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Completeness of 3-Generalized Metric Spaces

Tomonari Suzuki?

?Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

Abstract. We discuss the completeness of 3-generalized metric spaces. Indeed, we give a sufficient and
necessary condition on that a 3-generalized metric spaces is complete.

1. Introduction

We define the meaning of “{x1, xp,- -, xy}¢” by that it is a set consisting of x1, x2, -+, x, and x1, x2, -+, X,
are all different. Similarly we define the meaning of “{x,},en*" by that it is a sequence whose n-th element
is x, and x1, xp, - - - are all different. We sometimes write “{x,,}*” instead of “{x,,},en”".

In 2000, Branciari in [3] introduced a very interesting concept whose name is ‘v-generalized metric
space’.

Definition 1.1 (Branciari [3]). Let X be a set, let d be a function from X x X into [0, c0) and let v € IN. Then (X, d)
is said to be a v-generalized metric space if the following hold:

(N1) d(x,y) =0iff x =y forany x,y € X.
(N2) d(x,y) =d(y,x) forany x,y € X.

(N3) d(x,y) < D(x, u1, 12, -+ , Uy, y) for any {x,us, uy, - -+ ,uy, y}* C X, where D(x, u1, 1z, -+ , Uy, y) = d(x, u1) +
d(uy, up) + -+ +d(uy, y).

It is obvious that (X, d) is a metric space iff (X, d) is a 1-generalized metric space. It is also obvious that
every metric space (X, d) is a v-generalized metric space for any v > 2. Indeed, if (X, d) be a v-generalized
metric space, then (X, d) is a (kv)-generalized metric space for any k € IN; see [14].

As above, the concept of ‘generalized metric space’ is very similar to that of ‘metric space’. However, it
is very difficult to treat this concept because X does not necessarily have the topology which is compatible
with d. Indeed, for v € {2,4,5,-- -}, there is an example of v-generalized metric space which does not have
the compatible topology; see Example 7 in [12] and Example 4.2 in [17]. However, in [17], we proved that
every 3-generalized metric space has the compatible topology. Moreover X under the compatible topology
is metrizable; see Theorem 1.2 below. See [1,7-9, 13, 15, 16, 18] and references therein for more information
on this concept.
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Theorem 1.2 ([17]). Let (X, d) be a 3-generalized metric space. Define a function p from X x X into [0, c0) by
p(x, y) = inf{D(x,ul,--- U, y): n € NU{0}, uq,--- ,u, € X}. (@)
Then (X, p) is a metric space; and for any x € X and for any net {x,}aep in X, lim, d(x, x,) = 0 iff lim, p(x, xo) = 0.

Remark 1.3. We proved in [17] that we can rewrite p as follows:

p(x, y) = min {d(x, ), inf{D(x, u,y): fx,u,y)* C X}, (2)
inf{D(x, u,v,vy) : {x,u,0,y)* C X}}

In this paper, we discuss the completeness of 3-generalized metric spaces. Indeed, we give a sufficient
and necessary condition on that a 3-generalized metric space is complete by using p defined by (1).

2. Preliminaries

In this section, we give some preliminaries. Throughout this paper we denote by IN the set of all positive
integers and by IR the set of all real numbers.

The following theorem is referred to as the infinite Ramsey theorem, which plays a very important role in
this paper.

Theorem 2.1 (Ramsey [10]). Let X be an infinite set and let A, i € IN. Let XW) be the set of subsets consisting of
exactly u elements of X. Let f be a function from XW) into T := {1,2,--- , A}. Then there exist an infinite subset Y of
X and y €T such that f(A) =y forany A € X with A C Y.

Letting X = IN, A = 3 and p = 2, we obtain the following.

Lemma 2.2. Define a set N@ by N@ = {{i,j} i, jeN,i< j}. Let f be a function from N® into T := {1,2,3}.
Then there exist an infinite subset Y of N and y € T such that f(A) =y forany A € N@ with A C Y.

