K — R.
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Remark 1.1. It is easy to prove that if the functions Jivand oy, i = 1,2, 4, satisly
the uniform Lipschitz condition in J, then they are stochastically closed and Lave
a regular bounded random mmtegral contractor (4) with I; = 0,®; = 0, i = 1;2. 3.

2. Main result

Theorem 2.1. Suppose that the functions f;, and a; i = 1,2,3, have a bounded

randony tulegral conlraclor and they are stochastically closed. Suppose further that

T T

f(__h(t, c:))2c!.!. < oo, /(m_ (%, (:})Qrﬂ.t < oo,

0 0
T ¢ T t
/ ](f,;(t, s,0)) dsdl < o0, ] / (eift, 5, c))r“’dsrlt < moy 1= 2.3,
00 00

almost surely hold i J. Then there exists a solution z i O of the SIDE (1).

Morecover, iof the bounded random witegral contractor is regular, then the solution »
in C' 15 wnique.

Proof of existence: In our discussion we shall use the sequence

$ {2y} and {y,}
in ) such that

;l.‘g(ﬁ') =i,
and for n > 0

Znp1(l) = 2n(t) — ((Azp)yn) () = wa(t) — W ()

— / Ti(s, 2n(s))yn(s) + / Uo(s, 7, 2n(r))y. (r)dr | ds
0 0
(5) = f / Us(s, 7, 20 (r))y (r)dW (r)ds
0
— / P1(s, 2n(5))yn(s) + / Do(s, 1, 2, (7)) Y (r)ddr dW (s)

0]

— / / Pa(s, 7, 2 (r))yn (r)dW () dW (5),
0

0

1

(6) () = 2 () — e — / Ji(s,zn(s)) + / fa(s, v, mp(r))dr| ds
0 0
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// Fals, vy o (r))dW (r)ds

4]

—/ I:D’l(’: I (2 }+[ (s,r,;zzn(v'))d?} dW(s)
- / / oa(s, 7, 2y (r))dW (r)dW (s).
Using (5) and (6), we find

(7)
Un+l( = ] fl(" Tn ) Iy (,q-w '—“1»(5))%5 (5) = .fl (S| a:n+l('5))] ds

] f 5,7 () — Ta(s, 7, 2 (1)) () — Fa3, 7, 2y (r))] drds
- / | / (s, m()) — T8, 7y (Pt (1) — f(5, 7, 2ga ()] W ()
- / (0405, 50 (5)) — B1(5, 2 (5w (5) — 015, Bga ()] AW (5)

/ / 75,7y (1)) — a5, 0 (1)) (1) — G5, 7, g ()] drdWV (3)

f/ oa(s, 1, wu(r)) — Pals, v, wplr )y (1) — oa(s, 7, Tpgr(r )] dW (r)dW (s).

By using (7), (a+b+c+d+e+ f)z < 6( 402 e & d% 4+ e? 4 ), Schwarz
inequality and some well-known properties of the Lesbegue and Tto integrals, we

gel:

Byt (1) < 6K2A / Elyn(s)| ds,

T2 :
L, %

where A = (1'+ 1)
By succesive iteration, we observe that,

i
5 S K2A)" i
Eyn(t)” < Mf(t-s)‘ ‘B

iR
(n—1)! yn(s)| ds.
0
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From (6), we have Eyg(t)z < a, for all t € [0, T], where

(ﬁf()fﬁ+[2/:/ﬂ tsc”rhﬁ}
{ //fwuﬂm @ﬁ+T](muqfﬁ}

seifef

0

Therefore,

(8) By, (1)* <

and it will be used to estimate P {

Denote by

T t

0 0

(6K2A)"

n!

at™, te[0,T],

0<<T

§() =F1(t 2a(t) = T1(t, 20 (6)yn (t) — fult, 2aga ()

Si(t 3) :fz lta‘-c"s Ln,

() = Ity s

”1( ) =0 (t Jjn(t)) — @y f J—'n(t))yﬂ f,) — 0 (_t; ?L’n+'l(£))

(
ni(t, 8) =ai(t, 5, 20(5)) — @i(t, 5, 2n(8))tn(5) — 0i(t, 5, Enp1(s)) ,1 = 2,3.

