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Abstract. We discuss the completeness of 3-generalized metric spaces. Indeed, we give a sufficient and
necessary condition on that a 3-generalized metric spaces is complete.

1. Introduction

We define the meaning of “{x1, x2, · · · , xµ},” by that it is a set consisting of x1, x2, · · · , xµ and x1, x2, · · · , xµ
are all different. Similarly we define the meaning of “{xn}n∈N

,” by that it is a sequence whose n-th element
is xn and x1, x2, · · · are all different. We sometimes write “{xn}

,” instead of “{xn}n∈N
,”.

In 2000, Branciari in [3] introduced a very interesting concept whose name is ‘ν-generalized metric
space’.

Definition 1.1 (Branciari [3]). Let X be a set, let d be a function from X ×X into [0,∞) and let ν ∈N. Then (X, d)
is said to be a ν-generalized metric space if the following hold:

(N1) d(x, y) = 0 iff x = y for any x, y ∈ X.
(N2) d(x, y) = d(y, x) for any x, y ∈ X.
(N3) d(x, y) ≤ D(x,u1,u2, · · · ,uν, y) for any {x,u1,u2, · · · ,uν, y}, ⊂ X, where D(x,u1,u2, · · · ,uν, y) = d(x,u1) +

d(u1,u2) + · · · + d(uν, y).

It is obvious that (X, d) is a metric space iff (X, d) is a 1-generalized metric space. It is also obvious that
every metric space (X, d) is a ν-generalized metric space for any ν ≥ 2. Indeed, if (X, d) be a ν-generalized
metric space, then (X, d) is a (k ν)-generalized metric space for any k ∈N; see [14].

As above, the concept of ‘generalized metric space’ is very similar to that of ‘metric space’. However, it
is very difficult to treat this concept because X does not necessarily have the topology which is compatible
with d. Indeed, for ν ∈ {2, 4, 5, · · · }, there is an example of ν-generalized metric space which does not have
the compatible topology; see Example 7 in [12] and Example 4.2 in [17]. However, in [17], we proved that
every 3-generalized metric space has the compatible topology. Moreover X under the compatible topology
is metrizable; see Theorem 1.2 below. See [1, 7–9, 13, 15, 16, 18] and references therein for more information
on this concept.
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Theorem 1.2 ([17]). Let (X, d) be a 3-generalized metric space. Define a function ρ from X × X into [0,∞) by

ρ(x, y) = inf
{
D(x,u1, · · · ,un, y) : n ∈N ∪ {0}, u1, · · · ,un ∈ X

}
. (1)

Then (X, ρ) is a metric space; and for any x ∈ X and for any net {xα}α∈D in X, limα d(x, xα) = 0 iff limα ρ(x, xα) = 0.

Remark 1.3. We proved in [17] that we can rewrite ρ as follows:

ρ(x, y) = min
{
d(x, y), inf

{
D(x,u, y) : {x,u, y}, ⊂ X

}
, (2)

inf
{
D(x,u, v, y) : {x,u, v, y}, ⊂ X

}}
.

In this paper, we discuss the completeness of 3-generalized metric spaces. Indeed, we give a sufficient
and necessary condition on that a 3-generalized metric space is complete by using ρ defined by (1).

2. Preliminaries

In this section, we give some preliminaries. Throughout this paper we denote byN the set of all positive
integers and by R the set of all real numbers.

The following theorem is referred to as the infinite Ramsey theorem, which plays a very important role in
this paper.

Theorem 2.1 (Ramsey [10]). Let X be an infinite set and let λ, µ ∈ N. Let X(µ) be the set of subsets consisting of
exactly µ elements of X. Let f be a function from X(µ) into Γ := {1, 2, · · · , λ}. Then there exist an infinite subset Y of
X and γ ∈ Γ such that f (A) = γ for any A ∈ X(µ) with A ⊂ Y.

Letting X =N, λ = 3 and µ = 2, we obtain the following.

Lemma 2.2. Define a set N(2) by N(2) =
{
{i, j} : i, j ∈ N, i < j

}
. Let f be a function from N(2) into Γ := {1, 2, 3}.

Then there exist an infinite subset Y ofN and γ ∈ Γ such that f (A) = γ for any A ∈N(2) with A ⊂ Y.

