
Filomat 30:14 (2016), 3689–3696
DOI 10.2298/FIL1614689H

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A graph is said to be DQS if there is no other non-isomorphic graph with the same signless
Laplacian spectrum. For a DQS graph G, we show that G∪ rK1 is DQS under certain conditions. Applying
these results, some DQS graphs with isolated vertices are obtained.

1. Introduction

Throughout this paper, G = (V(G),E(G)) is a simple undirected graph with vertex set V(G) and edge set
E(G). Let G denote the complement of G. As usual, Pn,Cn and Kn stand for the path, cycle and complete
graph of order n, respectively. In particular, K1 denotes an isolated vertex. We use Km,n to denote the
complete bipartite graph with parts of size m and n. For two disjoint graphs G and H, let G ∪ H denote
the disjoint union of G and H, and rG denote the disjoint union of r copies of G. The join of G and H,
denoted by G∨H, is the graph obtained from G∪H by joining each vertex of G to each vertex of H. Clearly,
G ∨H = G ∪H.

For a graph G with n vertices, let AG be the adjacency matrix of G, and let DG be the diagonal matrix
of vertex degrees of G. The matrices LG = DG − AG and QG = DG + AG are called the Laplacian matrix and
signless Laplacian matrix of G, respectively. We use q1(G) > q2(G) > · · · > qn(G) > 0 and µ1(G) > µ2(G) > · · · >
µn(G) = 0 to denote the eigenvalues of QG and LG, respectively. The multiset of eigenvalues of QG (resp.
LG, AG) is called the Q-spectrum (resp. L-spectrum, A-spectrum) of G. For any bipartite graph, its Q-spectrum
coincides with its L-spectrum. Two graphs are Q-cospectral (resp. L-cospectral, A-cospectral) if they have the
same Q-spectrum (resp. L-spectrum, A-spectrum). A graph G is said to be DQS (resp. DLS, DS) if there is
no other non-isomorphic graph Q-cospectral (resp. L-cospectral, A-cospectral) with G.

“Which graphs are determined by their spectra” is a difficult problem in the theory of graph spectra
[9, 10]. It is interesting to construct new DQS (DLS) graphs from known DQS (DLS) graphs. For a DLS
graph G, the join G ∨ Kr is also DLS under some conditions [10, 16, 18, 19, 36]. Actually, a graph is DLS if
and only if its complement is DLS. Hence we can obtain DLS graphs from known DLS graphs by adding
isolated vertices.
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In this paper, we investigate signless Laplacian spectral characterization of graphs with isolated vertices.
For a DQS graph G, we show that G ∪ rK1 is DQS under certain conditions. Applying these results, some
DQS graphs with isolated vertices are obtained.

2. Preliminaries

In the following lemma, parts (1)-(4) come from [9], part (5) comes from [13, Theorem 4], part(6) comes
from [33].

Lemma 2.1. For the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix of a graph G, the
following can be deduced from the spectrum:

(1) The number of vertices.
(2) The number of edges.
(3) Whether G is regular.
For the Laplacian matrix, the following follows from the spectrum:
(4) The number of components.
For the signless Laplacian matrix, the following follow from the spectrum:
(5) The number of bipartite components.
(6) The sum of the squares of degrees of vertices.

For a graph G, let PL(G) and PQ(G) denote the product of all nonzero eigenvalues of LG and QG,
respectively. We assume that PL(G) = PQ(G) = 1 if G has no edges.

Lemma 2.2. [8] For any connected bipartite graph G of order n, we have PQ(G) = PL(G) = nτ(G), where τ(G) is the
number of spanning trees of G.

For a connected graph G with n vertices and m edges, G is called unicyclic (resp. bicyclic) if m = n (resp.
m = n + 1). If G is a unicyclic graph contains an odd (resp. even) cycle, then G is called odd unicyclic (resp.
even unicyclic).

Lemma 2.3. [23] For any graph G, det(QG) = 4 if and only if G is an odd unicyclic graph. If G is a non-bipartite
connected graph and |E(G)| > |V(G)|, then det(QG) > 16, with equality if and only if G is a non-bipartite bicyclic
graph with C4 as its induced subgraph.

