Filomat 30:10 (2016), 2795–2801 DOI 10.2298/FIL1610795H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Claw-Free Graphs with Equal 2-Domination and Domination Numbers

Adriana Hansberg^a, Bert Randerath^b, Lutz Volkmann^c

^aInstituto de Matemáticas, UNAM Juriquilla, 76230 Querétaro, Mexico ^bInstitut für Nachrichtentechnik, FB 07, Fachhochschule Köln, 50679 Köln, Germany ^cLehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Abstract. For a graph *G* a subset *D* of the vertex set of *G* is a *k*-dominating set if every vertex not in *D* has at least *k* neighbors in *D*. The *k*-domination number $\gamma_k(G)$ is the minimum cardinality among the *k*-dominating sets of *G*. Note that the 1-domination number $\gamma_1(G)$ is the usual *domination number* $\gamma(G)$. Fink and Jacobson showed in 1985 that the inequality $\gamma_k(G) \ge \gamma(G) + k - 2$ is valid for every connected graph *G*. In this paper, we concentrate on the case k = 2, where γ_k can be equal to γ , and we characterize all claw-free graphs and all line graphs *G* with $\gamma(G) = \gamma_2(G)$.

1. Terminology and Introduction

We consider finite, undirected, and simple graphs *G* with vertex set V = V(G) and edge set E = E(G). The number of vertices |V(G)| of a graph *G* is called the *order* of *G* and is denoted by n(G). The *neighborhood* $N(v) = N_G(v)$ of a vertex *v* consists of the vertices adjacent to *v* and $d(v) = d_G(v) = |N(v)|$ is the *degree* of *v*. The *closed neighborhood* of *v* is the set $N[v] = N_G[v] = N(v) \cup \{v\}$. By $\delta(G)$ and $\Delta(G)$, we denote the *minimum degree* and the *maximum degree* of the graph *G*, respectively. For a subset $S \subseteq V$, we define by G[S] the subgraph induced by *S*. If *x* and *y* are vertices of a connected graph *G*, then we denote with $d_G(x, y)$ the *distance* between *x* and *y* in *G*, i.e. the length of a shortest path between *x* and *y*.

With K_n we denote the complete graph on n vertices and with C_n the cycle of length n. We refer to the complete bipartite graph with partition sets of cardinality p and q as the graph $K_{p,q}$. A *block* is a maximal connected subgraph without cut-vertices. A graph G is a *block-cactus graph* if every block of G is either a complete graph or a cycle. G is a *cactus graph* if every block of G is a cycle or a K_2 . If we substitute each edge in a non-trivial tree by two parallel edges and then subdivide each edge, then we speak of a C_4 -cactus. Let G and H be two graphs. For a vertex $v \in V(G)$, we say that the graph G' arises by *inflating* the vertex v to the graph H if the vertex v is substituted by a set S_v of n(H) new vertices and a set of edges such that $G'[S_v] \cong H$ and every vertex in S_v is connected to every neighbor of v in G by an edge.

The *cartesian product* of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ with vertex set $V(G_1) \times V(G_2)$ and vertices (u_1, u_2) and (v_1, v_2) are adjacent if and only if either $u_1 = v_1$ and $u_2v_2 \in E(G_2)$ or $u_2 = v_2$ and

²⁰¹⁰ Mathematics Subject Classification. Primary 05C69

Keywords. Domination; 2-domination; claw-free graph; line graph

Received: 14 August 2014; Accepted: 03 May 2015

Communicated by Francesco Belardo

The first author's research was partially supported by the program UNAM-DGAPA-PAPIIT under project IA103915 and by Fondo Sectorial de Investigación para la Educación under project 219775 CB-2013-01.

