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New Hybrid Conjugate Gradient Method as a Convex

Combination of FR and PRP Methods
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Abstract. We consider a new hybrid conjugate gradient algorithm, which is obtained from the algorithm of
Fletcher-Reeves, and the algorithm of Polak-Ribière-Polyak. Numerical comparisons show that the present
hybrid conjugate gradient algorithm often behaves better than some known algorithms.

1. Introduction

We consider the nonlinear unconstrained optimization problem

min{ f (x) : x ∈ Rn}, (1.1)

where f : Rn → R is a continuously differentiable function, bounded from below.
There are many different methods for solving the problem (1.1).
We are interested in conjugate gradient methods, which have low memory requirements and strong

local and global convergence properties.
For solving the problem (1.1), we consider the conjugate gradient method, which starts from an initial

point x0 ∈ R
n and generates a sequence {xk} ⊂ R

n as follows

xk+1 = xk + tkdk, (1.2)

where tk > 0 is a step size, received from the line search, and the directions dk are given by [2], [4]

d0 = −10, dk+1 = −1k+1 + βksk. (1.3)

In the relation (1.3) βk is the conjugate gradient parameter, sk = xk+1 − xk,
1k = ∇ f (xk).

Let the norm ‖ · ‖ be the Euclidean norm.
The standard Wolfe line search conditions are frequently used in the conjugate gradient methods; these

conditions are given by [30], [31]

f (xk + tkdk) − f (xk) ≤ δtk1
T
k dk, (1.4)
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1
T
k+1dk ≥ σ1

T
k dk, (1.5)

where dk is a descent direction and 0 < δ ≤ σ < 1.
Strong Wolfe conditions consist of (1.4) and the next stronger version of (1.5)

|1T
k+1dk| ≤ −σ1

T
k dk. (1.6)

In the generalized Wolfe conditions [12], the absolute value in (1.6) is replaced by a pair of inequalities:

σ11
T
k dk ≤ 1

T
k+1dk ≤ −σ21

T
k dk, 0 < δ < σ1 < 1, σ2 ≥ 0. (1.7)

Now, let us denote

yk = 1k+1 − 1k. (1.8)

There are many conjugate gradient methods; a great contribution in this sphere is given by Hager and
Zhang [19]. Different conjugate gradient methods correspond to different values of the scalar parameter βk.

Hybrid conjugate gradient methods combine different conjugate gradient methods to improve the
behavior of these methods and to avoid the jamming phenomenon.

In order to choose the parameter βk for the method in the present paper, we mention the following
choices of βk [2]:

Fletcher and Reeves: [17] βFR
k =

‖1k+1‖
2

‖1k‖2
; (1.9)

Dai and Yuan: [11] βDY
k =

‖1k+1‖
2

yT
k
sk

; (1.10)

Conjugate Descent, proposed by Fletcher: [16] βCD
k =

‖1k+1‖
2

−1T
k
sk

. (1.11)

The conjugate gradient methods with the choice of βk taken in (1.9), (1.10) and (1.11), have strong
convergence properties and, in the same time, they may have modest practical performance, due to jamming
[2], [3].

On the other hand, methods of Polak-Ribiére [24] and Polyak (PRP) [25], Hestenes and Stiefel (HS) [20]
and also Liu and Storey [22] in general may not be convergent, but usually they have better computer
performances [2], [3]. The choices of βk in these methods are, respectively [2]:

βPRP
k =

1T
k+1

yk

‖1k‖2
, (1.12)

βHS
k =

1T
k+1

yk

yT
k
sk

, (1.13)

βLS
k =

1T
k+1

yk

−1T
k
sk

. (1.14)

We will use good convergence properties of the first group of methods and, in the same time, good
computational performances of the second one; here we want to exploit choices of βk in (1.9) and (1.12).
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Touati-Ahmed and Storey [29] introduced one of the first hybrid conjugate gradient algorithms, calcu-
lating the parameter βk as:

βTaS
k =



























βPRP
k
=
1T

k+1
yk

‖1k‖2
, if 0 ≤ βPRP

k
≤ βFR

k
,

βFR
k
=
‖1k+1‖

2

‖1k‖2
, otherwise.

