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Oldroyd-B Model in Hybrid Besov Spaces

Ruizhao Zi?

#School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences,
Central China Normal University, Wuhan, 430079, P. R. China

Abstract. This paper is dedicated to the Cauchy problem of the incompressible Oldroyd-B model with
general coupling constant w € (0, 1). It is shown that this set of equations admits a unique global solution

) d
in a certain hybrid Besov spaces for small initial data in H° N BZZ1 with —g <s< g — 1. In particular, if d > 3,

) d d d
and taking s = 0, then H N B}, = B;,. Since B;lm — B ift> g, this result extends the work by Chen and
Miao [Nonlinear Anal.,68(2008), 1928-1939].

1. Introduction

We consider a typical model for viscoelastic fluids, the so called Oldroyd-B model [26] in this paper.
This type of fluids is described by the following set of equations

u+ - Vu-—nAu+VII = divr,
divu = 0, 1
M+ - V)T +g.(t,Vu)) + 1 = 2n.D(u),

where u and 7 are the velocity and symmetric tensor of constrains of the fluids, respectively. IT is the
pressure which is the Lagrange multiplier for the divergence free condition. The quadratic form in (7, Vu)
is given by g, (7, Vu) := tW(u) — W(u)t — a (D(u)7 + ©D(1)) for some a € [-1,1], and D(u) := %(Vu +(Vu)T"),
W(u) = %(Vu — (Vu)T) are the deformation tensor and the vorticity tensor, respectively. Moreover, the
parameter 7, := nu/A denotes the solvent viscosity, and 7, := 1 — 1, denotes the polymer viscosity, where 1
is the total viscosity of the fluid, A > 0 is the relaxation time, and y is the retardation time with 0 < u < A.
In the following, we would like to study system (1) in dimensionless variables, which takes the form

Re (u; + (1 - V)u) — (1 — w)Au + VII = divr,
We(t; + (u- V)T + go(t, Vi) + 7 = 20D(11), (2)
divu =0,
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with parameters Reynolds number Re , Weissenberg number We and coupling constant w := 1 - & € (0,1)
of the fluid . For more details of the modeling, we refer to [9, 12, 28] and references therein.

Some of the previous works in this direction can be summarized as follows. To the best of our knowledge,
the incompressible Oldroyd-B model was firstly studied by Guillopé and Saut [11], where they obtained
a unique local strong solution to system (2) in suitable Sobolev spaces H*(Q) for the situation of a bounded
domain Q C R3. Moreover, this solution is global provided both the data and the coupling constant @
between the two equations are sufficiently small. The extensions to these results to the L-setting can
be found in [10]. Similar results on exterior domains were established by Hieber, Naito and Shibata [13].
The well-posedness results in scaling invariant Besov spaces on R, d > 2 were first given by Chemin and
Masmoudi [5].

All the results mentioned above were constructed under the assumption that the coupling constant w
is small enough. This means that the coupling effect between the velocity # and the symmetric tensor of
constrains 7 is weak and hence system (2) corresponds closely to the classical incompressible Navier-Stokes
equations. From both the physical and mathematical point of view, it is more interesting to consider the
strong coupling case, for which the coupling constant w is not small. As a matter of fact, the studies in
this direction have thrown up some interesting results. For the situation of bounded domains, the smallness
restriction on the coupling constant w in [11] was removed by Molinet and Talhouk [25]. As for the exterior
domains, Fang, Hieber and the author [8] improved the main result in [13] to the situation of non-small
coupling constant. In the whole space R case, Chen and Miao [6] obtained global solutions to system (1)
with small initial data in B] _, s > . For the critical L? framework, the smallness restriction on w in [5] was
removed by Fang, Zhang and the author [30] very recently. Existence of global weak solutions for large data
and strong coupling was proved by Lions and Masmoudi in [24] for the case @ = 0. The general case a # 0
is still open up to now. For the Oldroyd-B fluids with diffusive stress, Constantin and Kliegl [7] proved the
global regularity of solutions in two dimensional case.