We can rewrite (7) as

Ynt1(t) =

—+

|
j

Obviously,

sup h/n«H S /
0<t<T .

(9 + sup

o<t

-+ sup /
0

0<t<T |,

3§

0 _
v;[(.s-)Jr'/ 7;2(3,1')0'.?‘—1—/7}3(3,1’_)0!%’(?‘)
] 0 0 _
T T &

Q

& s)+/£2 sv{thjE(s r)dW(r)| ds

T ‘
{,D//M, ) m]/h il M}

sup |yn(l)] > 6_”} by induction.

8, Ln 3))Jn(5) = f(ta 8y 3471%»1(5)) si= 2, 3

dW (s).

s)dW(s)| + sup //7)2 s5,7)drd W (s)
T

0<1<

/. 135, P)dW (r)dW (s)
[

107

d%—l-/ [f 5, 7)dr r£9+/ /53(,5’?)(”,1;(?,) Ja
b
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But, using Chebysev’s inequality and well-known Doob’s martingale inequality, we
O|J\El‘v(- that,

. .— (8 ,EA 'u
L Yds > 6772 % < 64'”+4I(2Ma’1’ﬂ+'~’
(n-+1)!
6K2A)" :
T /Q s,r)dr|ds > 67172 ) < MK ___()\—)_ Tt
(n+ l(n+3)
r}
| (6K2A)"
i =2 v 20 i 3 Lok 28l :
P {] /g'g(‘) PYdW (r)|ds > 67" < 6 +4[\Jmal”+3
v lo
; GI
P {osup /|r]| $)AdW(s)| = 67777 24 P M TR
0<i<T (n+ 1!
P ¢ sup f] na(s, P)drdW(s)| > 6777 % < aL-Gﬁ“Jr‘*ff?ﬂ‘_zL T
0<t<T - (n+ L)Y n+3)
: 6/ 5
P sup //:;3 5, 7)dW (r)dW (s)| > 672 4 < 4- 52"%”7“ Az,
DL +2)!

Thus, from (9) and (10), we obtain
(11)

P{ sup [gir(t)] > 67"}
0<i<T

I 4 BT (T
< 62n+2a36(6A) {I{ZT) +1 T+ ( + /1) ( + /l) )
(n+1! " (n42)!  (n4 1)H{n+3)
This will be used in the next estimation.
From (5), we have

(12)
T
sup |Zap1(t) — za(t)| < sup |l (1)) + / Ty (s, n(s))yn ()| ds
0<t< T

0<1<T y
0

T | @ s

T
+j /[‘2 5,7, ain (7)) y” r)dr dq—l—/ qu e _)J%(?’}(H‘V(?') ds

a 0
[}

+ sup f‘l’l(‘? J;z $))yn ($)dW (3)

0<t<T |J
L8]
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+ sup //QJQ (5.7, & () yn () drd W (5)
0<t<T |,
0
- sup //q)q (8, rywa(r)) Yu (r)dW (r)d W (5)] .
0<t<T |,
00
Since the functions I'; and B;, 1=1,2,3, are bounded, denote by
wp = sup {08, 2(t))],z e R} B = sup {@1(1,2(1))],z € R}
0<i<T 0<t<T
(13) o) = sup {[Tz(t,s,:r:(s))l‘:r?g R} Bi= sup {[(DQ(?},S,.U(S))J.‘TE € R}
' (hs)E (t.5)ed
g = sup {|Ta(t, s, z(s))|,z e R} pBs= sup {|®s(t, 5, (s N,z € R}
[t,s)ES (i,8)ed

By using Chebyshev’s inequality, Doob’s martingale inec nality and (13), we get
g g q g

—1 (6[ A)” n+2 a0
/ S‘ LH(S) ?jn )'U,’S’ >0 < ‘m al 6
T 5

; {
/ ’ 5KC2A)
IJ * ‘.j by L ——'———7‘ i
{ - Wz(n—l—l)!(n—f-iﬁ)
0

6RZA)" i
/ (5,7, 20 (1)) yn (7)dr| ds > 6 < wl (65°4) am g

\a

P{ /T:s(s,r, Tn (1)) yn (1) dW (r) | ds > 67" { < ¢ ’@E—A)—af”'”ﬂz”
0

(n 1+ 2!
0
= , (6K2AY" y
(I’ 7l n { [ 7 < _1_}“___ ‘Jr'ﬂ-+|(_,n
o {Uz;‘&/' (ool i () > 6 | < agp BT
{ sup /[ 5 r In( ))Jn( )(hﬂ'W( ) > 6
0T
Z_&L(mwwﬁm
(n+ 1 + 3)