Email addresses: ahansberg@im.unam.mx (Adriana Hansberg), hubert.randerath@fh-koeln.de (Bert Randerath),

volkm@rwth-aachen.de (Lutz Volkmann)

 $u_1v_1 \in E(G_1)$. Let u be a vertex of G_1 and v a vertex of G_2 . Then the sets of vertices $\{(u, y) \mid y \in V(G_2)\}$ and $\{(x, v) \mid x \in V(G_1)\}$ are called a *row* and, respectively, a *column* of $G_1 \times G_2$. A set of vertices in $V(G_1 \times G_2)$ is called a *transversal* of $G_1 \times G_2$ if it contains exactly one vertex on every row and every column of $G_1 \times G_2$.

Let *k* be a positive integer. A subset $D \subseteq V$ is a *k*-dominating set of the graph *G* if $|N_G(v) \cap D| \ge k$ for every $v \in V - D$. The *k*-domination number $\gamma_k(G)$ is the minimum cardinality among the *k*-dominating sets of *G*. Note that the 1-domination number $\gamma_1(G)$ is the usual *domination number* $\gamma(G)$. A *k*-dominating set of minimum cardinality of a graph *G* is called a $\gamma_k(G)$ -set. For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi, and Slater [16, 17]. More information on *k*-domination can be found in [2–6, 8–12, 15].

In [11] and [12], Fink and Jacobson introduced the concept of *k*-domination. The following theorem establishes a relation between the *k*-domination number γ_k and the domination number γ .

Theorem 1.1. (Fink, Jacobson [11] 1985) *If G is a graph with* $\Delta(G) \ge k \ge 2$ *, then*

$$\gamma_k(G) \ge \gamma(G) + k - 2.$$

The inequality given above is sharp. However, the characterization of the graphs attaining equality is still an open problem. In [13], the author studied the extremal graphs for general k and gave several properties for them. Among other results, it was shown that if k is an integer with $k \ge 2$ and G a connected graph with $\Delta(G) \ge k$ and $\gamma_k(G) = \gamma(G) + k - 2$, then $\Delta(G[D]) \le k - 2$ for any minimum k-dominating set D. In the case when k = 2, this implies that every minimum 2-dominating set is independent. We will state this fact in the next proposition and for the sake of completeness, we will give the proof, too.

Proposition 1.2. Let G be a connected graph with $\Delta(G) \ge 2$. If $\gamma_2(G) = \gamma(G)$ and D is a minimum 2-dominating set, then D is independent.

Proof. Let *D* be a minimum 2-dominating set. Then $|D| = \gamma_2(G) = \gamma(G)$. If *D* is not independent, then it contains two adjacent vertices $a, b \in D$. But then, $D - \{a\}$ is a dominating set of cardinality $\gamma(G) - 1$, a contradiction. \Box

In [14], the authors characterized the block-cactus graphs with equal domination and 2-domination numbers. They also presented some properties on graphs *G* with $\gamma_2(G) = \gamma(G)$.

In this paper, we center our attention on claw-free graphs. The graph $K_{1,3}$ is called a *claw*. A *claw-free graph* is a graph which does not contain a claw as an induced subgraph. A vast collection of results on claw-free graphs can be found in the survey [7]. If *G* is a graph, then the *line graph* of *G*, denoted by *L*(*G*), is obtained by associating one vertex to each edge of *G*, and two vertices of *L*(*G*) are joined by an edge if and only if the corresponding edges in *G* are incident with each other. If for a graph *G* there is a graph *G*' whose line graph is isomorphic to *G*, then *G* is called a *line graph*. In 1943, Krausz presented the following characterization of line graphs.

Theorem 1.3. (Krausz [18] 1943) *A* graph *G* is a line graph if and only if it can be partitioned into edge disjoint complete graphs such that every vertex of *G* belongs to at most two of them.

In 1968, Beineke [1] obtained a characterization of line graphs in terms of nine forbidden induced subgraphs. Since the claw is one of those subgraphs, every line graph is claw-free. In the figure below, we present three of the forbidden induced subgraphs, to which we will refer later.

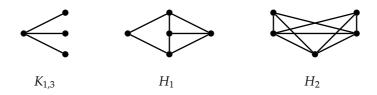


Figure 1: Three forbidden induced subgraphs in line graphs.