(1.15)

When the iterations jam, the method of Touati-Ahmed and Storey use PRP computational scheme,
having in view that PRP method has a built-in restart feature that directly addresses to jamming. Namely,
when sk is small, then the factor yk in the formula for βPRP

k
tends to zero, βPRP

k
becomes smaller and smaller,

and the search direction dk+1 is very close to the steepest direction −1k+1.
Hu and Storey [21] introduced another hybrid conjugate gradient method with the following choice of

βk:

βHuS
k = max{0,min{βPRP

k , βFR
k }}. (1.16)

Also, if the method of Hu and Storey jam, then PRP method is used.

The first global convergence result for FR method was given by Zoutendijk [33] in 1970. He proved that
FR method converges globally when the line search is exact.

The first global convergence result of FR method for an inexact line search was given by Al-Baali [1] in
1985. Under the strong Wolfe conditions with σ < 1

2 , he proved that FR method generates sufficient descent
directions. In fact, he proved that

1 − 2σ + σk+1

1 − σ
≤
−1T

k
dk

‖1k‖2
≤

1 − σk+1

1 − σ
,

for all k ≥ 0. As a consequence, global convergence is established. For σ =
1

2
, when dk is a descent direction,

this analysis didn’t establish sufficient descent.
In [23], the global convergence proof of Al-Baali is extended to the case σ = 1

2 .
Dai and Yuan analyzed this further, and showed that in consecutive FR iterations, at least one iteration

satisfies the sufficient descent property.
In [26], it is observed that FR method with the exact line search may produce many small steps continu-

ously. Precisely, if a small step is generated away from the solution, the subsequent steps may also be very
short.

In that case, PRP method generates a search direction close to −1k to avoid the propensity of small steps.
In [26] it is proved that, for a nonlinear function, if
(a) sk tends to zero,
(b) the line search is exact,
(c) Lipschitz condition holds,
then PRP method is globally convergent.

On the other hand, in [27] it is proved, using a threedimensional example, that PRP method with an
exact line search, can diverge. So, the assumption that sk tends to zero, is needed for convergence [19].

When a hybrid conjugate gradient method is built in which PRP method is presented, there is a possibility
for some additional assumptions (see, for example, [2]).

In this paper we consider a convex combination of two methods. The first method is the method FR,
which has strong convergence properties, and in the same time it may have modest practical performance,
due to jamming. The second method is the method PRP, which in general may not be convergent, but it
usually has good computer performances.

The paper is organized as follows. In Section 2 we construct a new hybrid method FRPRPCC (Fletcher-
Reeves-Polak-Ribière-Polyak-conjugate-condition), using the convex combination of parameters from the
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FR method and from the PRP method. In this section we also find the formula for computing the parameter
θk ∈ [0, 1], which is relevant for our method. We also prove that under some assumptions the search
direction of our method satisfies the sufficient descent condition. We use the inexact line search in order to
determine the stepsize of the method. In Section 3 we present the algorithm FRPRPCC, which is developed
in Section 2. In Section 4 we prove the global convergence theorem of the method FRPRPCC, assuming
some conditions. Section 5 contains some numerical experiments.

2. A Convex Combination

In this paper we use another combination of PRP and FR methods. We use the following conjugate
gradient parameter

β
hyb

k
= (1 − θk) · βPRP

k + θk · β
FR
k . (2.1)

Hence, the direction dk is given by:

d
hyb

0
= −10, d

hyb

k+1
= −1k+1 + β

hyb

k
sk. [2] (2.2)

The parameter θk is the scalar parameter to be determined later.

We can see that, if θk = 0, then β
hyb

k
= βPRP

k
, and if θk = 1, then

β
hyb

k
= βFR

k
.

On the other hand, if 0 < θk < 1, then β
hyb

k
is a proper convex combination of the parameters βPRP

k
and

βFR
k

.

Theorem 2.1. If the relations (2.1) and (2.2) hold, then

d
hyb

k+1
= θkdFR

k+1 + (1 − θk)dPRP
k+1 . (2.3)

Proof. Having in view the relations (1.9) and (1.12), the relation (2.1) becomes:

β
hyb

k
= (1 − θk) ·

1T
k+1

yk

‖1k‖2
+ θk ·

‖1k+1‖
2

‖1k‖2
, (2.4)

so, the relation (2.2) becomes

d
hyb

0
= −10, (2.5)

d
hyb

k+1
= −1k+1 + (1 − θk)

1T
k+1

yk

‖1k‖2
· sk + θk ·

‖1k+1‖
2

‖1k‖2
· sk. (2.6)

In further consideration of the relation (2.6), we can get

d
hyb

k+1
= −(θk1k+1 + (1 − θk)1k+1) + β

hyb

k
sk,

d
hyb

k+1
= −(θk1k+1 + (1 − θk)1k+1) + (1 − θk)βPRP

k sk + θkβ
FR
k sk.