Lemma 2.4. [8] For any connected graph G of order n, we have µ1(G) 6 n, with equality if and only if G is not
connected.

Lemma 2.5. [8] Let G be a graph with n vertices and m edges. Then q1(G) > 4m
n , with equality if and only if G is

regular. If G is regular, then its degree is equal to 1
2 q1(G).

A graph G is called (r, r + 1)-almost regular, if G is not regular and each vertex of G has degree r or r + 1
(see [34]).

Lemma 2.6. Let G be a (r, r + 1)-almost regular graph. If H is Q-cospectral with G, then G and H have the same
degree sequence.

Proof. Let d1, d2, . . . , dn be the degree sequence of H. By Lemma 2.1,
∑n

i=1 di equals to the sum of vertex
degrees of G, and

∑n
i=1 d2

i equals to the sum of the squares of vertex degrees of G. From [32, Lemma 3.1], we
know that H and G have the same degree sequence.

Lemma 2.7. [8] Let e be any edge of a graph G of order n. Then

q1(G) > q1(G − e) > q2(G) > q2(G − e) > · · · > qn(G) > qn(G − e) > 0.
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For a graph G of order n, we use λ1(G) > λ2(G) > · · · > λn(G) to denote the eigenvalues of the adjacency
matrix AG. If G is k-regular, then the A-spectrum of G is n − k − 1,−λ2(G) − 1, . . . ,−λn(G) − 1 (see [8]). Since
G is (n − k − 1)-regular, we obtain the following lemma.

Lemma 2.8. Let G be a k-regular graph of order n. Then the Q-spectrum of G is

2(n − k − 1),n − k − 2 − λ2(G), . . . ,n − k − 2 − λn(G).

A connected bipartite graph is called balanced if the sizes of its vertex classes are equal, and unbalanced
otherwise. An isolated vertex is considered to be an unbalanced bipartite graph [13].

Lemma 2.9. [13, 30] Let G be a graph of order n > 2. Then q2(G) 6 n− 2. Moreover, qk+1(G) = n− 2 (1 6 k < n) if
and only if G has either k balanced bipartite components or k + 1 bipartite components.

Let ρi(A) denote the i-th largest eigenvalue of a Hermitian matrix A.

Lemma 2.10. [13] Let A and B be Hermitian matrices of order n. For any 1 6 i 6 n, 1 6 j 6 n, we have

ρi(A) + ρ j(B) > ρi+ j−1(A + B) (i + j 6 n + 1),

with equality if and only if there exists a nonzero vector that is an eigenvector to each of the three involved eigenvalues.

3. Main Results

We first investigate spectral characterizations of the union of a tree and several isolated vertices.

Theorem 3.1. Let T be a DLS tree of order n. Then T ∪ rK1 is DLS. If n is not divisible by 4, then T ∪ rK1 is DQS.

Proof. Let G be any graph L-cospectral with T ∪ rK1. By Lemma 2.1, G has n + r vertices, n − 1 edges and
r + 1 components. So each component of G is a tree. Suppose that G = G0 ∪ G1 ∪ · · · ∪ Gr, where Gi is a
tree with ni vertices and n0 > n1 > · · · > nr > 1. Since G is L-cospectral with T ∪ rK1, by Lemma 2.2, we
get n0n1 · · · nr = PL(G) = PL(T) = n. By

∑r
i=0 ni = n + r, we have n0n1 · · · nr > n, with equality if and only if

n0 = n,n1 = n2 = · · · = nr = 1. Hence G = G0 ∪ rK1. Since G and T ∪ rK1 are L-cospectral, G0 and T are
L-cospectral. Since T is DLS, we have G0 = T, G = T ∪ rK1. Hence T ∪ rK1 is DLS.

Let H be any graph Q-cospectral with T ∪ rK1. By Lemma 2.1, H has n + r vertices, n− 1 edges and r + 1
bipartite components. So one of the following holds:

(i) H has exactly r + 1 components, and each component of H is a tree.
(ii) H has r + 1 components which are trees, the other components of H are odd unicyclic.
If (i) holds, then H and T ∪ rK1 are both bipartite, so they are also L-cospectral. Since T ∪ rK1 is DLS, we

have H = T ∪ rK1. If (ii) holds, then by Lemma 2.3, PQ(H) is divisible by 4. Since T is a tree of order n, by
Lemma 2.2, PQ(H) = PQ(T) = n is divisible by 4. Hence T ∪ rK1 is DQS when n is not divisible by 4.