Besides, we would like to point out that there are some other results on Oldroyd-B fluids in the literature.
Indeed, Chemin and Masmoudi [5] gave some blow-up criterions both for 2D and 3D cases. Later on, the 2D
case was improved by Lei, Masmoudi and Zhou in [20]. As for the 3D case, Kupferman, Mangoubi and
Titi [15] established a Beale-Kato-Majda type blow-up criterion in terms of the L!(LY’) norm of 7 in the zero
Reynolds number regime. Further results, describing the incompressible limit problems for Oldroyd-B fluids,
can be found in [12, 16] for well-prepared initial data, and in [9] for ill-prepared initial data. An approach
based on deformation tentor was developed in [14, 17-19, 21-23, 27, 29].

The aim of this paper is to study the incompressible Oldroyd-B model (2) with non-small coupling
constant @. We establish the global solutions to system (2) with small data uy and 74 lying in 8° =
N B22 1 —4 5<s<3 ¢ _1. Like all the previous results [6, 8, 24, 25] in L? framework with non-small coupling
constant w, the key point of the proof is to use the cancelation relation

(divr|u) + (D(u)|7) = 0. 3)

The global estimates can be divided into two parts. For the initial data in B2 owing to the Bernstein’s
inequality, we can obtain both the smoothing effect of the velocity u and the dampmg effect of the symmetric
tensor of constrains 7 in the high frequency case. While in the low frequency case, the estimate fails to be
true since u and 7 are treated as a whole, and IIAqulle + ||AqT||L2 can not be dominated by ||VAqM||L2 + ||AqT||L2
any more (see (26) for details). In order to deal with the low frequency part, we impose an extra condition
on the initial dada. This leads to the estimates for initial data in H°. It is worth noting that the estimates
of nonlinear terms necessitate bounding the term ||u|| . ¢ . To do so, we decompose ||u|| =+ into ul
Lf(821) t(Bzzl L2(37 )

and ||u||" . In particular, the low frequency part is bounded by ([
26

L2y ; that is why we need s < 4 — 1.
Combing the two parts estimates with initial data in B2 and H?, we obtain the global estimates for (1, 7).
Finally, we would like to remark that although the results in [30] allow more general initial data ( L? type
Besov spaces), we give a much easier proof without resorting to the Green matrix of the linearized system
of (2) for the data lie in the L? type Besov spaces in this paper.



R. Zi/Filomat 30:13 (2016), 3627-3639 3629

Notations. For s € R, set

1 A h A
llucll 5, :=§ 271 Aqull2,  and  lull, :=§ 27| Aqull2.
2 q<0 ! q=0

Further more, let us denote by B; the space which consists of distributions u € &', such that ”u”?gs < oo.
21

Throughout the paper, C denotes various “harmless” positive constants, and we sometimes use the notation
A < B as an equivalent to A < CB. The notation A = B means that A < B and B < A.
We shall obtain the existence and uniqueness of a solution (u, 7) to (2) in the following space.

Definition 1.1. For T > 0, and s € R, let us denote
s A s 2 s+l 1,p5+1 ‘ A @3S 2 (7S 1/p4 o

& = (CT(B ) N LA(EEY) 0 LL(BE )) x (CT(B )N L2(EF) N LT(Bh)) .
We use the notation & if T = oo, changing [0, T] into [0, o) in the definition above. The definition of space B° can
be found in Section 2.

Our main result reads as follows:
. Nd . dxd

Theorem 1.1. Let d > 2, —g <s< g — 1. Assume that (uy, 79) € (Bs) X (Bs) * with divuy = 0. There exist two
positive constants ¢ and M, depending on s, d, w, Re and We , such that if

lluollg: + lITollg < ¢,

system (2) admits a unique global solution (u, ) in & with

G, Dlles < M (Iluollg: + lITollz:) -

2. The Functional Tool Box

The results of the present paper rely on the use of a dyadic partition of unity with respect to the Fourier
variables, the so-called the Littlewood-Paley decomposition. Let us briefly explain how it may be built in the
case x € R? and the reader may see more details in [1, 3]. Let (x, ¢) be a couple of C* functions satisfying

4 3 8
Suppyx C {&] < 5}, Suppe C {;1 <&l <z

=3
and
XO+Y 9 =1,
720
Y 9@ =1, for &#0.

qeZ.