2. Claw-Free Graphs with $\gamma = \gamma_2$

In a graph *G* with $\gamma(G) = \gamma_2(G)$, every minimum 2-dominating set is independent by Proposition 1.2. This fact yields us the following lemma.

Lemma 2.1. Let *G* be a connected nontrivial graph with $\gamma_2(G) = \gamma(G)$ and let *D* be a minimum 2-dominating set of *G*. Then, for each vertex $x \in V - D$ and $a, b \in D \cap N(x)$, there is a vertex $y \in V - D$ such that x, y, a and b induce a C_4 .

Proof. By Proposition 1.2, *a* and *b* are not adjacent. Let $X \subseteq V - D$ be the set of vertices that are not dominated by $D - \{a, b\}$. Since *D* is a 2-dominating set of *G*, all vertices of *X* are adjacent to both *a* and *b*. If all vertices of $X - \{x\}$ are adjacent to *x*, then the set $(D - \{a, b\}) \cup \{x\}$ is a dominating set of *G* of size $\gamma(G) - 1$, a contradiction. Hence, there is a vertex $y \in X$ such that *x*, *y*, *a* and *b* induce a C_4 . \Box

Lemma 2.2. Let *G* be a connected nontrivial claw-free graph. If $\gamma(G) = \gamma_2(G)$, then every minimum 2-dominating set *D* of *G* fulfills:

- (i) Every vertex in V D has exactly two neighbors in D.
- (*ii*) Every two vertices $a, b \in D$ are at distance 2 in G.

Proof. (i) Because *G* is claw-free and, by Proposition 1.2, *D* is an independent 2-dominating set, every vertex in V - D has exactly two neighbors in *D* and thus (i) follows.

(ii) Suppose that *a* and *b* are two vertices in *D* such that $d_G(a, b) > 2$. Without loss of generality, let *b* fulfill $d_G(a, b) = \min\{d_G(a, x) > 2 \mid x \in D\}$ and let *P* be a shortest path from *a* to *b* in *G*. Let *u* be the neighbor of *a* in *P* and *v* be the second neighbor of *u* in *P*. By Proposition 1.2, *u* does not belong to *D*. Suppose to the contrary that $v \in D$. By Lemma 2.1, there is a vertex $y \in V - D$ such that u, y, a and v induce a C_4 . Let *w* denote the neighbor of *v* in *P* different from *u*. Since *G* is claw-free, *w* is adjacent to *u* or to *y*, contradicting the minimality of *P*. Hence, we may assume that $v \in V - D$, and both *u* and *v* have two neighbors in *D*. Let *c* be the second neighbor of *u* from *D*. Since *G* is claw-free and $ac \notin E$, *v* has to be adjacent to *a* or to *c*. Because of the minimality of the length of *P*, *v* cannot be adjacent to *a* and thus it is adjacent to another vertex from *D*. From the choice of the vertex *b*, we obtain that *b* is the second neighbors. Further, from Lemma 2.1, we obtain that there are vertices *u'* and *v'* in *S* such that *u'* is adjacent to *a* and *c* but not to *u*, and *v'* is adjacent to *c* and *b* but not to *v*. Besides, *u* and *v'* cannot be adjacent for otherwise the vertices *u*, *a*, *v*, *v'* would induce a claw in *G*. Hence, as $G[\{c, v', u', u\}]$ cannot be a claw, *u'* and *v'* are adjacent.