Remark 3.1. Some DLS trees are given in [1, 2, 4, 22, 24, 26, 27, 29]. We can obtain DLS (DQS) graphs with
isolated vertices from Theorem 3.1.

Theorem 3.2. Let G be a DQS odd unicyclic graph of order n. Then G ∪ rK1 is DQS if and only if n , 3.

Proof. Since K3 ∪ rK1 and K1,3 ∪ (r − 1)K1 are Q-cospectral, K3 ∪ rK1 is not DQS. Suppose that n > 3. Let H
be any graph Q-cospectral with G ∪ rK1. By Lemma 2.3, PQ(H) = PQ(G) = 4. By Lemma 2.1, H has n + r
vertices, n edges and r bipartite components. So one of the following holds:

(i) H has exactly r components, and each component of H is a tree.
(ii) H has r components which are trees, the other components of H are odd unicyclic.
If (i) holds, then we can let H = H1 ∪ · · · ∪ Hr, where Hi is a tree with ni vertices and n1 > · · · > nr > 1.

Since PQ(H) = PQ(G) = 4, by Lemma 2.2, we have n1 · · · nr = 4, n1 6 4. Since G contains a cycle, we have
q1(H) = q1(G) > 4. Let ∆(H) be the maximum degree of H. If ∆(H) 6 2, then all components of H are
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paths, i.e., q1(H) < 4, a contradiction. So ∆(H) > 3. From n1 6 4 and n1 · · · nr = 4, we know that H1 = K1,3,
H2 = · · · = Hr = K1. Since H = K1,3 ∪ (r − 1)K1 has n + r vertices, we get n = 3, a contradiction to n > 3.

If (ii) holds, then we can let H = U1 ∪ · · · ∪Uc ∪H1 ∪ · · · ∪Hr, where Ui is odd unicyclic, Hi is a tree with
ni vertices. By Lemma 2.2 and 2.3, 4 = PQ(G) = PQ(H) = 4cn1 · · · nr. So c = 1, H1 = · · · = Hr = K1. Since
H = U1 ∪ rK1 and G ∪ rK1 are Q-cospectral, U1 and G are Q-cospectral. Since G is DQS, we have U1 = G,
H = G ∪ rK1.

Hence G ∪ rK1 is DQS if and only if n , 3.

Remark 3.2. Some DQS unicyclic graphs are given in [5, 15, 18, 20, 23, 31, 35]. We can obtain DQS graphs
with isolated vertices from Theorem 3.2.

Theorem 3.3. Let G be a non-bipartite DQS bicyclic graph with C4 as its induced subgraph. Then G∪ rK1 is DQS.

Proof. Let H be any graph Q-cospectral with G ∪ rK1. By Lemma 2.3, we have PQ(H) = PQ(G) = 16. By
Lemma 2.1, H has n + r vertices, n + 1 edges and r bipartite components, where n = |V(G)|. So H has at least
r − 1 components which are trees.

Suppose that H1,H2, . . . ,Hr are r bipartite components of H, where H2, . . . ,Hr are trees. If H1 contains an
even cycle, then by Lemma 2.2, we have PQ(H) > PQ(H1) > 16, and PQ(H) = 16 if and only if H = C4∪(r−1)K1.
By PQ(H) = 16, we have H = C4 ∪ (r − 1)K1. Since H has n + r vertices, we get n = 3, a contradiction (G
contains C4). Hence H1,H2, . . . ,Hr are trees.

Since H has n + r vertices, n + 1 edges and r bipartite components, H has a non-bipartite component
H0 which is a bicyclic graph. Lemma 2.3 implies that PQ(H) > PQ(H0) > 16, and PQ(H) = 16 if and only if
H = H0 ∪ rK1 and H0 contains C4 as its induced subgraph. By PQ(H) = 16, we have H = H0 ∪ rK1. Since H
and G ∪ rK1 are Q-cospectral, H0 and G are Q-cospectral. Since G is DQS, we have H0 = G, H = G ∪ rK1.
Hence G ∪ rK1 is DQS.