Set (&) = p(279E), hy = F-1 (¢4),and h=F"1 (x). The dyadicblocks and the low-frequency cutoff operators
are defined for all ¢ € Z by

= p@ Dy = [ byt =)y,

Squ = x(2""D)u = f]Rd hy(Y)u(x — y)dy.
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holds for tempered distributions modulo polynomials. As working modulo polynomials is not appropriate
for nonlinear problems, following Chapter 2 of [1], we shall restrict our attention to the set S) (see Definition
1.26 of [1]) of tempered distributions u such that

lim [|S,ull~ = 0.
g——00

Note that (4) holds true whenever u is in S} and that one may write
Squ = Z Apu.
p<q-1

Besides, we would like to mention that the Littlewood-Paley decomposition has a nice property of quasi-
orthogonality:

ApAgqu=0if [p—gl>2 and Ay(S,oiuAgu) =0 if |p—gq| > 5. 5)
One can now give the definition of homogeneous Besov spaces.

Definition 2.1. Fors € R, (p, ) € [1, 0%, and u € S;(RY), we set

lllgs, = [[2°7N1Aqull

o
We then define the space B;,, := {u € S;(R?), llullg;, < oo}.
Remark 2.1. The inhomogeneous Besov spaces can be defined in a similar way. Indeed, for u € S'(R?), we set
Au=0if g<-1, Aqu=x(D)u,
Aju=@Q2 D)u if >0, and Syu= Z Apu.
p<q-1

Then for all u € S'(RY), we have the inhomogeneous Littlewood-Paley decomposition u = Ygez Dqu, and for
(p,7) € [1,+01%, s € R, we define the inhomogeneous Besov space B}, as

B;,r = {u € S’(]Rd), “”HBZ,r = ||25!7||Aqu||u,

p <)

The homogeneous Sobolev space FH*(RY) will be used in this paper.

Definition 2.2. Let s € R. The homogeneous Sobolev space H*(RY) (also denoted by H?) is the space of tempered
distributions u over RY, the Fourier transform of which belongs to L} (R?) and satisfies

. = f EPIAE)PAE < co.
R4
Besides, it is not difficult to verify that the homogeneous Besov space B;z coincides with H* if s < 2, see for example,
page 63 of [1].
We also need the following hybrid Besov space in this paper.
Definition 2.3. Fors € R, and u € S];(IRd), we set

1
2
. dos
||M||3s=[§ 22”’5I|Aqullfz] +§ 212)|Aqullza.

q<0 q=0

We then define the space B° := {u € S, (RY), [jullg: < oo}.

1
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Remark 2.2. Clearly, for any u € S;l(le) and s € R, there holds

2
2 A 2
Il < [Zz qsnAquuLz] + 2 28 Al < ol + Nl
21

qezZ qeZ

On the other hand, if s < 5, we have

[SIE

2 A 2
lalle < C| Y 22 lAul,
qeZ
1 1
2 2
< Y 2#ihgui. | +C| Y 2R1Aul,
q<0 q=0
1 1
2 2
< | Y2 AR, | +C| Y 2 IAul,
q<0 q=0
1
2
. 4 .
< Y 2#1hgu, | +C Y 27 1Aull:
q<0 q=0
= Cllull-

Ifs < 4, using Holder’s inequality yields

lull ¢ = 2025 Agullp + Y 275 | Aqullpe
< ) 2u6 ZzzﬂsuA W, | + Zzﬁ%nAquuLz
q<0 q<0 q=0
< Clull.

Combining (7) with (8), we are led to

<Cllullg. if s< g

lull
Hs

d
NB2
It follows from (6) and (9) that

. d
~ullg if s<-=.

. :

35
FEnBZ,

Therefore, we conclude that

. . L d . d
Bs ZHSOBZZ,1 if s< E

The following lemma describes the way derivatives act on spectrally localized functions.

3631

©)

(10)

(11)

Lemma 2.1 (Bernstein’s inequalities). Let k € Nand 0 < r < R. There exists a constant C depending on r, R and

d such that for all (a,b) € [1,00]?, we have for all A > 0 and multi-index

o IfSuppf € B(0, AR), then sup,_, [0 fllps < CHH AR G0 £l
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e IfSuppf C €(0, Ar, AR), then C™*1A¥|fllis < sup,_; 19 flle < CLAK|| £l
Next we recall a few nonlinear estimates in Besov spaces which may be obtained by means of parad-
ifferential calculus. Firstly introduced by J. M. Bony in [2], the paraproduct between f and g is defined
by
Tyg = Z S1-1fAgg,

qeZ.
and the remainder is given by
R(f,9) = Z AgfAqg
92-1
with . . . '
Aqg = (Aq—l + Aq + Aq+1)g.