Now we will show that the set $D' = (D - \{a, b, c\}) \cup \{u, v'\}$ is a dominating set of *G*. Let $z \in V - D'$. From the construction of *H* and since *D* is 2-dominating, it is evident that if $z \in V - V(H)$, then it has at least one neighbor in $D - \{a, b, c\}$. If $z \in \{a, c, v\}$, it has *u* as neighbor in *D'* and if $z \in \{b, u'\}$, it is dominated by *v'* in *D'*. It remains the case that $z \in V(H) - \{a, b, c, u, u', v, v'\}$. Then *z* has exactly either *a* and *c* or *c* and *b* as neighbors in $\{a, b, c\}$. Suppose that *z* is neighbor of *a* and *c*. In that case it follows that *z* is either adjacent to *u* or to *u'*, otherwise we would have a claw. If *z* is adjacent to *u*, we are done. If *z* is adjacent to *u'* and not to *u*, then *z* has to be adjacent to *v'*, otherwise *u*, *z*, *v'* and *c* would induce a claw in *G*. Thus, *z* is dominated by *v'* in *D'*. The case that *c* and *b* are neighbors of *z* follows analogously. Hence, *D'* is a dominating set of *G* with less vertices than *D* and this is a contradiction to $\gamma(G) = \gamma_2(G) = |D|$. Thus, we obtain statement (ii).

Given a connected claw-free graph *G* graph with $\gamma_2(G) = \gamma(G)$ and a minimum 2-dominating set *D* of *G*, then by Lemma 2.2 every two vertices of *D* have distance two in *G*. Hence, from Lemma 2.1 follows that each pair of vertices of *D* has two non-adjacent common neighbors in V(G) - D. This allows us to state the following lemma.

Lemma 2.3. Let *G* be a connected claw-free graph with $\gamma(G) = \gamma_2(G)$ and let *D* be a minimum 2-dominating set of *G*. Let *S* be a subset of V(G) - D containing exactly two non-adjacent common neighbors of every pair of vertices of *D* and $H = G[D \cup S]$. Then, for every $v \in V(H)$, the graph $H[N_H(v)]$ consists of two disjoint cliques.

Proof. Note that *H* is again claw-free and $|V(H)| = |D| + 2\binom{|D|}{2} = p^2$. If p = 2, then $H = C_4$ and we are done. So suppose that $p \ge 3$. Assume first that *v* is a vertex in *D*. From the construction of *H* and since *D* is independent, *v* is adjacent to exactly |D| - 1 = p - 1 pairs of non-adjacent vertices from *S*, such that each pair has the same two neighbors in *D*. Let *x* and *y* be such a pair. Let *z* be a neighbor of *v* different from *x* and *y*. As *G* is claw-free, *z* is adjacent to *x* or to *y*. Hence, $N_H[v] \subseteq N_H[x] \cup N_H[y]$. Suppose that the set $N_H[x] \cap N_H[y] \cap N_H(v)$ contains a vertex *w*. Let *b* be the second neighbor of *x* and *y* in *D* and *c* the second neighbor of *w* in *D*. Evidently $w \notin \{x, y\}$ and $c \notin \{v, b\}$. Since *x*, *y* and *c* are pairwise non-adjacent, together with *w*, they build a claw and we obtain a contradiction. It follows that the sets $N_H[x] \cap N_H(v)$ are disjoint. Because of *G* being claw-free, each of these sets is a clique. Since $N_H(v) = (N_H[x] \cup N_H(v) = (N_H[x] \cap N_H(v)) \cup (N_H[y] \cap N_H(v))$, it follows that $H[N_H(v)]$ is the disjoint union of two cliques.

Assume now that $v \in S$. Let *a* and *b* be the two neighbors of *v* in *D*. Since there is only a second vertex which is adjacent to both *a* and *b* in *H* and as it is not a neighbor of *v* in *H*, it follows that the set $N_H[a] \cap N_H[b] \cap N_H(v)$ is empty. As *G* is claw-free, the sets $N_H[a] \cap N_H(v)$ and $N_H[b] \cap N_H(v)$ build two disjoint cliques and, for the same reason, every other neighbor of *v* in *H* is adjacent either to *a* or to *b*. Hence, $N_H(v) = (N_H[a] \cap N_H(v)) \cup (N_H[b] \cap N_H(v))$ and $H[N_H(v)]$ is the disjoint union of two cliques. \Box

Let \mathcal{H}_1 be the family of claw-free graphs G with $\Delta(G) = n(G) - 2$ containing two non-adjacent vertices of maximum degree and let \mathcal{H}_2 be the family of graphs G that arise from $K_p \times K_p$, $p \ge 3$, by inflating every vertex but the ones on a transversal (we call it the *diagonal*) to a clique of arbitrary order (see Figure 2).