Definition 2.3. Let (X, d) be a ν-generalized metric space.

• A sequence {xn} in X is said to be Cauchy if limn supm>n d(xm, xn) = 0 holds.

• A sequence {xn} in X is said to converge to x if limn d(x, xn) = 0 holds.

• X is said to be complete if every Cauchy sequence converges to some point in X.

• X is said to be compact if for any sequence {xn} in X, there exists a subsequence {x f (n)} of {xn} converging to
some z ∈ X.

3. Completeness

Throughout this section, we let (X, d) be a 3-generalized metric space. Define a function ρ from X × X
into [0,∞) by (1).

Let {xn} be a sequence in X. Then {xn} is said to be d-Cauchy if limn supm>n d(xm, xn) = 0. {xn} is said to be
ρ-Cauchy if limn supm>n ρ(xm, xn) = 0.

We begin with the following lemma.

Lemma 3.1. If a sequence {xn} in X is d-Cauchy, then {xn} is ρ-Cauchy.

Proof. The conclusion easily follows from ρ ≤ d.
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The converse implication does not hold in general. See Example 4.3 below. So we need some additional
assumption.

Lemma 3.2. Let {xn} be a sequence in X such that {xn} is ρ-Cauchy and {xn} does not converge in (X, ρ). Define a
function 1 from X into (0,∞) by

1(x) = lim
n→∞

ρ(x, xn).

Then the following hold:

(i) There exists a subsequence {xh(n)}
, of {xn} such that {xh(n)} is d-Cauchy.

(ii) 1(x) = limn d(x, xh(n)) holds for any x ∈ X.
(iii) |1(x) − 1(y)| ≤ d(x, y) ≤ 1(x) + 1(y) holds for any x, y ∈ X.
(iv) {xn} is d-Cauchy.
(v) 1(x) = limn d(x, xn) holds for any x ∈ X.

Proof. It is well known that {ρ(x, xn)} is a Cauchy sequence in R. So we can define 1(x) for any x ∈ X. It is
obvious that

|1(x) − 1(y)| ≤ ρ(x, y) ≤ 1(x) + 1(y)

holds for any x, y ∈ X. It is also obvious that 1(x) > 0 for any x ∈ X and limn 1(xn) = 0. Taking subsequence,
we may assume that {1(xn)} is a strictly decreasing sequence. Then {xn}n∈N

, holds. We shall show (i). Let f
be a function fromN(2) into Γ := {1, 2, 3} satisfying the following:

• f (i, j) = 1 implies d(xi, x j) ≤ 36
(
1(xi) + 1(x j)

)
.

• f (i, j) = 2 implies that d(xi, x j) > 36
(
1(xi) + 1(x j)

)
holds and there exists u ∈ X such that {xi,u, x j}

, and
D(xi,u, x j) < 2ρ(xi, x j) holds.

• f (i, j) = 3 implies that d(xi, x j) > 36
(
1(xi) + 1(x j)

)
holds and there exist u, v ∈ X such that {xi,u, v, x j}

,

and D(xi,u, v, x j) < 2ρ(xi, x j) holds.

We note that (2) assures the existence of f . Since ρ(xi, x j) ≤ 1(xi) + 1(x j), we note that d(xi, x j) = ρ(xi, x j)
implies f (i, j) = 1. By Lemma 2.2, there exist an infinite subset Y of N and γ ∈ Γ such that f (A) = γ
for any A ∈ N(2) with A ⊂ Y. Since Y is infinite, we can choose a subsequence {xh(n)} of {xn} satisfying
{h(n) : n ∈ N} ⊂ Y. Fix ε > 0. Then there exists µ ∈ N such that ρ(xh(m), xh(n)) < ε for any m > n ≥ µ. Fix
n ∈Nwith n ≥ µ. We consider the following three cases:

(a) γ = 1
(b) γ = 2
(c) γ = 3

In the case of (a), since

lim sup
m,n→∞

d(xh(m), xh(n)) ≤ lim sup
m,n→∞

36
(
1(xh(m)) + 1(xh(n))

)
≤ 36 lim

m→∞
1(xh(m)) + 36 lim

n→∞
1(xh(n)) = 0,

{xh(n)} is d-Cauchy. In the case of (b), there exists u1 ∈ X such that {xh(n),u1, xh(n+1)}
, and

D(xh(n),u1, xh(n+1)) < 2ρ(xh(n), xh(n+1)).