The last relation yields

d
hyb

k+1
= θk(−1k+1 + β

FR
k sk) + (1 − θk)(−1k+1 + β

PRP
k sk). (2.7)

From (2.7) we finally conclude

d
hyb

k+1
= θkdFR

k+1 + (1 − θk)dPRP
k+1 . (2.8)
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Our way to find θk is to make that the conjugacy condition

yT
k d

hyb

k+1
= 0 (2.9)

holds.

Multiplying (2.6) by yT
k

from the left and using (2.9), we get

−yT
k 1k+1 + (1 − θk)

1T
k+1

yk

‖1k‖2
(yT

k sk) + θk

‖1k+1‖
2

‖1k‖2
(yT

k sk) = 0.

So,

θk













‖1k+1‖
2

‖1k‖2
(yT

k sk) −
1T

k+1
yk

‖1k‖2
(yT

k sk)













= yT
k 1k+1 −

1T
k+1

yk

‖1k‖2
(yT

k sk),

i.e.

θk ·
1T

k+1
1k

‖1k‖2
(yT

k sk) =
(‖1k‖

2 − yT
k
sk)(yT

k
1k+1)

‖1k‖2
.

Finally,

θk =
(‖1k‖

2 − yT
k
sk)(yT

k
1k+1)

(1T
k+1
1k)(yT

k
sk)

. (2.10)

It is possible that θk, calculated as in (2.10), has the values outside the interval [0, 1].
So, we fix it:

θk =























































0, if
(‖1k‖

2 − yT
k
sk)(yT

k
1k+1)

(1T
k+1
1k)(yT

k
sk)

≤ 0,

(‖1k‖
2 − yT

k
sk)(yT

k
1k+1)

(1T
k+1
1k)(yT

k
sk)

, if 0 <
(‖1k‖

2 − yT
k
sk)(yT

k
1k+1)

(1T
k+1
1k)(yT

k
sk)

< 1,

1, if
(‖1k‖

2 − yT
k
sk)(yT

k
1k+1)

(1T
k+1
1k)(yT

k
sk)

≥ 1.

(2.11)

Either of the following assumptions is often utilized in convergence analysis for CG algorithms.
Boundedness Assumption: The level set S = {x ∈ Rn| f (x) ≤ f (x0)} is bounded, i.e. there exists a

constant B > 0, such that

‖x‖ ≤ B, for all x ∈ S. (2.12)

Lipschitz Assumption: In a neighborhood N of S the function f is continuously differentiable and its
gradient ∇ f (x) is Lipschitz continuous, i.e. there exists a constant 0 < L < ∞ such that

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖ for all x, y ∈ N . (2.13)

Under these assumptions, there exists a constant Γ ≥ 0, such that

‖∇ f (x)‖ ≤ Γ (2.14)

for all x ∈ S [2].
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Theorem 2.2. Assume that (2.12) and (2.13) hold and let strong Wolfe conditions (1.4)-(1.6) hold with σ < 1
2 . Also,

let {‖sk‖} tend to zero, and let there exist some nonnegative constants η1, η2 such that

‖1k‖
2 ≥ η1‖sk‖

2, (2.15)

‖1k+1‖
2 ≤ η2‖sk‖. (2.16)

Then d
hyb

k
satisfies the sufficient descent condition for all k.

Proof. It holds d0 = −10. So, for k = 0, it holds 1T
0
d0 = −‖10‖

2.

Multiplying (2.8) by 1T
k+1

from the left, we get

1
T
k+1d

hyb

k+1
= θk1

T
k+1dFR

k+1 + (1 − θk)1T
k+1dPRP

k+1 . (2.17)

If θk = 0, the relation (2.17) becomes

1
T
k+1d

hyb

k+1
= 1T

k+1dPRP
k+1 .

So, if θk = 0, the sufficient descent holds for the hybrid method, if it holds for PRP method. We can prove
the sufficient descent for PRP method under the conditions of Theorem 2.2. It holds

dPRP
k+1 = −1k+1 + β

PRP
k sk. (2.18)

Multiplying (2.18) by 1T
k+1

from the left, we get

1
T
k+1dPRP

k+1 = −‖1k+1‖
2 + βPRP

k 1
T
k+1sk.