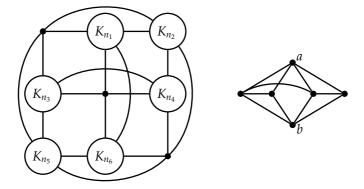


Figure 2: Examples of graphs from the families \mathcal{H}_2 and \mathcal{H}_1 (here, $n_i \in \mathbb{N}$ for $1 \le i \le 6$)

Theorem 2.4. Let G be a connected claw-free graph. Then $\gamma(G) = \gamma_2(G)$ if and only if $G \in \mathcal{H}_1 \cup \mathcal{H}_2$.

Proof. Let *G* be a connected graph. We prove the statement in two parts.

First, we show that $\gamma(G) = \gamma_2(G) = 2$ if and only if $G \in \mathcal{H}_1$. Clearly, $\Delta(G) \le n(G) - 2$ if and only if $\gamma(G) \ge 2$. Hence, if *G* is a connected graph such that $\gamma(G) = \gamma_2(G) = 2$, then $\Delta(G) \le n(G) - 2$ and every minimum 2-dominating set is independent. Hence, there are two non-adjacent vertices *a* and *b* such that every other vertex is adjacent to both of them, that is, $d_G(a) = d_G(b) = n(G) - 2 = \Delta(G)$. Thus, $G \in \mathcal{H}_1$. Conversely, if *G* is a graph with $\Delta(G) = n(G) - 2$ containing two non-adjacent vertices *a* and *b* with $d_G(a) = d_G(b) = \Delta(G)$, then every vertex $x \in V(G) - \{a, b\}$ is adjacent to both *a* and *b*. This implies that $2 \le \gamma(G) \le \gamma_2(G) \le 2$ and so $\gamma(G) = \gamma_2(G) = 2$.

We will show now that $\gamma(G) = \gamma_2(G) = p \ge 3$ holds if and only if $G \in \mathcal{H}_2$. Let $H \in \mathcal{H}_2$ be a graph isomorphic to the cartesian product $K_p \times K_p$ of two complete graphs of order p, let $T \subset V(H)$ be a transversal of H and let G be a graph that arises from H by inflating every vertex $x \in V(H) - T$ to a clique C_x of arbitrary order. It is evident that every dominating set of G has to contain vertices on every *row* or every *column* of *G* and thus $p \le \gamma(G)$. Since *T* is a 2-dominating set of *G*, we obtain $p \le \gamma(G) \le \gamma_2(G) \le p$ and hence, $\gamma(G) = \gamma_2(G) = p$.

We prove the converse. Let $\gamma(G) = \gamma_2(G) = p \ge 3$, let $D = \{a_1, a_2, \dots, a_p\}$ be a minimum 2-dominating set and let *S* be a subset of V(G) - D containing exactly two non-adjacent common neighbors of every pair of vertices of *D* and $H = G[D \cup S]$, as in Lemma 2.3. Let C_1 and C_2 be the two complete graphs induced by $N_H[a_1]$ in *H* such that $V(C_1) \cap V(C_2) = \{a_1\}$, given also by Lemma 2.3. Thus C_1 and C_2 contain exactly one vertex of each pair of non-adjacent vertices from *S* which have a_1 and a second common neighbor in *D*. Then, for every vertex $a_i \in D - \{a_1\}$, there are vertices $u_i \in V(C_1)$ and $v_i \in V(C_2)$ such that u_i and v_i are common neighbors of a_1 and a_i . We define $u_1 := a_1$ and $v_1 := a_1$. By the construction of *H*, it follows that $V(C_1) = \{u_1, u_2, \dots, u_p\}$ and $V(C_2) = \{v_1, v_2, \dots, v_p\}$. Further, for every vertex $u_i \in V(C_1)$, let C_{u_i} be the clique in *H* such that $N_H[v_i] = V(C_1) \cup V(C_{u_i})$ and $V(C_1) \cap V(C_{u_i}) = \{u_i\}$. Analogously for every $v_j \in V(C_2)$, let C_{v_j} be the clique in *H* such that $N_H[v_j] = V(C_2) \cup V(C_{v_j})$ and $V(C_2) \cap V(C_{v_j}) = \{v_j\}$. Note that $C_1 = C_{v_1}$ and $C_2 = C_{u_1}$.