Arguing by contradiction, we assume u1 = xh(`) for some ` ∈N. Then we have

d(xh(n), xh(`)) = d(xh(n),u1) ≤ D(xh(n),u1, xh(n+1))
< 2ρ(xh(n), xh(n+1)) ≤ 2 1(xh(n)) + 2 1(xh(n+1))
< 4 1(xh(n)) < 36 1(xh(n)) + 36 1(xh(`)),
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which contradicts f
(
h(n), h(`)

)
= 2. Therefore we obtain u1 , xh(`) for any ` ∈N. Choose m > n+1 satisfying

3 1(xh(m)) < 1(u1). Then there exist u2,u3 ∈ X such that {xh(n+1),u2, xh(m)}
,, {xh(m),u3, xh(m+1)}

,,

D(xh(n+1),u2, xh(m)) < 2ρ(xh(n+1), xh(m))

and

D(xh(m),u3, xh(m+1)) < 2ρ(xh(m), xh(m+1)).

As above, we can show u2,u3 ∈ X \ {xh(`) : ` ∈N}. We have

2 1(u3) ≤ ρ(xh(m),u3) + ρ(u3, xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
≤ D(xh(m),u3, xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
< 2ρ(xh(m), xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
≤ 3 1(xh(m)) + 3 1(xh(m+1)) < 6 1(xh(m))
< 2 1(u1)

and hence u1 , u3. We further consider the following two cases:

(b-1) u1 , u2

(b-2) u1 = u2

In the case of (b-1), we have by (N3)

d(xh(n), xh(m)) ≤ D(xh(n),u1, xh(n+1),u2, xh(m))
< 2ρ(xh(n), xh(n+1)) + 2ρ(xh(n+1), xh(m))
≤ 2 1(xh(n)) + 4 1(xh(n+1)) + 2 1(xh(m))
< 6 1(xh(n)) + 2 1(xh(m))

< 36
(
1(xh(n)) + 1(xh(m))

)
,

which contradicts f
(
h(n), h(m)

)
= 2. In the case of (b-2), since u1 , u3, we have

d(xh(n), xh(m+1)) ≤ D(xh(n),u1 = u2, xh(m),u3, xh(m+1))
< D(xh(n),u1, xh(n+1),u2, xh(m),u3, xh(m+1))
< 2ρ(xh(n), xh(n+1)) + 2ρ(xh(n+1), xh(m)) + 2ρ(xh(m), xh(m+1))
< 10 1(xh(n)) + 2 1(xh(m+1))

< 36
(
1(xh(n)) + 1(xh(m+1))

)
,

which contradicts f
(
h(n), h(m + 1)

)
= 2. So, the case of (b) cannot be possible. In the case of (c), there exist

u4, v4 ∈ X such that {xh(n),u4, v4, xh(n+1)}
, and

D(xh(n),u4, v4, xh(n+1)) < 2ρ(xh(n), xh(n+1)).

Choose m > n + 1 satisfying

3 1(xh(m)) < min{1(xh(n)), 1(u4), 1(v4), 1(xh(n+1))}.

Then there exist u5, v5,u6, v6 ∈ X such that {xh(n+1),u5, v5, xh(m)}
,, {xh(m),u6, v6, xh(m+1)}

,,

D(xh(n+1),u5, v5, xh(m)) < 2ρ(xh(n+1), xh(m))
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and

D(xh(m),u6, v6, xh(m+1)) < 2ρ(xh(m), xh(m+1)).