Remark 3.3. Some DQS bicyclic graphs are given in [12, 21, 33, 34]. We can obtain DQS graphs with isolated
vertices from Theorem 3.3.

The newGRAPH is a very useful computer program for computing graph eigenvalues (see [28]). The
Q-spectrum of connected graphs with at most 5 vertices is given in [8, Appendix Table A1], and the Q-
spectrum of connected graphs with 6 vertices is given in [7, Appendix]. These data and newGRAPH will
be used in the proof of the following theorem.

Theorem 3.4. Let G be a connected graph with n vertices and m > (n−2)(n−3)
2 + 3 edges. If H is Q-cospectral with

G ∪ rK1, then one of the following holds:
(a) H = K1,3 ∪ (r − 1)K1 and G = K3.
(b) H = H0 ∪ rK1, where H0 and G are connected Q-cospectral graphs.
(c) H = H0 ∪ K2 ∪ (r − 1)K1, where H0 is a connected graph of order n − 1.

Proof. By Lemma 2.1, H has n + r vertices, m edges and at least r bipartite components. We consider the
following two cases.

Case 1: H has r components. Since H has at least r bipartite components, each component of H is
bipartite. Suppose that H = H1 ∪ · · · ∪ Hr, where Hi is a connected bipartite graph with ni vertices, and
n1 > · · · > nr > 1. Since H and G∪ rK1 are Q-cospectral, by Lemma 2.1, G is a connected non-bipartite graph.
Since

∑r
i=1 ni = n + r, we have n1 6 n + 1. Since m > (n−2)(n−3)

2 + 3, by Lemma 2.4 and 2.5, we have

n + 1 > n1 > µ1(H) = q1(H) = q1(G) > 4m
n >

2(n−2)(n−3)+12
n , (1)

(n−2)(n−3)
2 + 3 6 m 6 n(n+1)

4 . (2)

From n + 1 > 2(n−2)(n−3)+12
n , we get 3 6 n 6 8.
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If n = 8, then by Eq. (1), we get q1(G) = 4m
n = 9. Lemma 2.5 implies that G is regular of degree 4.5, a

contradiction. If n = 3, then by Eq. (1), we get

n1 = q1(H) = q1(G) =
4m
3

= 4, m = 3.

Since |V(G)| = |E(G)| = 3, we have G = K3. Since
∑r

i=1 ni = 3 + r and n1 = 4, we have H = H1 ∪ (r − 1)K1,
where H1 has 4 vertices and m = 3 edges. Since q1(H1) = q1(H) = q1(G) = 4, we get H = K1,3 ∪ (r − 1)K1. So
part (a) holds. Next we consider the following subcases (4 6 n 6 7).

Subcase 1.1: n = 4. From Eq. (2), we get 4 6 m 6 5. If m = 5, then by Eq. (1), we have q1(G) = 4m
n = 5.

Lemma 2.5 implies that G is regular of degree 2.5, a contradiction. So m = 4. Since G is a connected non-
bipartite graph with 4 vertices and 4 edges, we have G = U3,1, where U3,1 is the unicyclic graph obtained
from C3 by attaching a pendant edge. So q1(G) > 4. From Eq. (1), we get n1 = 5. Since

∑r
i=1 ni = 4 + r, we

have H = H1 ∪ (r − 1)K1, where H1 has 5 vertices and m = 4 edges. So H1 is a tree. Since H is Q-cospectral
with U3,1 ∪ rK1, we have PQ(H1) = PQ(U3,1). By Lemma 2.2 and 2.3, we get PQ(H1) = 5 , PQ(U3,1) = 4, a
contradiction.