We have the following so-called Bony’s decomposition:
fg9=Trg+Tyf +R(f,9). (12)

The paraproduct T and the remainder R operators satisfy the following continuous properties. The proof
can be found in Theorem 2.47 and Theorem 2.52 of [1].

Proposition 2.1. Foralls € R, 0 > 0, and 1 < p,p1,p2, 1,171,172 < o0, the paraproduct T is a bilinear, continuous
operator from L® X B;,, to B;,, and from B, X B;,, to By with = min{1, ;- + ;). The remainder R is bilinear

- 31 352 351452 00 11,1 11,1
continuous from B, . X B . to B, with s1 +s2 > 0, p =t S Land =5+ <1

In view of (12), Proposition 2.1 and Bernstein’s inequalities, one easily deduces the following product
estimates:

Corollary 2.1. There hold:

. d d
||”v||HSSC“””BZ%”U“HS/ if Se(_i’i)‘ (13)
<C if d d 1 14
luolly: < IIuIIHs+1I|vIIB§;1, i se(_i’i_ ). (14)
and
IIuvIIBg sCIIuIIBg lIoll 4 - (15)
2,

2,1 21

The study of non-stationary PDEs requires spaces of the type L(X) = L?(0, T; X) for appropriate Banach
spaces X. In our case, we expect X to be a Besov space, so that it is natural to localize the equations through
Littlewood-Paley decomposition. We then get estimates for each dyadic block and perform integration in
time. But, in doing so, we obtain the bounds in spaces which are not of the type L?(0, T; B;,r). That naturally
leads to the following definition introduced by Chemin and Lerner in [4].

Definition 2.4. For p € [1,+0],s € R, and T € (0, +o0), we set

Iy s, = [2¥180 0|,

and denote by i?(B;lr) the subset of distributions u € D' ([0, T];S];(IRd)) with finite ||u||i?(B;y) norm. When T = +o0,
the index T is omitted. We further denote Cr(B;,,) = C([0, T]; B; ,) N LY(B;, ).

Remark 2.3. All the properties of continuity for the paraproduct, remainder, and product remain true for the Chemin-
Lerner spaces. The exponent p just has to behave according to Holder’s inequality for the time variable.

Remark 2.4. The spaces l?(B;lr) can be linked with the classical space Lg(B;,r) via the Minkowski inequality:

”u”i?(B,i,y) < ||U||LQ(B;J) if r>p, ||u||i‘q"(B;,r) 2 ”u”LQ(B;,,) if r<p.



R. Zi/Filomat 30:13 (2016), 3627-3639 3633

3. Global existence

In order to construct the global solutions to the incompressible Oldroyd-B model (2), we shall used the

classical Friedrichs method to approximate the system (2) by a cut-off in the frequency space. Noting that

this method has been applied to Oldroyd-B model in [5, 6] before, to avoid unnecessary repetition, we

omit the details of approximation in this paper. In the following, the global estimates of (1, 7) will be given

directly. To begin with, let us first of all localize the system (2) as follows,
2wReA 1y — 2w(1 — w)AgAu + 20VAIT = 20divA,T — 2wReA (1 - Vi), 16)
We (Agti + 1+ VAST) + Ayt = 20D(Aqu) = We ([Ag, ul - VT + Agga(t, Vi)

Taking the L? inner product of (16); and (16), with Aqu and Aq’[, respectively, using the relation (divt|u) +
(D(u)|t) = 0 and the divergence free condition of u, we obtain

1d . . .
5 7 (2RellAgulf, + WellAyellE,) + 2(1 = @)lIVAGuI, + 1A,

< 2wRellAg(u - Vu)llpllAgull2 + We(ll[Aq, ul - Vallz + 1A ga(1, Vu)IILz) 1Aglly2. (17)
It follows that

wRellull? +20(1 = @)lIVull, ey + 7117

i+ ||r||Lw(Hb

L2(Hs) L2(H?)
< wRelluollf, + ||To||25+ZCURef ZZZqSIIAq(u Vi)lezlAqullp2dt
qez
+We f Y 2% (A, ul - Vlliz + 1Agga(T, Vill) 1Ayl 2t (18)
qeZ.