We have

2 1(u6) ≤ ρ(xh(m),u6) + ρ(u6, xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
≤ ρ(xh(m),u6) + ρ(u6, v6) + ρ(v6, xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
≤ D(xh(m),u6, v6, xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
< 2ρ(xh(m), xh(m+1)) + 1(xh(m)) + 1(xh(m+1)) < 6 1(xh(m))
< 2 min{1(xh(n)), 1(u4), 1(v4), 1(xh(n+1))}

and hence u6 < {xh(n),u4, v4, xh(n+1)}. Similarly we have

2 1(v6) ≤ ρ(xh(m), v6) + ρ(v6, xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
≤ ρ(xh(m),u6) + ρ(u6, v6) + ρ(v6, xh(m+1)) + 1(xh(m)) + 1(xh(m+1))
< 2 min{1(xh(n)), 1(u4), 1(v4), 1(xh(n+1))}

and hence v6 < {xh(n),u4, v4, xh(n+1)}. We also have

2 1(xh(m+1)) < 2 1(xh(m)) < 6 1(xh(m))
< 2 min{1(xh(n)), 1(u4), 1(v4), 1(xh(n+1))}

and hence xh(m), xh(m+1) < {u4, v4}. Arguing by contradiction, we assume u5 = xh(n). Then we have

d(xh(n), xh(n+1)) = d(xh(n+1),u5) < D(xh(n+1),u5, v5, xh(m))
< 2ρ(xh(n+1), xh(m)) ≤ 2 1(xh(n+1)) + 2 1(xh(m))
< 2 1(xh(n)) + 2 1(xh(n+1)),

which contradicts f
(
h(n), h(n+1)

)
= 3. Therefore we obtain u5 , xh(n). Arguing by contradiction, we assume

v5 = xh(n). Then we have

d(xh(n), xh(m)) = d(v5, xh(m)) < D(xh(n+1),u5, v5, xh(m))
< 2ρ(xh(n+1), xh(m)) ≤ 2 1(xh(n+1)) + 2 1(xh(m))
< 2 1(xh(n)) + 2 1(xh(m)),

which contradicts f
(
h(n), h(m)

)
= 3. Therefore we obtain v5 , xh(n). We have shown

{xh(n), xh(n+1), xh(m)} ∩ {u4, v4,u5, v5,u6, v6} = ∅

and

{u4, v4} ∩ {xh(m+1),u6, v6} = ∅.

We put

rn = D(xh(n),u4, v4, xh(n+1))
rn+1 = D(xh(n+1),u5, v5, xh(m))
rm = D(xh(m),u6, v6, xh(m+1))
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and

s = rn + rn+1 + rm.

We have
s < 2ρ(xh(n), xh(n+1)) + 2ρ(xh(n+1), xh(m)) + 2ρ(xh(m), xh(m+1)) < 12 1(xh(n)).

We further consider the following seven cases:

(c-1) u4 = u5 and v4 = v5

(c-2) u4 = u5 and v4 , v5

(c-3) u4 = v5 and v4 = u5

(c-4) u4 = v5 and v4 , u5

(c-5) v4 = u5 and u4 , v5

(c-6) v4 = v5 and u4 , u5

(c-7) {u4, v4} ∩ {u5, v5} = ∅

In the case of (c-1), we have by (N3)

d(xh(n), xh(m)) ≤ D(xh(n),u4 = u5, xh(n+1), v4 = v5, xh(m))
< D(xh(n),u4 = u5, xh(n+1), v4 = v5, xh(m)) + d(u4, v4) + d(u5, v5)
= rn + rn+1 < s < 12 1(xh(n)),

which contradicts f
(
h(n), h(m)

)
= 3. In the case of (c-2), we have

d(xh(n+1), xh(m)) ≤ D(xh(n+1), v4,u4 = u5, v5, xh(m))
< rn + rn+1 < s

and hence
d(xh(n), xh(m)) ≤ D(xh(n),u4, v4, xh(n+1), xh(m)) < rn + s < 2 s,

which contradicts f
(
h(n), h(m)

)
= 3. In the case of (c-3), noting

{u5, v5} ∩ {xh(m+1),u6, v6} = {u4, v4} ∩ {xh(m+1),u6, v6} = ∅,

we have

d(xh(n), v6) ≤ D(xh(n),u4 = v5, xh(m),u6, v6)
< rn + rn+1 + rm = s

and

d(v6,u5) ≤ D(v6,u6, xh(m), v5 = u4,u5 = v4)
< rm + rn+1 < s.