Using (1.12), we get

1
T
k+1dPRP

k+1 = −‖1k+1‖
2 +

(1T
k+1

yk)(1T
k+1

sk)

‖1k‖2
. (2.19)

From (2.19), we get

1
T
k+1dPRP

k+1 ≤ −‖1k+1‖
2 +
‖1k+1‖

2‖yk‖‖sk‖

‖1k‖2
. (2.20)

From Lipschitz condition we have ‖yk‖ ≤ L‖sk‖, so

1
T
k+1dPRP

k+1 ≤ −‖1k+1‖
2 +
‖1k+1‖

2L‖sk‖
2

‖1k‖2
. (2.21)

But, using (2.16), we get

1
T
k+1dPRP

k+1 ≤ −‖1k+1‖
2 +

Lη2‖sk‖
3

‖1k‖2
. (2.22)

Using (2.15), we get

1
T
k+1dPRP

k+1 ≤ −‖1k+1‖
2 +

1

η1
Lη2‖sk‖. (2.23)

But, because of the assumption ‖sk‖ → 0, the second summand in (2.23) tends to zero, so there exists a
number 0 < δ≪ 1, such that

1

η1
Lη2‖sk‖ ≤ δ‖1k+1‖

2. (2.24)
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Now, (2.23) becomes

1
T
k+1dPRP

k+1 ≤ −‖1k+1‖
2 + δ‖1k+1‖

2, (2.25)

i.e.

1
T
k+1dPRP

k+1 ≤ −(1 − δ)‖1k+1‖
2. (2.26)

On the other hand, for θk = 1, the relation (2.17) becomes

1
T
k+1d

hyb

k+1
= 1T

k+1dFR
k+1.

But, under the strong Wolfe line search, FR method satisfies the sufficient descent condition [19].
Now, let 0 < θk < 1. So, we can write 0 < µ1 ≤ θk ≤ µ2 < 1.
Now, from (2.17), we get

1
T
k+1d

hyb

k+1
≤ µ11

T
k+1dFR

k+1 + (1 − µ2)1T
k+1dPRP

k+1 .

We obviously can conclude now that there exists a number K > 0, such that

1
T
k+1d

hyb

k+1
≤ −K‖1k+1‖

2. (2.27)

Recall that in [26], it is shown that for general functions PRP method is globally convergent if sk = xk+1−xk

tend to zero, i.e. ‖sk‖ ≤ ‖sk−1‖ is a sufficient condition for convergence.
A descent property is very important for the global convergence of an iterative method, especially if it

is the conjugate gradient method [1].
From (2.15) and (2.16), we see that in the aim to realize a sufficient descent property, the gradient 1k

must be bounded, i.e., it holds:
η1‖sk‖

2 ≤ ‖1k‖
2 ≤ η2‖sk−1‖.

If the Powell condition is satisfied, i.e. ‖sk‖ tends to zero, then ‖sk‖
2 ≪ ‖sk−1‖ and therefore the norm of

gradient can satisfy (2.15) and (2.16) [2].
The conditions (2.15) and (2.16) are used, for example, in [2].

Now we give the corresponding algorithm.

Algorithm 2.1. (Algorithm FRPRPCC)

Step 1. Initialization. Select the initial point
x0 ∈ dom( f ), ǫ > 0 and select the parameters
0 < ρ ≤ σ < 1. Set k = 0.
Compute f (xk), 1k = ∇ f (xk). Set dk = −1k.

Set the initial guess tk =
1

‖1k‖
.

Step 2. Test for continuation of iterations. If ‖1k‖ ≤ ǫ then STOP.

Step 3. Line search. Compute tk > 0 satisfying the strong Wolfe line
search conditions (1.4)-(1.6) and update the variables
xk+1 = xk + tkdk.
Compute f (xk+1), 1k+1 = ∇ f (xk+1), sk = xk+1 − xk,
yk = 1k+1 − 1k.

Step 4. θk parameter computation. If (1T
k+1
1k)(yT

k
sk) = 0, then set θk = 0,

else set θk as in (2.11).
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Step 5. Compute βk as in (2.1).

Step 6. Compute d = −1k+1 + βksk.

Step 7. If the restart criterion of Powell

|1T
k+11k| ≥ 0.2‖1k+1‖

2 (2.28)

is satisfied, then set dk+1 = −1k+1, else let dk+1 = d.