Subcase 1.2: n = 5. From Eq. (2), we get 6 6 m 6 7. Since G is a connected non-bipartite graph with 5
vertices and m edges, by [8, Table A1], we have q1(G) > 5. From Eq. (1), we get n1 = 6. Since

∑r
i=1 ni = 5 + r,

we have H = H1 ∪ (r − 1)K1, where H1 has 6 vertices and 6 6 m 6 7 edges. So q1(H1) = q1(H) = q1(G) > 5.
If m = 6, then H1 is an even unicyclic graph with 6 vertices. Since q1(H1) > 5, by using newGRAPH,

we have H1 = U4,2 and q1(H1) ≈ 5.23607, where U4,2 is the unicyclic graph obtained from C4 by attaching
two pendant edges at one vertex of C4. Note that |V(G)| = 5 and |E(G)| = 6. From [8, Table A1], we have
q1(G) , q1(H1) ≈ 5.23607, a contradiction.

If m = 7, then by Eq. (1), we have q1(H1) = q1(G) > 4×7
5 = 5.6. Note that H1 is a connected bipartite graph

with 6 vertices and m = 7 edges. From [7, Appendix], we have q1(H1) < 5.6, a contradiction.
Subcase 1.3: n = 6. From Eq. (2), we get 9 6 m 6 10. By Eq. (1), we have

7 > n1 > q1(G) >
4m
6
> 6. (3)

If n1 = 7, then by
∑r

i=1 ni = 6 + r, we have H = H1 ∪ (r− 1)K1, where H1 has 7 vertices and 9 6 m 6 10 edges.
Since H is Q-cospectral with G ∪ rK1, H1 is Q-cospectral with G ∪ K1. Note that H1 is a connected bipartite
graph obtained from K2,5 by deleting 10−m edges or from K3,4 by deleting 12−m edges, and G is connected
non-bipartite graph with 6 vertices and 9 6 m 6 10 edges. By using newGRAPH and [7, Appendix], H1 can
not be Q-cospectral with G ∪ K1. So n1 = 6. By Eq. (3), we get q1(G) = 4m

6 = 6. Lemma 2.5 implies that G is
3-regular graph of order 6. Since G is non-bipartite, we have G = C6. Since

∑r
i=1 ni = 6 + r and n1 = 6, we

have H = H1 ∪K2 ∪ (r− 2)K1. Since H is Q-cospectral with C6 ∪ rK1, 2 is an eigenvalue of QC6
. From Lemma

2.8, we know that 2 is not an eigenvalue of QC6
, a contradiction.

Subcase 1.4: n = 7. From Eq. (2), we get 13 6 m 6 14. By Eq. (1), we have

8 > n1 > µ1(H) = q1(H) = q1(G) >
4m
7
> 7, n1 = 8. (4)

Since
∑r

i=1 ni = 7 + r, we have H = H1 ∪ (r − 1)K1, where H1 has 8 vertices and 13 6 m 6 14 edges. So
q1(G) = q1(H) = µ1(H1) = q1(H1).

If m = 14, then by Eq. (4), µ1(H1) = q1(G) = 8 = |V(H1)|. By Lemma 2.4, H1 is a complete bipartite graph
with 8 vertices. In this case, H1 can not have 14 edges, a contradiction.

If m = 13, then by Eq. (4), q1(H1) = q1(G) > 52
7 . Since H1 has 8 vertices and 13 edges, H1 is a connected

bipartite graph obtained from K3,5 by deleting two edges or from K4,4 by deleting three edges. Let X be any
graph obtained from K3,5 or K4,4 by deleting two edges. Using newGRAPH, we have q1(X) < 52

7 . By Lemma
2.7, we have q1(H1) < 52

7 , a contradiction to q1(H1) > 52
7 .

Case 2: H has at least r + 1 components. Suppose that H0 has the largest numbers of vertices among all
components of H. Since H has n + r vertices and at least r + 1 components, we have |V(H0)| 6 n.

If |V(H0)| = n, then H = H0 ∪ rK1. Since H is Q-cospectral with G ∪ rK1, H0 and G are Q-cospectral. So
part (b) holds.
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If |V(H0)| = n − 1, then H = H0 ∪ K2 ∪ (r − 1)K1 or H = H0 ∪ (r + 1)K1. If H = H0 ∪ (r + 1)K1, then
by Lemma 2.5, we get q1(G) = q1(H) = q1(H0) > 4m

n−1 >
2(n−2)(n−3)+12

n−1 > n. Lemma 2.4 implies that G is a
connected non-bipartite graph. Note that H and G ∪ rK1 have different number of bipartite components, a
contradiction to Lemma 2.1. Hence H = H0 ∪ K2 ∪ (r − 1)K1. So part (c) holds.