Claim 1. For every pair of different indices $i, j \in \{1, 2, ..., p\}, V(C_{u_i}) \cap V(C_{u_i}) = \emptyset$ and $V(C_{v_i}) \cap V(C_{v_i}) = \emptyset$.

Proof of Claim 1. Since $a_i \in V(C_{u_i})$ and $a_j \in V(C_{u_j})$ and a_i and a_j are non-adjacent, it follows that $C_{u_i} \neq C_{u_j}$ and thus by Lemma 2.3 we obtain $V(C_{u_i}) \cap V(C_{u_j}) = \emptyset$. $V(C_{v_i}) \cap V(C_{v_j}) = \emptyset$ follows analogously.

Claim 2. $V(H) = \bigcup_{i=1}^{p} V(C_{u_i}) = \bigcup_{i=1}^{p} V(C_{v_i})$ and each union is a disjoint one.

Proof of Claim 2. Let $x \in V(H)$. We will show that $x \in V(C_{u_i})$ and $x \in V(C_{v_j})$ for some $i, j \in \{1, 2, ..., p\}$. If $x = a_i \in D$, then $a_i \in V(C_{u_i}) \cap V(C_{v_i})$ and we are done. Thus suppose that $x \notin D$ and let $\{a_i, a_j\} = D \cap N_H(x)$. Then $x \in V(C_{u_i})$ or $x \in V(C_{u_j})$ but not both because of Claim 1. Analogously $x \in V(C_{v_i})$ or $x \in V(C_{v_j})$ but not both. Since $\{a_i\} = V(C_{u_i}) \cap V(C_{v_i})$ and $\{a_j\} = V(C_{u_j}) \cap V(C_{v_j})$, it follows that $x \in V(C_{u_i}) \cap V(C_{v_j})$ or $x \in V(C_{u_j}) \cap V(C_{v_j})$ or $x \in V(C_{u_j}) \cap V(C_{v_j})$ but not both. Hence $V(H) \subseteq \bigcup_{i=1}^p V(C_{u_i})$ and $V(H) \subseteq \bigcup_{j=1}^p V(C_{v_j})$ and each union is a disjoint one. Since the inclusions the other way around are obvious, the claim is proved.

Claims 1 and 2 imply that every vertex $x \in V(H) - (V(C_1) \cup V(C_2))$ is adjacent to exactly one vertex $u_x \in V(C_1)$ and one vertex $v_x \in V(C_2)$. Moreover, we obtain that $N_H[x] = V(C_{u_x}) \cup V(C_{v_x})$ and $V(C_{u_x}) \cap V(C_{v_x}) = \{x\}$. Now we can define the mapping

$$\phi: V(H) \longrightarrow V(C_1 \times C_2): u_i \mapsto (u_i, v_1), \text{ for } u_i \in V(C_1)$$
$$v_i \mapsto (u_1, v_i), \text{ for } v_i \in V(C_2)$$
$$x \mapsto (u_x, v_x), \text{ otherwise.}$$