Definition 2.3. Let (X, d) be a v-generalized metric space.
o A sequence {x,} in X is said to be Cauchy if lim, sup,, _, d(x,, x,) = 0 holds.
o A sequence {x,} in X is said to converge to x if lim, d(x, x,,) = 0 holds.
o X is said to be complete if every Cauchy sequence converges to some point in X.
o X is said to be compact if for any sequence {x,} in X, there exists a subsequence {xs} of {x,} converging to

some z € X.

3. Completeness

Throughout this section, we let (X, d) be a 3-generalized metric space. Define a function p from X x X
into [0, c0) by (1).

Let {x,} be a sequence in X. Then {x,} is said to be d-Cauchy if lim, sup,. , d(xu, x,) = 0. {x,} is said to be
p-Cauchy if lim,, sup,,,., p(xm, X,) = 0.

We begin with the following lemma.

Lemma 3.1. If a sequence {x,} in X is d-Cauchy, then {x,} is p-Cauchy.

Proof. The conclusion easily follows from p <d. [



T. Suzuki / Filomat 30:13 (2016), 3575-3585 3577

The converse implication does not hold in general. See Example 4.3 below. So we need some additional
assumption.

Lemma 3.2. Let {x,} be a sequence in X such that {x,} is p-Cauchy and {x,} does not converge in (X, p). Define a
function g from X into (0, o0) by
g(x) = lim p(x, x,).

Then the following hold:

(i) There exists a subsequence {xXpg)}* of {x,} such that {xyu} is d-Cauchy.
(if) g(x) = limy, d(x, xp(s)) holds for any x € X.
(i) lg(x) — g(y)l < d(x, y) < g(x) + g(y) holds for any x, y € X.
(iv) {xu} is d-Cauchy.
(v) g(x) = lim, d(x, x,) holds for any x € X.

Proof. 1t is well known that {p(x, x,)} is a Cauchy sequence in R. So we can define g(x) for any x € X. Itis
obvious that

9C0) = gW)I < p(x, y) < 9(x) + 9(y)
holds for any x, y € X. It is also obvious that g(x) > 0 for any x € X and lim, g(x,) = 0. Taking subsequence,

we may assume that {g(x,)} is a strictly decreasing sequence. Then {x,},en” holds. We shall show (i). Let f
be a function from N@ into T := {1, 2, 3} satisfying the following:

e f(i,j) = 1 implies d(x;, x;) < 36 (g(xi) + g(xj)).

* f(i,j) = 2 implies that d(x;, x;) > 36 (g(xi) + g(x]-)) holds and there exists 1 € X such that {x;, 1, x;}* and
D(x;, u, x;) < 2 p(x;, x;) holds.

e f(i,j) = 3 implies that d(x;, x;) > 36 (g(xi) + g(x]-)) holds and there exist u, v € X such that {x;, u, v, xj}9t
and D(x;, u,v,xj) < 2 p(x;, x;) holds.

We note that (2) assures the existence of f. Since p(x;, xj) < g(x;) + g(x;), we note that d(x;, x;) = p(x;, x))
implies f(i,j) = 1. By Lemma 2.2, there exist an infinite subset Y of N and y € I such that f(A) = y
for any A € IN® with A ¢ Y. Since Y is infinite, we can choose a subsequence {xj,} of {x,} satisfying
{h(n) : n € N} C Y. Fix ¢ > 0. Then there exists u € IN such that p(xyu), Xuw) < € for any m > n > p. Fix
n € N with n > u. We consider the following three cases:

(@ y=1
(b) y=2
() y=3

In the case of (a), since

lim sup d(xXpgm), Xn(m)) < lim sup 36 (g(x;l(m)) + g(xh(n)))
,N—00

mn— o0 m
<36 lim g(xh(m)) + 36 lim g(xh(n)) =0,
m—00 n—oo
{Xnm} is d-Cauchy. In the case of (b), there exists u; € X such that {xy), 111, Xpu+1)}” and
DXy, U1, Xnn+1)) < 2 pXn(uny, Xn+1))-
Arguing by contradiction, we assume u; = xy,(¢) for some £ € IN. Then we have