Now we estimate the last three terms on the righthand side of (18) one by one. In fact, in view of Hoder’s

inequality and the product estimate (13), we infer that for —% <s < 4, there holds

2wRe f Y 22l1A (- Vi)l lAgull 2t

qez

< Za)Ref oz - Vullggelul | e dt’
< CuRe f IVl el
< CwReIluIILoo(Hs)||Vu||L2(Hf)“”|| 19)

% .

21)

Noting that if s < %l — 1, we can bound ||u|| , .4 as follows:
[2(B2)

V72,1

h
[[aal| <l g +lull®
LZ(BZQ 12(B7)) 12(8%)

h
u + (U
(” ||L2(H5+1) ” ||l2(34+%))

t\72,1

1
2

C ||u||Lg(Hm>+(||u||’1 PR ] (20)
LyB;,) LB 221)

IN

IN
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Inserting (20) into (19), we arrive at

20Re f )" 22|y (u - Var)lallAull 2t
qeZ
1

2
< CwRelull i IVullz i ||u||Lg(Hm>+[nuuh ||u||’11_,;+1) , 21)

d
Ltoo (Bzz,l ) Ll (BZ,l )

with —¢ <5 < 4 — 1. Similarly, we have

f Y 22 Ay ga (T, Vi)liz 1A ladt

qeZ.

< WefIlga(T,Vu)I|H5||T||Hsdt’
0
t
< CWe [ litll g IVullggslitlgat
0 B3,
d d
< CWeIITII %||Vu||Lz(H>)|IT||Lz(H>), for —§<s<§. (22)
t 21

d

Finally, using Holder’s inequality and the commutator estimate, c. f. [1], for —%l -1<s< 3, weareled to

W [ Y 2y 1 Vel
qeZ
1

2

t
We f 3" 22FAg, ul- Vel | ellgdt
0

qez
t
CWe [ IVull g lIll? d¥
0 BZ,l

IA

IA

t
= CWe f IVl ey + IVl ey

< CWellVull' o litllip Iz + CWelVall durn
7)) Li(B2,

t 2,1 tAT2,1

L (Ho)

< CWellVaullpzg Tl gl T2y + CWe||Vu||h L g )||T||2m(H, (23)
2,1
Substituting (21)—(23) into (18) yields

wRel||ul? +20(1 = @)|[Vull?

i+ ||r||Lw(Hs

2
L2(FF) + HTHL[Z(H

We
2 2
< wRelluoll, + ||To|| s +CW€||T||-W(Bg IVall 2o 1Tl 2gere)
l 21

+CWe||Vu||Lz<H5)||T||LwH)HTHLZH)+CWe||Vu||h ¢ W7l
L}(BZ,

t

2
+C(4)Re”u||LW(H5)||VU||L2(HS) ||”||L2(Hs+1 + [l 4 o] " 4 . (24)
! ! ! LP(B7)  LMB;

21)

4
To close (24), we have to estimate the high frequency part of u and 7 in the space B;,. To this end, we first
notice that

. . . . 2
2wRel|Agull?, + WellAgt|Z, ~ ( V2wRellAqull: + \/WeHAqT”Lz) , (25)
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and for g > 0,

20(1 - a))quHAquHiz + ”AqT”%z

. . 2
(V2w(1 = )27l Aqully> + 1A,7ll.2)

l-w 1 ) .
. "= 200(1 = w)27||A +[|A
mm{ Re \/VTQ}(m 1AGullr2 + 1] qT”LZ)

x (V2wRellAgull: + VWellAlz2). (26)

X

2w(1 - a))”VAqu“iz + ”AqT”iz

Q

\%

It follows from (17), (25) and (26) that, if g > 0, there holds

d : :
e \/2wRe||Aqu||§2 + WellA, I,

l-w 1 ; ;
i e 2w(1 — w)27)|A A
+m1n{w/ R m}(\/ (1 — )27 Agullr> + | qT||Lz)

< V2wRellAg(u - Vir)lipz + VWe (I[Ag, 1] - Vell2 + 1Aqga(T, Vir)lz2) (27)

Integrating the above equation with respect to ¢, multiplying the resulting inequality by 27 2, and then
summing w. 1. t. g over all the nonnegative integers, we find that

V2wRellul" , + VWellr"
Le(B2 L

21 ) t

. l-w 1
+m1n{ }(\/Zw(l - a))llullhl(‘%ﬂ) + ||]|" Y
Li Bz,l L

Re " Ve 162

t
< V2wRelluoll", + VWellzo|l", + \/ZwRef llu - V] g at
B;l BZZ,] 0 By,

~

t
+VWe f 2 2 Ay, 1] - Veli: + llga(r, Val g d' (28)
2,1

0 qeZ.