Claim 3. The mapping ϕ *is bijective.*

Proof of Claim 3. Let *x* and *y* be two vertices from $V(H) - (V(C_1) \cup V(C_2))$ such that $\phi(x) = (u_i, v_j) = \phi(y)$. Then *x* and *y* are contained in $V(C_{u_i}) \cup V(C_{v_j})$. By Lemma 2.3, we obtain that $\{x\} = V(C_{u_i}) \cap V(C_{v_j}) = \{y\}$ and thus x = y. Hence, ϕ is injective. Since

$$|V(H) - (V(C_1) \cup V(C_2))| = |D|^2 - 2|D| + 1 = (|D| - 1)^2$$
$$= |(V(C_1) - \{u_1\}) \times (V(C_2) - \{v_1\})|,$$

it follows that ϕ is bijective. \parallel

Claim 4.
$$H \cong C_1 \times C_2 \cong K_p \times K_p$$
.

Proof of Claim 4. Let *x* and *y* be two vertices in *V*(*H*) and let $\phi(x) = (u_i, v_j)$ and $\phi(y) = (u_l, v_m)$. We will show that *x* and *y* are adjacent if and only if i = l or j = m. Suppose that *x* is a neighbor of *y*. From the definition of the mapping ϕ we have that *x* is adjacent to u_i and v_j and that *y* is adjacent to u_l and v_m . From Lemma 2.3 it follows that *y* is adjacent either to u_i or to v_j . This implies that i = l or j = m. Conversely, if i = l or j = m, it follows again by Lemma 2.3 that *x* and *y* are in a clique together with either $u_i = u_l$ or with $v_j = v_m$.

By Proposition 1.2, *D* is independent. Therefore, every row and every column of *H* contains at most one vertex of *D*. Since |D| = p, every row and every column of *H* contains exactly one vertex of *D*. Hence, *D* is a transversal of *H*. Let *x* be a vertex in V(G) - V(H) and let *a* and *b* be the neighbors of *x* in *D*. Then *H* contains exactly two non-adjacent vertices *u* and *v* having both *a* and *b* as neighbors. As *G* is claw-free, *x* is adjacent to *u* or to *v*. Suppose that *x* is adjacent to both *u* and *v*. By Lemma 2.1, there is a vertex $y \in V - D$ such that *x*, *y*, *a* and *b* induce a *C*₄. Clearly, *y* is distinct from *u* and *v*. Now the set $S' = (S - \{u, v\}) \cup \{x, y\}$ has the same properties as *S* and thus the graph *H'* induced by $(V(H) - \{u, v\}) \cup \{x, y\}$ is isomorphic to $K_p \times K_p$. By symmetry, we can assume that $N_H(u) = N_{H'}(x)$ and $N_H(v) = N_{H'}(y)$. Since $p \ge 3$, there is a vertex $z_1 \in V(H) - \{a, b, v\}$ that belongs to the column of *H* that contains *v* and there is a vertex z_2 that belongs to the row of *H* that contains *v*. Clearly, z_1 and z_2 are distinct and z_1 , z_2 and *x* are pairwise non-adjacent, and so together with *v* they build a claw in *G* and we obtain a contradiction. Hence, without loss of generality, we can assume that *x* is adjacent to *u* but not to *v*. Then the set $S' = (S - \{u\}) \cup \{x\}$ has the same properties as *S* and thus the graph induced by the set $(V(H) - \{u\}) \cup \{x\}$ is again isomorphic to $K_p \times K_p$.

For every vertex $u \in V(H) - D$, let a_u and b_u be the neighbors of u in D, let C_u^* be the set of vertices in G that are adjacent to a_u , b_u and u and let $C_u = C_u^* \cup \{u\}$. Clearly, $\bigcup_{u \in V(H) - D} C_u \cup D = V(G)$. It is now easy to see that, for every vertex $u \in V(H) - D$, the set C_u induces a clique in G and that $N_G[x] = N_G[u]$ for every vertex $x \in C_u$.