{ sup //rbq (5,7, 2a(7))yn (r)dW (r)dW (5)| > 6=
0<iLT
=4

((}f\ 2/1)

:rm+2(12n.
(n+2}! :

135 ——
Now from (12), (14) and (11), we have

7
-‘D{ b“p JIH,—H )_ Fn(f ‘> }

U< 6?1

109
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g (T4 T(C+4) | THT +4)
- (, ) ) ’ I 2 :LAn 1
< 6-6"a(6K°T) ( l + (n+ 1) T nl(n—+2)
Tod+ 4 | THT0} 1455) | T(Tod +463)
m+ Dl A Dim+3) - kS

+6a(6KAT)" T (

Thus by Borel-Cantelli’s lemma, it follows

. 7
P{ lim ( sup |ony1(t) — o ()] > )>} =0,
n—o0 \ngt<T G

. . T
ie., for largen n, sup |za4a(t) — z2a(t)] < ey almost surely. It means that the

0<i<T
DO
series y . sup |2y (L) — 2, ()] is convergent almost surely.

n=1
Therefore, the sequence {w, (1)} converges almost surely, uniformly in [0,7] to

the stochastic process z*(t). In accordance with the definition of the sequences
{ea(O)} and {y.(t)}, it follows that they are continuons and nonanticipating with
respect to the given Wiener process. So, for each t, ¢ € [0, 7], z*(1) is continuons
almost surely and nonanticipating. Hence, x*(t) is in C'. In order to, prove that
2*(t) is indeed a solution of the SIDE, we shall show that z,(t) — #*(t) as n — o0
in L? since.

Indeed, from (5) we have

T
E [ (2nga (1) — 2a(0))? dt < Ta(6K2A) T™ix
0
1 o a7
[(71 + 1)! e (n+ Dli(n+3) * (n+ D{(n+3)(n+ 5)}

LA B R A T
22’!3 82]\ ZTS - 'JT2
{ L:Ed 3 et + P - + ﬁsl — 0, n — oco.
(n+2)n+4) (@+2) (+ Dn+3)(n+4)  (n+3)!
From the fact that the functions f;, and ey, i =1,2,3, are stochastically closed, it
is not difficult to prove that

! ¢
] (s, za(s))ds — ] fils, 2"(s))ds,
i 0

t t

jo'i(s,;t:n‘(sj)(m?"(.s) — /crl(s,:c*(s))d\/lf(s)j
0 0
in L*([0,T] x §) sence, and

i s t s
/ ] fa(s,ry wn(r))drds — ] / fals, v, 2" (r))drds,
o0 0D
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t s toos
oa(s, v, op(r))drdW(s) — oa(s, 7, 2 (r))drdW (s),
/] [

| fals,r @ (r))dW(r)ds — | fs(s, 2™ (r))dW () ds,
/] /]

0
Tt s

jj-as(s,r,xn(gx))dV[/(,-.)dW(s)—',//53(31741 :L,*(T))dW(T')(I:W(s))

00
in LE(J x £1) sence.

By taking the L*-limits in (5), we have that for each { € [0, 7],
(15)

i

() = c—!—f [fl(sj:n*(s))—!—/fg(.s,r)x*(?‘)}dr—!-/.fq(s,r,m*(v'))dlﬂ"(r)J ds
0 0

0

3 f [(()) + ] oa(s, 2 (r))dr + ] o3, r,m*(r))dww} AW (s)

0 0] 0

holds almost surely. Both sides of the equality (15) have continuous sample paths,
hence (15) holds for all ¢ € J alinost surely. It means z” is a solution of the equation

(15).
Proof of uniqueness: In order to prove the uniqueness of the solution, we shall
use an analoguos method with the paper [3], and preciselly with [4].

