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Abstract. In this paper, the following problem is considered: does there exist a t-arc-transitive regular
covering graph of an s-arc-transitive graph for positive integers t greater than s? In order to answer
this question, we classify all arc-transitive cyclic regular covers of the dodecahedron graph. Two infinite
families of 3-arc-transitive abelian covering graphs are given, which give more specific examples that for
an s-arc-transitive graph there exist (s + 1)-arc-transitive covering graphs.

1. Introduction

Covering techniques are known to be a useful tool in algebraic and topological graph theory. Application
of these techniques has resulted in many important examples and classifications of certain families of graphs.
For example, Conway and Djoković independently used graph covers to construct the first infinite family
of finite 5-arc-transitive cubic graphs, as elementary abelian covers of Tutte’s 8-cage. In particular, the
technique of ‘voltage graphs’ developed by Gross and Tucker [8] is often used. Later, Malnič, Marušič
and Potočnik [10] took these ideas further, and conditions on regular covering projections of a given graph
along a given group of automorphisms which lifts were given.

The approach developed in [10] has been successfully applied to the classification of arc-, vertex- and
edge-transitive elementary abelian regular covers of a number of symmetric graphs of small valency. Many
examples have been handled by this method, including the Petersen graph, the Heawood graph, the
Möbius-Kantor graph, the complete graph K5, and the octahedron graph. However, it is not easy to exactly
determine the type of arc-transitivity and automorphism groups with this approach.

In [4], an alternative approach was introduced for finding arc-transitive covers of symmetric cubic
graphs, with covering group being any abelian group. Furthermore, the exact arc-transitivity and the size
of the automorphism group of each abelian covering graph can be determined.

As an application, all arc-transitive abelian regular covers of several small order symmetric cubic graphs,
such as the complete graph K4, the complete bipartite graph K3,3, the cube Q3, the Petersen graph (see [4]
for more details), and the Heawood graph (see [5] for more details) were classified. An investigation of the
results in [4, 5] suggests that for the 2-arc-transitive graph K4, there exist 1-arc and 2-arc-transitive abelian
regular covering graphs; for the 3-arc-transitive graph K3,3, there exist 1-arc, 2-arc and 3-arc-transitive
abelian regular covering graphs; for the 2-arc-transitive graph Q3, there exist 1-arc and 2-arc-transitive
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abelian regular covering graphs; and for the 3-arc-transitive Petersen graph, there exist 2-arc and 3-arc-
transitive abelian regular covering graphs.

According to these known covering graphs, we can see that for an s-arc-transitive cubic graph, there
is no t-arc-transitive abelian regular covering graph for positive integers t greater than s. Now a natural
question arises ‘Does there exist a t-arc-transitive (abelian) regular covering graph of an s-arc-transitive
graph for positive integers t greater than s?’

The answer to this question is positive, and the only known example was mentioned by Feng, Kutnar,
Malnič and Marušič in [7] that the 3-arc-transitive cubic graph F40 is a (regular) 2-cover of the 2-arc-transitive
graph F20A (which is the dodecahedron graph).

In this paper, we give two infinite families of 3-arc-transitive abelian regular covering graphs of the
dodecahedron graph. As a result, some more specific examples to the above question are given. Further-
more, in [9], these results were well applied in a complete classification of the arc-transitive dihedral regular
covers of the Petersen graph.

The paper is organised as follow. We begin with some further background in Section 2, then classify all
arc-transitive cyclic regular covers of the dodecahedron graph in Section 3.

2. Preliminary

Throughout this paper, every graph X will be finite, undirected, simple and connected, and V(X),E(X)
and A(X) will respectively denote the vertex-set, edge-set and arc-set of X.

A covering projection is an onto and locally bijective graph homomorphism p : Y → X, that is, for any
pair of vertices v ∈ V(X) and ṽ ∈ V(Y), the restriction of p on the neighbours N(ṽ) of ṽ to the neighbours
N(v) of v is bijection. In this case, we call X a base graph (or quotient graph), Y a covering graph or cover, and
the pre-images p−1(v) for v ∈ V(X) are called fibres.