Step 8. Calculate the initial guess

tk = tk−1‖dk−1/‖dk‖. (2.29)

Step 9. Set k = k + 1 and go to Step 2.

In every iteration k ≥ 1 of Algorithm FRPRPCC, the starting value of the step size tk is calculated as in
(2.29); the selection (2.29) is considered for the first time in CONMIN [28] by Shanno and Phua.

Also, this selection is used by Birgin and Martinez in [9], in the package SCG, and in SCALCG by Andrei,
[5], [6], [7].

In our algorithm, when the Powell restart condition is satisfied, we restart the algorithm, with the
negative gradient −1k+1.

3. Convergence Analysis

For the purpose of this section we remind to the next theorem.

Theorem 3.1. [19] Consider any iterative method of the form (1.2)-(1.3), where dk satisfies a descent condition
1T

k
dk < 0 and tk satisfies strong Wolfe conditions (1.4)-(1.6). If the Lipschitz condition holds, then either

lim inf
k→∞

‖1k‖ = 0, (3.1)

or

∞
∑

k=1

‖1k‖
4

‖dk‖2
< ∞. (3.2)

Now we give the next theorem.

Theorem 3.2. Consider the iterative method of the form (1.2), (2.1), (2.2), (2.11). Let all conditions of Theorem 2.2
hold. Then either 1k = 0 for some k, or

lim inf
k→∞

‖1k‖ = 0. (3.3)

Proof. Let 1k , 0 for all k. Then, we are going to prove (3.3).
Suppose, on the contrary, that there exists a number c > 0, such that

‖1k‖ ≥ c, for all k. (3.4)

From (2.8), we get

‖d
hyb

k+1
‖ ≤ ‖dFR

k+1‖ + ‖d
PRP
k+1 ‖. (3.5)

Next, it holds
‖dFR

k+1‖ ≤ ‖1k‖ + |β
FR
k |‖sk‖.
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Further,

|βFR
k | =

‖1k+1‖
2

‖1k‖2
≤
Γ2

c2
,

where Γ is given by (2.14). Now,

‖dFR
k+1‖ ≤ Γ +

Γ2

c2
·D, (3.6)

where D is a diameter of the level set S.
Also,

|βPRP
k | =

1T
k+1

yk

‖1k‖2
≤

1

c2
‖1k+1‖‖yk‖ ≤

2Γ2

c2
,

because of
‖yk‖ = ‖1k+1 − 1k‖ ≤ ‖1k+1‖ + ‖1k‖ ≤ 2Γ.

Now,

‖dPRP
k+1 ‖ ≤ Γ +

2Γ2

c2
·D. (3.7)

So, using (3.5), (3.6) and (3.7), we get

‖d
hyb

k+1
‖ ≤ Γ +

Γ2

c2
·D + Γ +

2Γ2

c2
·D,

i.e.

‖d
hyb

k+1
‖ ≤ 2Γ +

3Γ2

c2
·D. (3.8)

But, now we can get
‖1k+1‖

4

‖dk+1‖2
≥

c4

(

2Γ +
3Γ2

c2
·D

)2
,

wherefrom
∞
∑

k=0

‖1k+1‖
4

‖dk+1‖2
= ∞.

Using Theorem 3.1, we conclude that this is a contradiction. So, we finish the proof.

4. Numerical Experiments

In this section we present the computational performance of a Mathematica implementation of FRPRPCC
algorithm on a set of unconstrained optimization test problems from [8]. Each problem is tested for a number
of variables: n = 50, n = 60, n = 70, n = 90, n = 100, n = 120. We present comparisons with CCOMB
from [2], HYBRID from [3], denoted on the pictures by HSDY, then with the algorithm of Touatti-Ahmed
and Storey (ToAhS) from [29], the algorithm of Hu and Storey (HuS) from [21] and the algorithm (GN) of
Gilbert and Nocedal from [18], using the performance profiles of Dolan and Moré [15]. The criterion of
comparation is CPU time. The stopping criterion of all algorithms is ‖1k‖ < 10−6. From the figures below,
we can conclude that FRPRPCC algorithm behaves similar to or better than CCOMB, HYBRID, ToAhS, HuS
and GN.
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S. S. Djordjević / Filomat 30:11 (2016), 3083–3100 3096

0

0,5

1

Τ

Ρ

 
8 16 24 32 40 48

Figure 5. (n=90)

52 56

FRPRPCC

GN

HuS
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