Ay, Xn(ey) = A(Xuny, 41) < DXy, U, Xnina1))
< 2 p(Xn(ny, Xnn+1)) < 29(Xnem) + 2 9(Xn(n+1))
<4 g(xnm) < 36 g(xn(m)) + 36 g(xir)),
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which contradicts f (h(n), h(é’)) = 2. Therefore we obtain 11 # xy() for any £ € IN. Choose m > n+1 satisfying
3 g(xh(m)) < g(ul). Then there exist u,, u3 € X such that {xh(n+1), Up, xh(m)}*&, {Xh(m), us, xh(m+1)}¢,

D(Xn(n+1), U2, Xnmy) < 2 P(Xh(ur1), Xhm))

and

D(Xn(my, U3, Xngm+1)) < 2 PXn(my, Xnm+1))-
As above, we can show uy, u3 € X \ {xy¢) : £ € N}. We have
29(u3) < p(Xnmy, u3) + p(U3, Xngnr1)) + JXnomy) + G(Xn(m+1))
< D(Xngmy, Uz, Xnm+1)) + 9(Xnemy) + 9(Xnom+1))
<2 p(xh(m)r xh(m+1)) + g(xh(m)) + g(xh(m+1))
< 3 9(Xnm)) + 3 9(Xnm+1)) < 6 g(Xn(m))
<2g(u1)
and hence u; # uz. We further consider the following two cases:

(b-1) ug # uy
(b-2) uy = uz

In the case of (b-1), we have by (N3)
d(xh(n)r xh(m)) < D(xh(n)/ U1, Xpn+1), U2, xh(m))
< 2 p(Xn(ny, Xnm+1)) + 2 P(Xn(u+1), Xnm))

< 29(xnmy) + 4 g(na1)) + 2 9(Xngm))
< 6 g(xnmy) + 2 9(Xnom))

<36 (!J(xh(n)) + !J(xh(m))),
which contradicts f(h(n), h(m)) = 2. In the case of (b-2), since u; # us, we have

AXn(ny, Xnomr1)) < Dy, U1 = U2, Xngmy, U3, Xnnr1))
< D(Xn(ny, 1, Xn(ns1), U2, Xngmy, U3, Xn(m+1))
< 2 p(Xhny, Xnnr1) + 2 PXngne1), Xnomy) + 2 P(Xh(my, Xnom1))
<10 g(xn@my) + 2 9(Xngn+1))

<36 (g(xh(n)) + 9(xh(m+1))),

which contradicts f (h(n), h(m + 1)) = 2. So, the case of (b) cannot be possible. In the case of (c), there exist
Uy, v4 € X such that {xh(n), Uy, Uy, Xh(n+1)}¢ and

D(xu(ny, 1, 04, Xn(n+1)) < 2 P(Xhn), Xnnr1))-
Choose m > n + 1 satisfying
3 9(Xn(my) < Min{g(Xpnny), g(1a), 9(04), 9(Xnn+1))}-
Then there exist us, vs, s, V6 € X such that {Xpg.+1), Us, U5, Xngmy ), (Xnmy, tes V6, Xnm+1) 1

D(xp(n+1), Us, U5, Xugmy) < 2 P(h(n+1), Xin(m))
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and