Let p : Y → X be a covering projection, and suppose α and β are automorphisms of X and Y such that
α ◦ p = p ◦ β. Then we say α lifts to β, and β projects to α, and also we call β a lift of α, and α a projection of β.
Note that α is uniquely determined by β, but β is not generally determined by α. The set of all lifts of a given
α ∈ Aut X is denoted by L(α). If every automorphism of a subgroup G of Aut X lifts (to an automorphism of
Y), then

⋃
α∈G L(α) is a subgroup of Aut Y, called the lift of G. In particular, the lift of the identity subgroup

of Aut X is called the group of covering transformations, or voltage group, and sometimes denoted by CT(p).
The covering is called regular if its covering group acts transitively on each fibre.

The regular covering graph Y and the regular covering projection p are called abelian, or cyclic, or
elementary abelian, if the covering group N is abelian, or cyclic, or elementary abelian, respectively. The
normalizer of N in Aut Y projects to the largest subgroup of Aut X that lifts. Hence in particular, if the
latter subgroup B, say, acts arc-transitively on X, then the lift group of B acts arc-transitively on Y, and has
a normal subgroup N (the covering group) with quotient isomorphic to B.

Next, an s-arc in a graph X is an ordered (s+1)-tuple (v0, v1, . . . , vs) of vertices such that any two consecutive
vi are adjacent, and any three consecutive vi are distinct. A group of automorphisms of X is called s-arc-
transitive if it acts transitively on the set of s-arcs of X, and s-arc-regular if this action is sharply-transitive,
and then the graph X itself is called s-arc-transitive or s-arc-regular if its full automorphism group Aut X is
s-arc-transitive or s-arc-regular, respectively.

If X is cubic (3-valent), then by theorems of Tutte [11, 12], every arc-transitive group of automorphisms
of X is s-arc-regular for some s ≤ 5. Moreover, every such group G is a smooth quotient of one of seven
finitely-presented groups G1, G 1

2 , G 2
2 , G3, G 1

4 , G 2
4 and G5, which can be presented as follows (see [3, 6]):

G1 = 〈 h, a | h3 = a2 = 1 〉;

G 1
2 = 〈 h, p, a | h

3 = p2 = a2 = 1, php = h−1, a−1pa = p 〉;

G 2
2 = 〈 h, p, a | h

3 = p2 = 1, a2 = p, php = h−1, a−1pa = p 〉;

G3 = 〈 h, p, q, a | h3 = p2 = q2 = a2 = 1, pq = qp, php = h, qhq = h−1, a−1pa = q 〉;

G 1
4 = 〈 h, p, q, r, a | h

3 = p2 = q2 = r2 = a2 = 1, pq = qp, pr = rp, (qr)2 = p,
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h−1ph = q, h−1qh = pq, rhr = h−1, a−1pa = p, a−1qa = r 〉;

G 2
4 = 〈 h, p, q, r, a | h

3 = p2 = q2 = r2 = 1, a2 = p, pq = qp, pr = rp, (qr)2 = p,

h−1ph = q, h−1qh = pq, rhr = h−1, a−1pa = p, a−1qa = r 〉;

G5 = 〈 h, p, q, r, s, a | h3 = p2 = q2 = r2 = s2 = a2 = 1, pq = qp, pr = rp, ps = sp,

qr = rq, qs = sq, (rs)2 = pq, h−1ph = p, h−1qh = r,

h−1rh = pqr, shs = h−1, a−1pa = q, a−1ra = s 〉.

In fact if G is s-arc-regular, then G is a smooth quotient of Gs or G i
s , where i = 1 or 2 depending on whether

or not the group contains an involution a that reverses an arc (in the cases where s is even). Conversely,
every smooth epimorphism from Gs or G i

s to a finite group G (by the double coset graph construction) gives
rise to a connected cubic graph on which G acts as an s-arc-regular group of automorphisms. (The ‘smooth’
means that the orders of the generators are preserved in the quotient.)

By using the Conder-Ma approach introduced in [4], we determine all arc-transitive cyclic regular covers
of the dodecahedron graph GP(10, 2), which is a generalized Petersen graph and a double cover (or 2-cover)
of the Petersen graph. We know that the GP(10, 2) is 2-arc-regular, with automorphism group A5 × C2 of
order 120, which is a smooth quotient of the group G 1

2 , say G 1
2 /N. Also the GP(10, 2) admits 1-arc-transitive

subgroup of automorphisms which is isomorphic to the alternating group A5.