If |V(H0)| 6 n − 2, then |E(H)| 6 (n−2)(n−3)
2 + 3, with equality if and only if H = Kn−2 ∪ K3 ∪ (r − 1)K1. From

|E(H)| = m > (n−2)(n−3)
2 + 3, we have H = Kn−2 ∪ K3 ∪ (r − 1)K1. In this case, H and G ∪ rK1 have different

number of bipartite components, a contradiction to Lemma 2.1.

The following theorem follows from Theorem 3.4.

Corollary 3.5. Let G be a connected DQS graph with n vertices and m > (n−2)(n−3)
2 + 3 edges. If H is Q-cospectral

with G ∪ rK1, then one of the following holds:
(1) H = K1,3 ∪ (r − 1)K1, G = K3.
(2) H = G ∪ rK1.
(3) H = H0 ∪ K2 ∪ (r − 1)K1, where H0 is a connected graph of order n − 1.

If part (3) of Corollary 3.5 holds, then 2 is an eigenvalue of QG. Hence we obtain the following result from
Corollary 3.5.

Corollary 3.6. Let G be a connected DQS graph with n vertices and m > (n−2)(n−3)
2 +3 edges. If 2 is not an eigenvalue

of QG, then G ∪ rK1 is DQS if and only if G , K3.

Corollary 3.7. Let G be a connected DQS graph with n vertices and m > (n−2)(n−3)
2 +3 edges. If q2(G) > max{n−3, 2},

then G ∪ rK1 is DQS.

Proof. Since q2(G) > 2, we have G , K3. Let H be any graph Q-cospectral with G ∪ rK1. By Corollary 3.5,
H = G∪rK1 or H = H0∪K2∪ (r−1)K1, where H0 is a connected graph of order n−1. If H = H0∪K2∪ (r−1)K1,
then by Lemma 2.9, we get q2(H) 6 max{n − 3, 2}, a contradiction to q2(H) = q2(G) > max{n − 3, 2}.

For a graph G, if H is a non-isomorphic graph Q-cospectral with G, then H is called a Q-cospectral mate of G.
Clearly a graph is DQS if and only if it has no Q-cospectral mates.

Theorem 3.8. The graph Kn ∪ rK1 is DQS if and only if n , 3.

Proof. From [9, Proposition 7], Kn∪ rK1 is DQS when n = 1, 2. By Corollary 3.5, K3∪ rK1 is not DQS. Suppose
that n > 4. Then |E(Kn)| =

n(n−1)
2 > (n−2)(n−3)

2 + 3. It is known that Kn is DQS [9]. Corollary 3.6 implies
that Kn ∪ rK1 is DQS when n > 5. If H is a Q-cospectral mate of K4 ∪ rK1, then by Corollary 3.5, we have
H = H0 ∪ K2 ∪ (r − 1)K1. By Lemma 2.1, H0 has 3 vertices and 5 edges, a contradiction. Hence K4 ∪ rK1 is
DQS.

Theorem 3.9. Let G be a connected DQS graph with n vertices and m > (n−2)(n−3)
2 + 3 edges. If q1(G) 6 n − 4, then

G ∪ rK1 is DQS.

Proof. Since 0 6 q1(G) 6 n − 4, we have n > 4. By Lemma 2.10, q1(G) + qn(G) > qn(Kn), with equality if and
only if q1(G), qn(G) and qn(Kn) have a common eigenvector.

If q1(G) > 0, then the eigenvector of q1(G) is nonnegative. Since a nonnegative vector can not be an
eigenvector of qn(Kn), we have q1(G) + qn(G) > qn(Kn) = n − 2. By q1(G) 6 n − 4, we get qn(G) > 2. Corollary
3.6 implies that G ∪ rK1 is DQS.

If q1(G) = 0, then G = Kn. By Theorem 3.8, Kn ∪ rK1 is DQS when n > 4.

In [11], Doob and Haemers proved that Pn is DS. We show that Pn and Pn ∪ rK1 are DQS as follows.