Hence

d(xh(n), xh(m)) ≤ D(xh(n), v6,u5 = v4, v5 = u4, xh(m))
< d(xh(n), v6) + d(v6,u5) + rn+1 < 3 s < 36 1(xh(n)),

which contradicts f
(
h(n), h(m)

)
= 3. In the case of (c-4), we have

d(xh(n), v4) ≤ D(xh(n),u4 = v5,u5, xh(n+1), v4)
< rn + rn+1 < s



T. Suzuki / Filomat 30:13 (2016), 3575–3585 3581

and hence

d(xh(n), xh(n+1)) ≤ D(xh(n), v4,u4 = v5,u5, xh(n+1))
< d(xh(n), v4) + rn + rn+1 < 2 s,

which contradicts f
(
h(n), h(n + 1)

)
= 3. In the case of (c-5), we have

d(xh(n), xh(m)) ≤ D(xh(n),u4, v4 = u5, v5, xh(n+1))
< rn + rn+1 < s,

which contradicts f
(
h(n), h(m)

)
= 3. In the case of (c-6), we have

d(xh(n),u5) ≤ D(xh(n),u4, v4, xh(n+1),u5) < rn + rn+1 < s

and hence

d(xh(n), xh(m)) ≤ D(xh(n),u5, xh(n+1), v4 = v5, xh(m))
< d(xh(n),u5) + rn + rn+1 < 2 s,

which contradicts f
(
h(n), h(m)

)
= 3. In the case of (c-7), we have

d(u4, v5) ≤ D(u4, v4, xh(n+1),u5, v5) < rn + rn+1 < s

and hence

d(xh(n), xh(n+1)) ≤ D(xh(n),u4, v5,u5, xh(n+1))
< rn + d(u4, v5) + rn+1 < 2 s,

which contradicts f
(
h(n), h(n + 1)

)
= 3. So, the case of (c) cannot be possible. We have shown (i). In order

to show (ii), we assume that {xh(n)}
, is a subsequence of {xn} such that {xh(n)} is d-Cauchy. Fix x ∈ X. Since

ρ ≤ d, 1(x) ≤ lim infn d(x, xh(n)) holds. Fix ε > 0. Then there exists µ ∈N such that x , xh(n),

|1(x) − ρ(x, xh(n))| < ε and sup{d(xh(m), xh(n)) : m > n} < ε

for any n ≥ µ. Fix n ∈Nwith n ≥ µ. We consider the following three cases:

• d(x, xh(n)) = ρ(x, xh(n)).

• There exists u ∈ X such that {x,u, xh(n)}
, and D(x,u, xh(n)) < ρ(x, xh(n)) + ε hold.

• There exist u, v ∈ X such that {x,u, v, xh(n)}
, and D(x,u, v, xh(n)) < ρ(x, xh(n)) + ε hold.

In the first case, we have
d(x, xh(n)) = ρ(x, xh(n)) ≤ 1(x) + ε.

In the second case, for sufficiently large m ∈N, we have

d(x, xh(n)) ≤ D(x, xh(m+1), xh(m+2), xh(m+3), xh(n))
< d(x, xh(m+1)) + 3 ε
≤ D(x,u, xh(n), xh(m), xh(m+1)) + 3 ε
< ρ(x, xh(n)) + 6 ε
< 1(x) + 7 ε.
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In the third case, for sufficiently large m ∈N, we have

d(x, xh(n)) ≤ D(x, xh(m), xh(m+1), xh(m+2), xh(n))
< d(x, xh(m)) + 3 ε
≤ D(x,u, v, xh(n), xh(m)) + 3 ε
< ρ(x, xh(n)) + 5 ε
< 1(x) + 6 ε.

Therefore we obtain
lim sup

n→∞
d(x, xh(n)) ≤ 1(x) + 7 ε.

Since ε > 0 is arbitrary, we have shown (ii). For any x, y ∈ X, we have by (ii)

|1(x) − 1(y)| ≤ ρ(x, y)
≤ d(x, y)
≤ lim sup

n→∞
D(x, xh(n), xh(n+1), xh(n+2), y)

= 1(x) + 1(y).

Therefore we have shown (iii). We have by (iii)

lim sup
m,n→∞

d(xm, xn) ≤ lim sup
m,n→∞

(
1(xm) + 1(xn)

)
= lim

m→∞
1(xm) + lim

n→∞
1(xn) = 0.