3. Arc-Transitive Cyclic Regular Covers

Suppose Y is an arc-transitive regular cover of the GP(10, 2) which is obtained by lifting the 1-arc-
transitive automorphism subgroup A5. Take the group G1 = 〈 h, a | h3 = a2 = 1 〉. This group has a unique
normal subgroup K of index 60 in G1 with G1/K � A5. The lift of A5 is isomorphic to quotient G1/L where L
is a normal subgroup of G1 contained in K. The quotient K/L is the covering group for the regular covering
projection of the GP(10, 2) by Y. In order to find all such covers, we seek all possibilities for L of finite index
in G1 such that L is contained in K. In fact, since every finite abelian group is a direct product of its Sylow
subgroups, we can restrict our search to those L for which the index |K : L| is a prime-power. (More details
of the Conder-Ma approach can be seen in [4].)

Now, take the finitely-presented group G 1
2 , with presentation 〈 h, a, p | h3 = a2 = p2 = (ph)2 = [a, p] = 1 〉.

With the help of Magma, this group G 1
2 has three normal subgroups of index 120, all with quotient A5 ×C2,

but these can be interchanged by ‘outer’ automorphisms. Thus without loss of generality we can take either
one of them. We will take the one that is contained in the subgroup G1 = 〈h, a〉; this is a normal subgroup
N of index 60 in G1 with G1/N � A5.

Using Reidemeister-Schreier theory (or the Rewrite command in Magma [1]), we find that the subgroup
N is free of rank 11, on generators

w1 = (ah−1)5, w2 = hah−1ah−1ah−1ah−1ah,
w3 = (ah)5, w4 = ahah−1ah−1ah−1ah−1aha,
w5 = hahah−1ah−1ah−1ah−1ahah−1, w6 = h−1ahah−1ah−1ah−1ah−1ahah,
w7 = (h−1ah−1ahah−1a)2, w8 = (hahah−1aha)2,
w9 = h−1ahah−1ahahahah−1ahah−1, w10 = (ahah−1)5,
w11 = ah−1ahah−1ahahahah−1ahah−1a.

Easy calculations show that the generators h, a and p act by conjugation as below:
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h−1w1h = w3
−1 a−1w1a = w−1

3 p−1w1p = w3

h−1w2h = w1 a−1w2a = w4 p−1w2p = w2
−1

h−1w3h = w2
−1 a−1w3a = w−1

1 p−1w3p = w1

h−1w4h = w6 a−1w4a = w2 p−1w4p = w4
−1

h−1w5h = w4 a−1w5a = w3w7 p−1w5p = w6
−1

h−1w6h = w5 a−1w6a = w1
−1w8

−1 p−1w6p = w5
−1

h−1w7h = w9
−1 a−1w7a = w1w5 p−1w7p = w8

h−1w8h = w7
−1 a−1w8a = w3w6

−1 p−1w8p = w7

h−1w9h = w8 a−1w9a = w11 p−1w9p = w9
−1

h−1w10h = w9w10
−1w11

−1 a−1w10a = w10
−1 p−1w10p = w9

−1w10w11

h−1w11h = w7w9
−1w10 a−1w11a = w9 p−1w11p = w11

−1.

Now take the quotient G1/N′, which is an extension of the free abelian group N/N′ � Z11 by the group
G1/N � A5, and replace the generators h, a and all wi by their images in this group. Also let K denote the
subgroup N/N′, and let G be G1/N′. Then, in particular, G is an extension of Z11 by G1/N � A5.

By the above observations, we see that the generators h, a and p induce linear transformations of the
free abelian group K � Z11. For example,

h 7→



0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 1 0 −1 1 0


and

a 7→



0 0 −1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 −1 0 0 0

1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0


.

These two matrices generate a group isomorphic to A5, and with the matrix induced by p, these three
matrices will generate a group isomorphic to A5 × C2.