Let 21 (t) and #5(¢) be two continuous solutions of the SIDE (1) and let bounded
random integral contractor be regular. If we put 2(t) = 21(t) and ((Az)y)(t) =
z2(¢) —z1 (1) in (2), then there exists y(t) in C such that

0 0

u(t) —i—f [Fl(s,m(s))y(s) +‘/’ Ly(s, 7, :rl(r))y(r)dr} ds
+f‘/F3(,5,?’,:cl{r))y(r)dW(r)ds

(16) T 5
+] [Ql(sjml(s))y(.ﬁ} +f@g(s,r,;cl(r))y(r)er dW(s)
0 a

+Jof®3(.s, 21 (r))y(r)dW (r)dW (s)

= :{:E(f) — .‘L'_L(t).
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Since #; and 25 are the solutions of the SIDE (1), then

1

0= [ o)~ Pas (eote) = o s () s
+ / / [fg(s, r,aa(r)) — Tals, 7, z1(r))ycr) — fals, r, 11(7))] drds

' J -‘)/ [£a(s, 7, @2(r)) — Dals, v, 1 (r)y(r) — fals, 7, 21(r))] dW (r)ds

(17) 3
+ / [o1 (5, 22(5)) — ®1(s, z1(s))u(s) — a1(s, z1(s))] dW (s)

0
+ // [oa(s, 7, wa(r)) — Pals, 7, 21 (r)y(r) — oa(s, 7, 21(r))] drdW(s)
00

+ L[n/ [03(3, r, xz(vo)) - ‘1)3(-%’, r, mll(.;,))y(r) _ (,3(_5} 7, :21(‘7‘))] dl’V(?’)dW(s)_

Since Eyr(i)E is not necesserily finite, for n > 0, and t € [0,77, denote by

L, if|y(s)| < Nfor0<s<t

0, otherwise

]

Iy(t) = {
Then Iy (t) is nonanticipating stochastic process and
In(t) = INWIn(s)In(r) for 0 <r <5 <t ST

Therefore, from (17), we have
t
In(Dy(t) = In(t) f In(s) [fi(5,22(5)) — T (s, m1(8))u(s) — fi(s,z1(s))] ds

0
+In(t) [ 1nGs) [ Inlfalor 2a) = Dol (s )uer)
(18) 0 ]
— fa(s,my @ (r)]drds
+ In (1) / In(s) / IN(r)[fa(s, 7, xa(r)) — Tals,m, e (r))y(r)

— fa(s, v, 21 (1)) dW (r)ds
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FIvlt) [ I (6) 105, 22(5)) = @15, 1 (9)0(6) oo, ()] Vo
+ In(t) / In(s) / In(r)[oa(s, r, z2(r)) — @a(s,r, x4 (r)Ny(r)
0 0
= oa(s, r,zy(r)))drd W (s)
+ ]N(t)fIN(.s)/IN(?‘][Ug(.S, rwa(r)) — @a(s, 7, z1(r))y(r)
0 0

— oa(s,r, o, (r))]dW(‘.")dlfV(s).

By using the inequalities (3) after replacing z(t) by 21(t), also (17),

(a+b+ c+(i+e+f)2Sﬁ((1.2+bz+|:'2+d2+cg+f2)

1

Schwarcz inequality and (18), we get

i
EfN(tJy(l',)z & 6IS'2(T+ l)/E‘IN(s)y(s)Eds
0

b

t
+6]§'2(T+1)2]],\;(5)/E]N(v")y(w):zdrds.
0

0

By applying the lemma Pachpatte ([5]) we obtain E’IN(t)y(t)E =0,te[0,77;
Since y(t) has continuous satnple paths, we conclude that j\}im In(t) = 1 almost
—+ 00

surely. Hence by Lebesque’s monotone convergence theorem,

Ey(t)* = m BIn()y(t)* = 0.

Therefore, for each + € (0,77, u(t) = 0 almost surely. By (16), @1(t) = x4(1)
almost surely.

It could be very interesting to study the speed of convergence of the sequence
(5) with respect to the sequence of sucessive approximations based on the Picard-
Lindelf method, ie. coeflicients of the equation (1) satisfy the uniform Lipschitz
condition. Also, it could be very interesting to study how the speed of convergence
of the sequence {Zn}, n € N, to the solution z* depends on a choice of integral
contractor. However, it will be a subject of a forthcoming paper. Note that, we
could extend the results of this paper for SIDE-g involving stochastic integrals with
respect to any continuons martingales and martingale measures.
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