NI
|
—_
~

. . . d
Product estimate (15) in Besov space and (20) imply that, for -5 <s <

t
Y2wRe | ||u- VuIIB% dt’
0 2,1

t
CV2wRe | |lull «IVull ¢ dt
0 B2 B2

<
21 2,1
t
= Cx/za)Refnou IVull', +[Vull", |dt’
0 822'1 BZZ, 322/1
< CV2wRe|llull 4 [IVull* , +lull 4 [IVul
L) LABZ) FBI) B2
1
2
< CV2wRelllull g IVull" | llullpaggeeny + [l el | (Va2 |- (29)
LB Li( 22,1) fo(Bzz,l) ! 22,1 )
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Using commutator estimate and product estimate (15) in Besov space again, we get for —% <s< %l,

t
VWe f D 284y u] - Vall + liga(x, Vo)l g d¥
2,1

0 qez

t
< CVWe | IVull g lI7ll 4 dt
0 B2 B?
21 2,1
< CVWelllll g IVull* , +lill o [IVull
L (Byy) L}(B2)) LiB5) L3(B7)
1
2
< CVWelllrll 4 IVull* , + ||T||L;<Hs>+[||f||’1 o el ) Vel |- (30)
LB L}(BzzJ Ly 22,1 tl(Bzz,l

Substituting (29) and (30) into (28) yields
V2wRellul" , + VWelld"

oo (R2 Foo(R?2
Lt (Bz,l) Ll (BZ,I)

1-w 1
Fmind 4/ ,—— 4 V2w(1 = @)lul/" +l
{ Re " \/We } [ L! (Bé“) L}(Bfl)
+ VWellzoll",
. B

< V2wRellug|/"
B

N o

d
32

1
2
+CVZaRe |l IVall | + ||u||L,z(Hm,+(||u||h ull” ) IVl
L (By,) L}(BZZJ) Ly (B5) L}(BZ] )

L,“XJ(BZ%I) Ltl(BZ,l)

1
2
+CVWellltll g IVull" |z + [Tl Wl | [Vl |- (31)
LeB2) LB ‘ 5 ‘

EYT21

Let us define

Eit) = VowRellullpo@s) + VWelltllzo@ey + Vol — o)llVullzgr) + 17l
Bat) = VoRelull , + VWl + Ja@-oIval , +ladl
LB ) L

2/1) LTO(BZ,I I(BZ,l) Lf (BZ,l)

E1(0) := VoRelluoll + VWelltolly,  Ea(0) = VaRelluoll", + VWellzol", ,
BZ,l BZ,l

and
E(t) := E1(t) + Ea(b), E(0) := E1(0) + E(0).

Moreover, we denote

{( We )1 1 (wRe)? (wRe)? }
max ,

K1

w1=®)] (@01 - w)i Vol =o) (@1 -w)?
Ky = max{l, Re ,M},
1-w

K3 = max 1 VRe (Re)% (We)%
’ Vol @) Vol -o) ofl-a) yeol-w) ]



R. Zi/Filomat 30:13 (2016), 3627-3639 3637

Then (24) and (31) read as follows:

d d
Ei(f) < E1(0) + CxiE(HI, for - 5 <s<3-1, 32)
and
) d d
Ex(t) < x2E»(0) + CroxsE(t)°, for — 2 <s< 3~ 1, (33)
Consequently,
3 ) d d
E(t) < 1E(0) + C(x1E(H)? + raaE(t)?), for - 5 <s<5-1L (34)

By using standard continuity method, we infer from (34) that
E(t) < 2x2E(0), (35)

provided E(0) is small enough. Then the existence part of Theorem 1.1 follows immediately. ]

4. Uniqueness

Let (u1,71) and (uy, 72) be the solution to the system (2) with the same initial data obtained in Section 3.
Denote (w, 0) := (111 — U2, T1 — T2), and p = I1; —IT,. Then it is easy to verify that (w, o) satisfies the following
system:

{Re diw — (1 — w)Aw + Vp = dive — Re (w - Vug + up - V), (36)

We (d0 + uy - Vo) + 0 = 2wD(w) — We w - VT, — We g,(0, Vir) — We ga(12, V).
Applying the localized operator A, to system (36) yields

Re HtAqw -(1- a))AAqw + Vqu = diVAqG —Re Aq(w -Vuq + up - V),
We (9:Ag0 + uy - VA0) + Ago = 2wD(Aqw) — We [Ag, u1] - Vo — We Ag(w - Vo) (37)
—We A,94(0, Vi) = We Agg4(12, V).