Next, the character table of the group A5 is given in Table 1, with α and β being the zeroes of the
polynomial t2

− t − 1 (or in other words, the golden ratio 1+
√

5
2 and its conjugate 1−

√
5

2 ).
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Element order 1 2 3 5 5
Class size 1 15 20 12 12

χ1 1 1 1 1 1
χ2 3 −1 0 α β

χ3 3 −1 0 β α

χ4 4 0 1 −1 1
χ5 5 1 −1 0 0

Table 1: The character table of the group A5

By inspecting traces of the matrices of orders 2 and 3 induced by each of a and h, we see that the
character of the 11-dimensional representation of A5 over Q associated with the above action of G = 〈h, a〉
on K is χ2 + χ3 + χ5, which is expressible as the sum of χ2 + χ3 and χ5, the characters of two irreducible
representations over Q of dimensions 6 and 5.

In the following part, for every positive integer m we let K(m) denote the subgroup of K generated by
the mth powers of all its elements, and if m is a prime-power, say m = k`, then we will consider G-invariant
subgroups of each ‘layer’ K j−1/K j of K/K`, where K j = K(k j) for every non-negative integer j.

Now let k be any odd prime. Then α2
−α−1 = 0 for some α ∈ Zk if and only if (2α−1)2 = 4α2

−4α+1 = 5
for some α ∈ Z5, or equivalently, if and only if 5 is a quadratic residue mod k.

Hence if k ≡ ±1 mod 5, then the group K/K(k) � (Zk)11 is the direct sum of three G-invariant subgroups
of rank 3, 3 and 5 respectively.

If k ≡ ±2 mod 5 (and k is odd), then no such zeroes of t2
− t − 1 exist in Zk, and the corresponding

6-dimensional representation of A5 is irreducible over Zk. (Note that this holds just as well when k = 3,
since the representations χ2 and χ3 are distinct when defined over GF(9).) And it follows that K/K(k) has
only rank 5 and rank 6 proper G-invariant subgroups.

Hence for every prime k , 2, 3 and k ≡ ±1, 2 mod 5, K/K(k) has no non-trivial proper G-invariant
subgroups of rank 10, and therefore no cyclic Zk-covers exist.

When k = 3 or 5, with the help of Magma (especially the GModule and Submodules commands), the
quotient K/K(k) � (Z5)11 has four G-invariant proper subgroups of rank 3, 5, 6 and 8, respectively. Therefore,
there is no rank 10 G-invariant subgroup, equivalently there is no cyclic Z5-cover. The quotient K/K(k) �
(Z3)11 has four G-invariant proper subgroups. These include the subgroups of ranks 4, 5, 6 and 10.
Especially, the rank 10 subgroup denoted by L1 is generated by

x1 = w1w11
−1, x2 = w2w11

−1, x3 = w3w11, x4 = w4w11
−1, x5 = w5w11

−1,
x6 = w6w11

−1, x7 = w7w11, x8 = w8w11
−1, x9 = w1w11

−1, x10 = w10.

In K/K(9), however, with the help of Magma, there is no G-invariant subgroup of rank 10 and isomorphic
to (Z9)10; the only four G-invariant subgroups of K/K(9) are of rank 5, 6 or 10 and isomorphic to Z3 ⊕ (Z9)4,
(Z9)5, (Z9)6 and (Z3)4

⊕ (Z9)6, respectively.

For k = 2, again with the help of Magma, if necessary, it is easy to show that the group K/K(k) has six
non-trivial proper G-invariant subgroups, namely one of rank 4, three of rank 5, one of rank 6 and one of
rank 10. Especially, the rank 10 subgroup denoted by L2 is generated by

y1 = w1w6, y2 = w2w6, y3 = w3w6, y4 = w4w6, y5 = w5w6,

y6 = w7, y7 = w8, y8 = w9, y9 = w10, y10 = w11.

Finally, an easy analysis of the situation for the cases m = 22 = 4 and m = 23 = 8 shows that K/K(m) only
has one homocyclic G-invariant subgroup of rank 10, denoted by L3, isomorphic to (Z4)10, and is generated
by
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z1 = w1w6
−1, z2 = w2w6

−1, z3 = w3w6, z4 = w4w6
−1, z5 = w5w6

−1,

z6 = w7w6
2, z7 = w8w6

2, z8 = w9w6
2, z9 = w10w6

2, z10 = w11w6
2.