Theorem 3.10. The graphs Pn and Pn ∪ rK1 are DQS.
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Proof. Let G be any graph Q-cospectral with Pn. By Lemma 2.6, G and Pn have the same degree sequence,
i.e., G and Pn have the same degree sequence. Hence G = Pn or G = Pr ∪ Cn1 ∪ · · · ∪ Cns . We only need to
consider the case G = Pr ∪ Cn1 ∪ · · · ∪ Cns .

By Lemma 2.7 and 2.8, we have qn(G) = qn(Pn) > qn(Cn) = n− 4−λ2(Cn) > n− 6. If s > 2, then by Lemma
2.7 and 2.8, we have qn(G) 6 qn−1(H) = n− 4− λ3(H) = n− 6, where H = Cr ∪ Cn1 ∪ · · · ∪ Cns , a contradiction
to qn(G) > n − 6. Hence G = Pr ∪ Cn1 . If n is odd, then by Lemma 2.9, we have q2(G) = q2(Pn) < n − 2. Since
n = r + n1 is odd, r or n1 is even. By Lemma 2.9, we get q2(G) = n − 2, a contradiction. If n is even, then by
Lemma 2.9, we have q2(G) = q2(Pn) = n − 2 and q3(G) < n − 2. Since n = r + n1 is even, r,n1 are both odd or
even. Lemma 2.9 implies that q2(G) < n − 2 or q3(G) = n − 2, a contradiction. Hence Pn is DQS.

From [9, Proposition 7], Pn ∪ rK1 is DQS when n 6 4. Suppose that n > 5. Then |E(Pn)| = (n−1)(n−2)
2 >

(n−2)(n−3)
2 + 3. By Lemma 2.7 and 2.8, we have q2(Pn) > q2(Cn) = n − 4 − λn(Cn) > n − 3. By Corollary 3.7,

Pn ∪ rK1 is DQS when n > 5.

In [6], Cámara and Haemers proved that a graph obtained from Kn by deleting a matching is DS. This graph
is also DQS.

Theorem 3.11. Let G be the graph obtained from Kn by deleting a matching. Then G and G ∪ rK1 are DQS.

Proof. Let H be any graph Q-cospectral with G. By Lemma 2.6, G and H have the same degree sequence.
So H is a graph obtained from Kn by deleting a matching. Since G and H have the same number of vertices
and edges, we have H = G. Hence G is DQS.

From [9, Proposition 7], G∪rK1 is DQS when n 6 3. Suppose that n > 4. Then |E(G)| > n(n−2)
2 > (n−2)(n−3)

2 +3.
By Lemma 2.9, we have q2(G) = q3(G) = n − 2. Corollary 3.7 implies that G ∪ rK1 is DQS when n > 5.

Next we assume that n = 4. So 4 6 |E(G)| 6 5. If X is a Q-cospectral mate of G ∪ rK1, then by Corollary
3.5, we have X = H0 ∪ K2 ∪ (r − 1)K1, where H0 has 3 vertices and |E(G)| − 1 edges. Since 4 6 |E(G)| 6 5, we
have |E(G)| = 4, G = C4, H0 = K3. Note that X = K3 ∪ K2 ∪ (r − 1)K1 and C4 ∪ rK1 are not Q-cospectral, a
contradiction. Hence G ∪ rK1 is DQS when n = 4.

Remark 3.4. Theorem 3.8 and 3.11 generalize [17, Theorem 4.7].

A regular graph is DQS if and only if it is DS [9]. It is known that a k-regular graph of order n is DS when
k = 0, 1, 2,n− 1,n− 2,n− 3 [3]. Hence a k-regular graph of order n is DQS when k = 0, 1, 2,n− 1,n− 2,n− 3.

Theorem 3.12. Let G be a (n − 3)-regular graph of order n. Then G ∪ rK1 is DQS.