D(Xn(my, t6, Vo, Xnim+1)) < 2 P(Xh(m)s Xnm1))-

We have

2 g9(ug) < p(Xnmy, Us) + pP(te, Xnim+1)) + 9(Xnmy) + G(Xn(m+1))
< p(Xngmy, te) + plite, V6) + P(V6, Xnm+1)) + 9(Xn(my) + G(Xngm+1))
< D(Xn(my, U, V6, Xngn+1)) + 9(Xnomy) + G(Xhim+1))
< 2 p(Xngmys Xnne1)) + 9Xnomy) + GXnna1)) < 6 9(Xnm))
< 2 min{g(xn(n)), g(ua), 9(04), 9(Xn(u+1))}

and hence ug ¢ {xp(n), U4, U4, Xn(us1)}. Similarly we have

29(v6) < p(Xnamy, V6) + P06, Xh(m+1)) + F(Xn(my) + G(Xnnr1)
< p(ngny, ug) + plus, V6) + P(Vs, Xngnr1y) + G(Xngmy) + F(Xngn+1)
< 2 min{g(xXun)), 9(1a), 9(04), (X))}

and hence vg ¢ {X}(), Ua, V4, Xnn+1y}. We also have

2 9(Xnm+1)) < 2 9(Xhimy) < 6 9(Xn(m))
< 2 min{g(xuy), 9(1a), 9(04), 9(Xn(u+1))}

and hence X}y, Xn(n+1) € (144,04}, Arguing by contradiction, we assume us = xj(,). Then we have

Ay, Xnna1)) = AXnne1y, ts) < DXngnary, Us, U5, Xnm))
< 2 p(Xn(n41), Xnmy) < 2 9(Xnna1)) + 2 9(Xnm))
< 29(xhmy) + 2 9(xnu+1)),

which contradicts f (h(n), h(n+ 1)) = 3. Therefore we obtain us # xy(,). Arguing by contradiction, we assume
U5 = Xp(m). Then we have

A(Xn(ny, Xnomy) = (05, Xnmy) < D(Xn(us1), Us, U5, X))
< 2 p(Xn(u+1), Xngmy) < 2 9(Xn(u+1)) + 2 9(Xn(my)
< 29(Xnmy) + 2 g(Xnemy),

which contradicts f(h(n),h(m)) = 3. Therefore we obtain vs # xj(,). We have shown
{Xhn), Xnnr1)s Xnomy} N {tha, V4, Us, s, U, U6} = @

and
{ug, 4} OV {Xpgns1), s, V6} = @.

We put

Tn = DXy, Ua, Vs, Xnn+1))
1 = D(Xngne1y, Us, Us, Xpomy)
Tm = D(Xpmy, Us, V6, Xhim+1))
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and

S=Ty+ V41 + V.

We have

s < 2 p(Xuny, Xnne1) + 2 PXnn1), Xuemy) + 2 POhimy, Xngnr1)) < 12 9(Xn(ny)-

We further consider the following seven cases:

(c-1) ug = us and v4 = vs
(c-2) uy = us and vy # vs
(c-3) ug =vsand vy = us
(c-4) uy = vs and vy # us
(c-5) v4 = us and uy # vs
(c-6) vy = vs and uy # us
(c-7) {ug,v4} N{us,vs} = @

In the case of (c-1), we have by (N3)

Ay, Xnmy) < D(Xn(ny, Ua = Us, Xnna1), V4 = U5, Ximy)
< D(xp@ny, s = Us, Xp(n41), V4 = Us, Xpmy) + A(Us, U4) + d(us, vs)
=1y + 1 <5 < 12 g(Xnm),

which contradicts f(h(n), h(m)) = 3. In the case of (c-2), we have

A(Xnna1), Xhomy) < D@Xnnr1y, V4, Us = Us, U, Xigm))
<Ty+Tp <S

and hence
AXn(ny, Xngmy) < D(Xn(ny, Ua, Vay Xn(n1), Xngmy) < Ty +5 < 23,

which contradicts f(h(n), h(m)) = 3. In the case of (c-3), noting
{us, vs} N {Xpen+1), e, U6} = {Ua, Va} N {Xnims1), U, V6} = O,
we have

A(Xn(ny, v6) < D(Xn(ny, s = s, Xp(my, Ue, Vs)
<Tu+Tp1 +Tm =S

and

d(ves, us) < D(vs, U, Xp(m), U5 = Ua, Us = TVy)
<Ttm+Ty+1 <S.