Hence, equivalently, the dodecahedron graph only has three arc-transitive cyclic regular covers with
covering groups Z3, Z2 and Z4, which are all at least 1-arc-transitive.

Now, we find out which of the cyclic regular covers obtainable from G-invariant subgroups of finite
prime-power index in K = N/N′ admit a larger group of automorphisms than the lift of the group G/N � A5.

We note that all these three G-invariant subgroups L1, L2 and L3 can be normalized by the additional
generator p in G 1

2 with the following actions:

x1 = w1w11
−1

7→ w3w11 = x3, x2 = w2w11
−1

7→ w2
−1w11 = x2

−1,
x3 = w3w11 7→ w1w11

−1 = x1, x4 = w4w11
−1

7→ w4
−1w11 = x4

−1,
x5 = w5w11

−1
7→ w6

−1w11 = x6
−1, x6 = w6w11

−1
7→ w5

−1w11 = x5
−1,

x7 = w7w11 7→ w8w11
−1 = x8, x8 = w8w11

−1
7→ w7w11 = x7,

x9 = w9w11
−1

7→ w9
−1w11 = x9

−1, x10 = w10 7→ w9
−1w10w11 = x9

−1x10;

and

z1 = w1w6
−1

7→ w3w5 = z3z5,
z2 = w2w6

−1
7→ w2

−1w5 = z2
−1z5,

z3 = w3w6 7→ w1w5
−1 = z1z5

−1,
z4 = w4w6

−1
7→ w4

−1w5 = z4
−1z5,

z5 = w5w6
−1

7→ w6
−1w5 = z5,

z6 = w7w6
2

7→ w8w5
−2 = z7z5

−2,
z7 = w8w6

2
7→ w7w5

−2 = z6z5
−2,

z8 = w9w6
2

7→ w9
−1z5

−2 = z8
−1z5

−2,
z9 = w10w6

2
7→ w9

−1w10w11z5
−2 = z8

−1z9z10z5
−2,

z10 = w11w6
2
7→ w11

−1z5
−2 = z10

−1z5
−2.

Next, we consider whether or not these three G 1
2 -invariant subgroups L1, L2 and L3 are G3-, G 1

4 -, G 2
4 or

G5-invariant, which we can obtain by checking whether those can be normalised by additional generators,
such as q of G3. However, by a complete list of symmetric cubic graphs up to 10,000 vertices given by
Conder [2], we know that there is a unique symmetric cubic graph of order 60, 40 and 80, respectively,
and is respectively of 2-arc, 3-arc and 3-arc-transitive. Hence the three arc-transitive cyclic covers of the
dodecahedron graph we found before are 2-arc-transitive Z3-cover, 3-arc-transitive Z2-cover and 3-arc-
transitiveZ4-cover, respectively. Moreover, we know that the G 1

2 -invariant subgroup L1 � (Z3)10 cannot be
of G3-invariant, both the G 1

2 -invariant subgroups L2 � (Z2)10 and L3 � (Z4)10 are G3-invariant.

From the above arguments, we can see that there exist two G3-invariant subgroups L2 � (Z2)10 and
L3 � (Z4)10. Hence in K/K(2t) for integer t ≥ 1, the two abelian covering groups K/L2K(2t) and K/L3K(2t) are
isomorphic to Z2t ⊕ (Z2t−1 )10 and Z2t ⊕ (Z2t−2 )10, respectively.

Thus, we have the following:

Theorem 3.1. Let m = k` be any power of a prime k, with ` > 0. Then the arc-transitive cyclic regular covers of the
dodecahedron graph with covering group of exponent m are as follows :

(a) If k = 2, there are exactly two such covers, namely
• one 3-arc-transitive cover with covering group Z2 where ` = 1,
• one 3-arc-transitive cover with covering group Z4 where ` = 2.

(b) If k = 3, there is exactly one such cover, namely
• one 2-arc-transitive cover with covering group Z3 where ` = 1.
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(c) There is no arc-transitive cyclic cover for other prime integer k , 2, 3.

Proposition 3.2. There exist two infinite families of 3-arc-transitive abelian regular covers of the dodecahedron graph,
with abelian covering groups

Z2t+1 ⊕ (Z2t )10 and Z2t+2 ⊕ (Z2t )10

for integer t ≥ 0, respectively.
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