Therefore we have shown (iv). Noting {n ∈ N : xn = x} is a finite set for any x ∈ X, as in (ii), we can prove
(v).

Now we can prove our main result.

Theorem 3.3. Let (X, d) be a 3-generalized metric space and define ρ by (1). Then the following are equivalent:

(i) (X, d) is complete.
(ii) (X, ρ) is complete.

Proof. We first show (ii) ⇒ (i). We assume that (X, ρ) is complete. Let {xn} be a d-Cauchy sequence in X.
Then by Lemma 3.1, {xn} is ρ-Cauchy. Since (X, ρ) is complete, {xn} converges to some z ∈ X in (X, ρ). So
by Theorem 1.2, {xn} converges to z in (X, d). Therefore (X, d) is complete. In order to prove the converse
implication, we assume that (X, ρ) is not complete. Then there exists a ρ-Cauchy sequence {xn} in X which
does not converge in (X, ρ). Then by Lemma 3.2 (iv), {xn} is d-Cauchy. Since {xn} does not converge in (X, d),
we obtain that (X, d) is not complete. We have shown (i)⇒ (ii).

4. Counterexample

In this section, we give a counterexample which tells that the converse implication of Lemma 3.1 does
not hold in general.

Lemma 4.1 ([12, 14]). Let ν ∈N. Let (X, ρ) be a metric space and let A and B be two subsets of X with A ∩ B = ∅.
Assume that if ν is odd, then A consists of at most (ν − 1)/2 elements. Let M be a positive real number satisfying

ρ(x, y) ≤M
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for any x ∈ A and y ∈ B. Define a function d from X × X into [0,∞) by

d(x, x) = 0
d(x, y) = d(y, x) = ρ(x, y) if x ∈ A and y ∈ B
d(x, y) = M otherwise.

Then (X, d) is a ν-generalized metric space.

Remark 4.2. In the case where ν = 1, A = ∅ holds. In the case where ν = 3, A consists of at most one element.

Proof. (N1) and (N2) are obvious. Let us prove (N3). Let {x,u1,u2, · · · ,uν, y}, ⊂ X. We consider the
following three cases:

• ν is odd.

• ν is even and M ≤ D(x,u1,u2, · · · ,uν, y).

• ν is even and D(x,u1,u2, · · · ,uν, y) < M.

In the first and second cases, we have

d(x, y) ≤M ≤ D(x,u1, · · · ,uν, y),

thus, (N3) holds. In the third case, x ∈ A∪ B holds. Without loss of generality, we may assume x ∈ A. Then
from the definition of d, we have

u1 ∈ B, u2 ∈ A, u3 ∈ B, · · · , uν ∈ A, y ∈ B.

Hence

d(x, y) = ρ(x, y) ≤ ρ(x,u1) + ρ(u1,u2) + · · · + ρ(uν−1,uν) + ρ(uν, y)
= D(x,u1,u2, · · · ,uν, y).

Thus (N3) holds.

Using Lemma 4.1, we give the following counterexample.

Example 4.3. Define a complete subset X of `1(N) by X = {0} ∪ {xn : n ∈ N}, where xn = (1/n) en and {en} is the
canonical basis of `1(N). Define a metric ρ on X by ρ(x, y) = ‖x − y‖, that is

ρ(x, y) =


1/m + 1/n if x = xm, y = xn,m < n
1/n if x = 0, y = xn

0 if x = y
ρ(y, x) otherwise.

Define two subsets A and B of X by A = {0} and B = {xn : n ∈ N}. Define a function d from X × X into [0, 1] as in
Lemma 4.1 with M = 2, that is,

d(x, y) =


2 if x = xm, y = xn,m < n
1/n if x = 0, y = xn

0 if x = y
d(y, x) otherwise.

Then the following hold:
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(i) (X, d) is a ν-generalized metric space for any ν ≥ 2. In particular, (X, d) is a 3-generalized metric space.
(ii) ρ coincides with the ρ defined by d and (1).

(iii) There does not exist L ∈ R such that d(x, y) ≤ Lρ(x, y) for any x, y ∈ X.
(iv) {xn} converges to 0 in (X, d) and (X, ρ).
(v) {xn} is ρ-Cauchy, however, {xn} is not d-Cauchy.