Hence

A(Xniny, Xnomy) < D(Xnny, Vs, Us = Vs, Vs = Usg, Xp(m))
< d(Xn(ny, 06) + d(vs, Us) + 11 < 35 < 36 g(Xn(n)),

which contradicts f(h(n), h(m)) = 3. In the case of (c-4), we have

A(Xnny, v4) < D(Xpn), Ua = Us, Us, Xnn+1), V4)
<TFy+Tp <S

3580
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and hence

Ay, Xnna1)) < D(Xnny, Va, Us = Us, Us, Xpy(na1))
< A(Xp(ny, V4) + Ty + Tny1 <25,

which contradicts f(h(n), h(n + 1)) = 3. In the case of (c-5), we have

A(Xn(ny, Xnomy) < D(Xngny, Ua, Vs = Us, Us, Xp(ns1))
< Tyt T <5,

which contradicts f(h(n), h(m)) = 3. In the case of (c-6), we have
A(Xu(my, Us) < D(Xp(ny, Ua, V) Xhna1), Us) < Tn + Tpe1 <8
and hence

AXniny, Xnomy) < D(Xngny, Us, Xnns1), 04 = Vs, Xhm))
< d(xh(,,), M5) + 7, + T <25,

which contradicts f(h(n), h(m)) = 3. In the case of (c-7), we have
d(us, vs5) < D(1ty, Va, Xpne1), Us, U5) < Ty + Tpy1 <3S
and hence

Ay, Xnna1)) < D(Xniny, Ua, Us, Us, Xnina1))
<ty +d(ug,vs) + 1 <25,

which contradicts f (h(n), h(n + 1)) = 3. So, the case of (c) cannot be possible. We have shown (i). In order

to show (ii), we assume that {xy,(,)}* is a subsequence of {x,} such that {xy} is d-Cauchy. Fix x € X. Since
p <d, g(x) < liminf, d(x, x,) holds. Fix € > 0. Then there exists y € IN such that x # xy),

lg(x) — p(x, x4yl < & and  sup{d(Xpny, Xn) : m > n} < e
for any n > u. Fix n € IN with n > u. We consider the following three cases:
o A, X)) = P, Xni))-
e There exists u € X such that {x, u, xy(,)}* and D(x, u, X)) < p(x, Xpmy) + € hold.
e There exist u, v € X such that {x, 1, v, ;) }* and D(x, 1, v, X)) < p(X, Xn(my) + € hold.

In the first case, we have
a(x, Xumy) = pX, X)) < g(x) + €.

In the second case, for sufficiently large m € IN, we have

A(x, Xngny) < DX, Xngns1ys Xnom+2), Xnm+3), Xhin))
< d(x, Xpm+1)) +3 €
< D(x,u, Xn(n)s Xh(m), xh(m+1)) +3¢
< p(x, Xpmy) +6 €
<gx)+7e.
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In the third case, for sufficiently large m € IN, we have

a(x, Xumy) < DX, Xnmy, Xnom+1)s Xn(n+2) Xnin))
< d(x, xh(m)) +3¢
< D(x, u, 0, Xn(ny, Xnmy) + 3 €
< p(x, xpm)) +5¢
<g(x)+6e.

Therefore we obtain
lim sup d(x, xpn)) < g(x) +7 €.

n—o0

Since ¢ > 0 is arbitrary, we have shown (ii). For any x, y € X, we have by (ii)

lg(x) — gl < p(x, y)
<d(x,y)
< lim sup D(X, Xy, Xh(n+1), Xnn+2), Y)

n—oo

= g(x) + g(v).