Using the cancelation relation (diquolAqw) + (D(Aqw)lAqa) = 0, similar to (17), we arrive at

1d . . . .
—— (2a)Re||Aqw||§2 + We||Aqa||§2) +2w(1 - w)[IVA;wll?, + 1Aq0llF,

2 dt
< 20RellAg(w - Viy + 1z - Vo)l llAgwllz + We (I[Ag, 1] - Vollz + 1Ay (w - Vo)llz2) 1A g0l
+We (1Agg0(0, Vitr)lz2 + 1Agga(T2, Vao)lli2) Agollp2. (38)

Integrating (38) w. 1. t. time ¢, multiplying the resulting inequality by 2%#*, and then taking sum w. r. t. g
over Z, using Holder’s inequality, we are led to
£

We
Relw O, + oI, + 20 = @)Vl + ol

2 .
L2(Fe)
1

¢ t 2
< ZaJRef llw - Vg + up - V| ||wl| ps At +Wef [Z 22”75||[Aq,u1]-Va||§2] lollg=dt’
0 0
qeZ

t
+We f (kv - Vollgs + llgalo, Vur)llgs + 1ga(t2, Voo)llg:) llollgsdt'. (39)
0
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By virtue of the product estimates (13), (14) and commutator estimate in Besov spaces, we have

d d
w-Vuy +uy - V|| < ||V w|gs + |lu Vullgs, for —=-<s< =,
I 1+ U g <l 1I|B§1II Il + I 2”33” Il > >
1
2
245((T A 2 d d
Y 2%Il[Ay m]- Vol | Vil g llolly., for -5 -1<s<3,
B2 2 2
qeZ 2,1
- Veally: < el IVl o < Vallglieall y, for -2 <s<2-1
20l = s+l 2 Bé: ~ Hsll't2 Bé/ 2 5 ’
d d
19a(0, Vur)llgs + 19a(t2, VW)l S IVl g llollgs + llz2ll 4 IVwllgs,  for -5 <s<5,
B, B2, 2 2
Substituting these estimates into (39) yields that, for - <'s < 4 — 1, there holds
2 2 2 2
wRellw IR, + Wello®IF, +20(1 = IVl + 1101
t
2 2 ’
< C f Vil g (wRe lfalf, +We [l ) dt
0 2,1
¢
+C f (CURGHMZHBg||w||Hs+We||T2||Bg ||a||Hﬁ)||Vw||Hsdt'. (40)
0 2,1 2,1

Noting that by Cauchy’s inequality, there exists a positive constant C depending on Re , We and w, such
that

t
f (wRe lhall g el + We 1zl g ||a||Hs) Veoll
0

2,1 21

t
< @Vl +C f [wRe lwalfy +Welwl?, )(wRe I, + We llol, ) dt’,
0 2,1 2,1

combining this inequality with (40), we obtain

2 2 _ 2 2
wRellw I, + Wello®)IR,, + (1 = IVl +llol;

t
< C | |IVull 4 +wRellual?, +Wellral?, |(wRe [lwl, + We [0, ) dt"
0 Bzz,l B2 B2 H H

2
BZ,] BZ,]

Thanks to the embedding in low frequency, we infer from (35) that

t
f(IIVulllAd + wRe [lu*, + We IITzIIZd)dt’
0 B2 h2 2

21 B3, B3y

2
I 1 h
< ||VM1||1_% +t2||vu1”Lt2(H5)+wRet(Hu2”~ v +||M2||1;°(Hs)]

72,1 t 721

2

+We t(llh”’f 4t ||Tz||£;<>(Hs)]
Le(B2))

< o,

for any t > 0. Then the uniqueness follows from Glonwall’s inequality immediately. This completes the

proof of Theorem 1.1.0
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