Proof. (i) follows from Lemma 4.1. (ii) follows from (2). (iii) follows from the following fact:

mρ(xm, xn) = m (1/m + 1/n) < 2 = d(xm, xn)

for any m,n with m < n. (iv) and (v) are obvious.

Remark 4.4. Since ρ ≤ d always holds, we can tell that there exists L ∈ R such that ρ(x, y) ≤ L d(x, y) for any
x, y ∈ X. (iii) shows that something converse does not hold in general.

5. Application

As application, we give an alternative proof of the following theorem, which is a generalization of the
Banach contraction principle [2, 4].

Theorem 5.1 (See [3, 9, 11, 12, 16]). Let (X, d) be a complete 3-generalized metric space and let T be a contraction
on X, that is, there exists r ∈ [0, 1) such that

d(Tx,Ty) ≤ r d(x, y)

for any x, y ∈ X. Then T has a unique fixed point z of T. Moreover, for any x ∈ X, {Tnx} converges to z.

Proof. Define a function ρ from X × X into [0,∞) by (1). Then by Theorem 1.2, (X, ρ) is a metric space.
By Theorem 3.3, (X, ρ) is complete. We will show that T is also a contraction as a mapping on (X, ρ). Let
{x, y}, ⊂ X and ε > 0. We consider the following three cases:

• d(x, y) = ρ(x, y).

• There exists u ∈ X such that {x,u, y}, and D(x,u, y) < ρ(x, y) + ε hold.

• There exist u, v ∈ X such that {x,u, v, y}, and D(x,u, v, y) < ρ(x, y) + ε hold.

In the first case, we have
ρ(Tx,Ty) ≤ d(Tx,Ty) ≤ r d(x, y) = rρ(x, y).

In the second case, we have

ρ(Tx,Ty) ≤ ρ(Tx,Tu) + ρ(Tu,Ty) ≤ d(Tx,Tu) + d(Tu,Ty)

≤ r
(
d(x,u) + d(u, y)

)
≤ r

(
ρ(x, y) + ε

)
.

In the third case, we have

ρ(Tx,Ty) ≤ ρ(Tx,Tu) + ρ(Tu,Tv) + ρ(Tv,Ty)
≤ d(Tx,Tu) + d(Tu,Tv) + d(Tv,Ty)

≤ r D(x,u, v, y) ≤ r
(
ρ(x, y) + ε

)
.

Since ε > 0 is arbitrary, we obtain
ρ(Tx,Ty) ≤ rρ(x, y),

thus, T is a contraction on (X, ρ). So, the Banach contraction principle yields that T has a unique fixed point
z of T. Moreover, for any x ∈ X, {Tnx} converges to z in (X, ρ). By Theorem 1.2, {Tnx} converges to z in
(X, d).
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We next give an alternative proof of the following theorem, which is a generalization of Caristi’s fixed
point theorem [5, 6].

Theorem 5.2 ([1, 7]). Let (X, d) be a complete 3-generalized metric space and let T be a mapping on X. Let f be a
proper, sequentially lower semicontinuous function from X into (−∞,+∞] bounded from below. Assume that

f (Tx) + d(x,Tx) ≤ f (x)

for any x ∈ X. Then T has a fixed point.

Proof. Define a function ρ from X × X into [0,∞) by (1). Then by Theorems 1.2 and 3.3, (X, ρ) is a complete
metric space. We note by Theorem 1.2 that f is lower semicontinuous as a function from (X, ρ) into (−∞,+∞].
Since ρ ≤ d, we have

f (Tx) + ρ(x,Tx) ≤ f (x)

for any x ∈ X. So, Caristi’s fixed point theorem yields that there exists a fixed point of T.

6. Compactness

We finally discuss the compactness of 3-generalized metric spaces.

Theorem 6.1. Let (X, d) be a 3-generalized metric space and define ρ by (1). Then the following are equivalent:

(i) (X, d) is compact.
(ii) (X, ρ) is compact.

Proof. Since (X, ρ) is a metric space, it is well known that (X, ρ) is compact iff (X, ρ) is sequentially compact,
that is, every sequence {xn} in X has a subsequence converging to some point in (X, ρ). By Theorem 1.2, we
obtain the desired result.
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