Therefore we have shown (iii). We have by (iii)

limsup d(xy,, x,) < limsup (g(xm) + g(xn))

m,n— oo Mm,n—0o0
= lim g(x,,) + lim g(xy) = 0.
Therefore we have shown (iv). Noting {n € IN : x,, = x} is a finite set for any x € X, as in (ii), we can prove
v). O

Now we can prove our main result.

Theorem 3.3. Let (X, d) be a 3-generalized metric space and define p by (1). Then the following are equivalent:

(i) (X, d) is complete.
(ii) (X, p) is complete.

Proof. We first show (ii) = (i). We assume that (X, p) is complete. Let {x,} be a d-Cauchy sequence in X.
Then by Lemma 3.1, {x,} is p-Cauchy. Since (X, p) is complete, {x,} converges to some z € X in (X, p). So
by Theorem 1.2, {x,} converges to z in (X, d). Therefore (X, d) is complete. In order to prove the converse
implication, we assume that (X, p) is not complete. Then there exists a p-Cauchy sequence {x,} in X which
does not converge in (X, p). Then by Lemma 3.2 (iv), {x,} is d-Cauchy. Since {x,} does not converge in (X, d),
we obtain that (X, d) is not complete. We have shown (i) = (ii). O

4. Counterexample

In this section, we give a counterexample which tells that the converse implication of Lemma 3.1 does
not hold in general.

Lemma 4.1 ([12, 14]). Let v € N. Let (X, p) be a metric space and let A and B be two subsets of X with AN B = @.
Assume that if v is odd, then A consists of at most (v — 1)/2 elements. Let M be a positive real number satisfying

px,y) <M
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forany x € A and y € B. Define a function d from X X X into [0, o) by

d(x,x)=0
d(x, y) = d(y,x) = p(x,y) ifxeAandyeB
dix,y) =M otherwise.

Then (X, d) is a v-generalized metric space.
Remark 4.2. In the case where v =1, A = @ holds. In the case where v = 3, A consists of at most one element.

Proof. (N1) and (N2) are obvious. Let us prove (N3). Let {x,uy,up,---,u,,y}* € X. We consider the
following three cases:

e visodd.
e visevenand M < D(x,uq,up, -+ , Uy, V).
e visevenand D(x,uy,up, -+ , Uy, y) < M.
In the first and second cases, we have
dix,y) <M < D(x,uq, -+ , Uy, Y),

thus, (N3) holds. In the third case, x € A U B holds. Without loss of generality, we may assume x € A. Then
from the definition of d, we have

uw€B, ue€A uz€eB, ---, u, €A, yeB.
Hence

d(x,y) = p(x, y) < p(x,u1) + plu, uz) + -+ p(tty-1, 1) + p(ity, Y)
= D(x, l/ll, u2/' o IMV/ y)

Thus (N3) holds. O
Using Lemma 4.1, we give the following counterexample.

Example 4.3. Define a complete subset X of€1(]N) by X = {0} U {x,, : n € IN}, where x,, = (1/n)e, and {e,} is the
canonical basis of €'(IN). Define a metric p on X by p(x,y) = |lx — yll, that is

1/m+1/n ifx=xuy=x,,m<n

_|1/n ifx=0,y=x,
P Y=1, ifx=y
p(y, x) otherwise.

Define two subsets A and B of X by A = {0} and B = {x,, : n € IN}. Define a function d from X x X into [0,1] as in
Lemma 4.1 with M = 2, that is,

2 IfX =% Y=X,m<n
1/n ifx=0,y=x,
="

d(y,x) otherwise.

Then the following hold:
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(i) (X,d) is a v-generalized metric space for any v > 2. In particular, (X, d) is a 3-generalized metric space.
(i) p coincides with the p defined by d and (1).
(iii) There does not exist L € R such that d(x, y) < L p(x, y) for any x,y € X.
(iv) {x,} converges to 0 in (X, d) and (X, p).
(v) {xu} is p-Cauchy, however, {x,} is not d-Cauchy.