Proof. From [9, Proposition 7], G∪ rK1 is DQS when n = 3, 4. If n = 5, then G = C5. By Theorem 3.2, C5∪ rK1

is DQS. Suppose that n > 6. Then |E(G)| = n(n−3)
2 > (n−2)(n−3)

2 + 3. Note that G is 2-regular. If G contains
a cycle of length at least 4, then by Lemma 2.8, we have q2(G) = n − 4 − λn(G) > n − 3. By Corollary 3.7,
G∪ rK1 is DQS. If G = tC3, then n = 3t > 6. By Lemma 2.8, we know that 2(3t−3), 3t−6, 3t−3 are all distinct
eigenvalues of QG, so 2 is not an eigenvalue of QG. By Corollary 3.6, G ∪ rK1 is DQS.

A regular graph G is DS (DQS) if and only if G is DS (DQS) [9]. Hence a (n − 4)-regular graph of order n is
DS (DQS) if and only if its complement is a 3-regular DS (DQS) graph.

Theorem 3.13. Let G be a (n − 4)-regular DS graph of order n > 12. Then G ∪ rK1 is DQS.

Proof. If n > 12, then |E(G)| = n(n−4)
2 > (n−2)(n−3)

2 + 3. Since G is 3-regular, we have q1(G) = 6. By Theorem 3.9,
G ∪ rK1 is DQS.

Remark 3.5. Some 3-regular DS graphs are given in [9, 14, 25]. We can obtain DQS graphs with isolated
vertices from Theorem 3.13.
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[7] D. Cvetković, New theorems for signless Laplacian eigenvalues, Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur. Sci. Math. 137

(33) (2008) 131–146.
[8] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge,

2010.
[9] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241–272.

[10] E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576–586.
[11] M. Doob, W.H. Haemers, The complement of the path is determined by its spectrum, Linear Algebra Appl. 356 (2002) 57–65.
[12] G. Guo, G. Wang, On the (signless) Laplacian spectral characterization of the line graphs of lollipop graphs, Linear Algebra Appl.

438 (2013) 4595–4605.
[13] L.S. de Lima, V. Nikiforov, On the second largest eigenvalue of the signless Laplacian, Linear Algebra Appl. 438 (2013) 1215–1222.
[14] F.J. Liu, Q.X. Huang, H.J. Lai, Note on the spectral characterization of some cubic graphs with maximum number of triangles,

Linear Algebra Appl. 438 (2013) 1393–1397.
[15] M.H. Liu, Some graphs determined by their (signless) Laplacian spectra, Czech. Math. J. 62 (137) (2012) 1117–1134.
[16] M.H. Liu, B.L. Liu, Some results on the Laplacian spectrum, Comput. Appl. Math. 59 (2010) 3612–3616.
[17] M.H. Liu, B.L. Liu, F.Y. Wei, Graphs determined by their (signless) Laplacian spectra, Electron. J. Linear Algebra 22 (2011) 112–124.
[18] M.H. Liu, H.Y. Shan, K.C. Das, Some graphs determined by their (signless) Laplacian spectra, Linear Algebra Appl. 449 (2014)

154–165.
[19] X. Liu, S. Wang, Laplacian spectral characterization of some graph products, Linear Algebra Appl. 437 (2012) 1749–1759.
[20] X. Liu, S. Wang, Y. Zhang, X. Yong, On the spectral characterization of some unicyclic graphs, Discrete Math. 311 (2011) 2317–2336.
[21] X. Liu, S. Zhou, Spectral characterizations of propeller graphs, Electron. J. Linear Algebra. 27 (2014) 19–38.
[22] P.L. Lu, X.D. Zhang, Y. Zhang, Determination of double quasi-star tree from its Laplacian spectrum, J. Shanghai Univ (Engl Ed)

14(3) (2010) 163–166.
[23] M. Mirzakhah, D. Kiani, The sun graph is determined by its signless Laplacian spectrum, Electron. J. Linear Algebra. 20 (2010)

610–620.
[24] G.R. Omidi, K. Tajbakhsh, Starlike trees are determined by their Laplacian spectrum, Linear Algebra Appl. 422 (2007) 654–658.
[25] F. Ramezani, B. Tayfeh-Rezaie, Spectral characterization of some cubic graphs, Graphs Combin. 28 (2012) 869–876.
[26] X.L. Shen, Y.P. Hou, Some trees are determined by their Laplacian spectra, J. Nat. Sci. Hunan Norm. Univ. 29 (1) (2006) 21–24 (in

Chinese).
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