Proof. (i) follows from Lemma 4.1. (ii) follows from (2). (iii) follows from the following fact:
mp(Xp, Xp) = m(1/m+1/n) <2 =d(xy, x,)
for any m, n with m < n. (iv) and (v) are obvious. [J

Remark 4.4. Since p < d always holds, we can tell that there exists L € R such that p(x,y) < Ld(x,y) for any
x,y € X. (iii) shows that something converse does not hold in general.

5. Application

As application, we give an alternative proof of the following theorem, which is a generalization of the
Banach contraction principle [2, 4].

Theorem 5.1 (See [3,9, 11, 12, 16]). Let (X, d) be a complete 3-generalized metric space and let T be a contraction
on X, that is, there exists r € [0, 1) such that

d(Tx, Ty) < rd(x, y)
forany x,y € X. Then T has a unique fixed point z of T. Moreover, for any x € X, {T"x} converges to z.

Proof. Define a function p from X x X into [0, o) by (1). Then by Theorem 1.2, (X, p) is a metric space.
By Theorem 3.3, (X, p) is complete. We will show that T is also a contraction as a mapping on (X, p). Let
{x, y}* c X and ¢ > 0. We consider the following three cases:

o d(x,y) = p(x, ).
e There exists u € X such that {x, u, y}* and D(x, u, y) < p(x, y) + € hold.
e There exist u,v € X such that {x,u, v, y}* and D(x, u,v,y) < p(x, y) + € hold.

In the first case, we have
p(Tx, Ty) < d(Tx, Ty) < rd(x,y) = r p(x, ).

In the second case, we have
p(Tx, Ty) < p(Tx, Tu) + p(Tu, Ty) < d(Tx, Tu) + d(Tu, Ty)
<r (d(x, u) +d(u, y)) < r(p(x, y)+ s).
In the third case, we have
p(Tx, Ty) < p(Tx, Tu) + p(Tu, Tv) + p(Tv, Ty)
<d(Tx, Tu) + d(Tu, Tv) + d(Tv, Ty)
<rD(x,u,v,y) < r(p(x, y)+ e).

Since ¢ > 0 is arbitrary, we obtain
p(Tx, Ty) <1 p(x, y),
thus, T is a contraction on (X, p). So, the Banach contraction principle yields that T has a unique fixed point

z of T. Moreover, for any x € X, {T"x} converges to z in (X, p). By Theorem 1.2, {T"x} converges to z in
(X, d). O
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We next give an alternative proof of the following theorem, which is a generalization of Caristi’s fixed
point theorem [5, 6].

Theorem 5.2 ([1, 71). Let (X, d) be a complete 3-generalized metric space and let T be a mapping on X. Let f be a
proper, sequentially lower semicontinuous function from X into (—co, +00] bounded from below. Assume that

f(Tx) +d(x, Tx) < f(x)
forany x € X. Then T has a fixed point.

Proof. Define a function p from X X X into [0, o) by (1). Then by Theorems 1.2 and 3.3, (X, p) is a complete
metric space. Wenote by Theorem 1.2 that f is lower semicontinuous as a function from (X, p) into (—co, +o0].
Since p < d, we have

f(Tx)+ px, Tx) < f(x)

for any x € X. So, Caristi’s fixed point theorem yields that there exists a fixed point of T. [

6. Compactness
We finally discuss the compactness of 3-generalized metric spaces.

Theorem 6.1. Let (X, d) be a 3-generalized metric space and define p by (1). Then the following are equivalent:

(i) (X,d) is compact.
(ii) (X, p) is compact.

Proof. Since (X, p) is a metric space, it is well known that (X, p) is compact iff (X, p) is sequentially compact,
that is, every sequence {x,} in X has a subsequence converging to some point in (X, p). By Theorem 1.2, we
obtain the desired result. O
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