Hence, if we melt all vertices of every clique C_u for each vertex $u \in V(H) - D$ to a unique vertex \hat{u} , we obtain a graph \hat{H} isomorphic to $K_p \times K_p$. Reverting the process, that is, inflating each vertex \hat{u} to the original clique C_u , we obtain again G. Therefore, $G \in \mathcal{H}_2$. \Box

Theorem 2.5. Let *G* be a connected line graph. Then $\gamma_2(G) = \gamma(G)$ if and only if *G* is either the cartesian product $K_p \times K_p$ of two complete graphs of the same cardinality *p* or *G* is isomorphic to the graph *J* depicted in Figure 3.

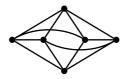


Figure 3: Graph J

Proof. Since every line graph is claw-free, the set of line graphs with $\gamma = \gamma_2$ is contained in $\mathcal{H}_1 \cup \mathcal{H}_2$. If *G* is a cartesian product of two complete graphs K_p for an integer $p \ge 2$, then the graphs induced by the vertices of every row and of every column of *G* are complete graphs K_p and form a partition of *G* into edge disjoint complete subgraphs such that every vertex of *G* is contained in at most two of them. Hence, by Theorem 1.3, *G* is a line graph. If $G \cong J$, it is not difficult to obtain a partition of the graph *J* into edge disjoint complete subgraphs such that every vertex of *J* is contained in at most two of them and thus *J* is a line graph. Conversely, suppose that $G \in \mathcal{H}_1 \cup \mathcal{H}_2$ is a line graph.

Case 1. Assume that $G \in \mathcal{H}_2$, that is, *G* is a cartesian product $K_p \times K_p$ of two complete graphs of order *p* for an integer $p \ge 2$ such that the vertices not in a certain transversal *T* of *G* are inflated into a clique of arbitrary order. Let *a* and *b* be two elements of *T* and U_1 and U_2 the two inflated vertices which are neighbors of both *a* and *b*. Suppose that U_1 has order at least 2 and let *x* and *y* be vertices in U_1 and *z* a vertex in U_2 . It is now easy to see that the vertices *a*, *b*, *x*, *y* and *z* induce the graph H_1 of Figure 1. Hence, *G* cannot be a line graph, which contradicts to our hypothesis. Thus, *G* contains no inflated vertices, that is, it is a cartesian product of two complete graphs of order $p \ge 2$.

Case 2. Assume that $G \in \mathcal{H}_1$, that is, G is a graph of maximum degree $\Delta(G) = n(G) - 2$ containing two non-adjacent vertices a and b such that every vertex $x \in V(G)$ is adjacent to both a and b. If n(G) = 4, then obviously it is a C_4 and thus isomorphic to $K_2 \times K_2$. Since the only claw-free graph in \mathcal{H}_1 of order 5 is isomorphic to H_1 , which is not a line graph, we can assume that $n(G) \ge 6$. As $\Delta(G) = n(G) - 2$, there are two non-adjacent vertices x and y different from a and b. Let $z \in V(G) - \{a, b, x, y\}$. Since G is claw-free and every vertex in $V(G) - \{a, b\}$ is adjacent to both a and b, without loss of generality, we can suppose that z is

neighbor of *x*. If *z* is not adjacent to *y*, the vertices *a*, *b*, *x*, *z* and *y* would induce a graph isomorphic to H_1 and *G* would not be a line graph. Hence, *z* is neighbor of *y*. Since $\Delta(G) = n(G) - 2$, there is another vertex *z'* which is not adjacent to *z*, but, as before, adjacent to *x* and *y* and of course to *a* and *b*. If n(G) = 6, we are ready and $G \cong J$. If $n(G) \ge 7$, then there is another vertex *w* adjacent to *x*, *y*, *z* and *z'* (with the same arguments as before). But then, the vertices *a*, *b*, *x*, *z* and *w* induce a graph isomorphic to H_2 of Figure 1 and *G* is not a line graph. Therefore, *G* cannot have order greater than 6 and, thus, the only possibility for *G* is to be isomorphic to the graph *J*.

It follows that $\gamma_2(G) = \gamma(G)$ if and only if *G* is either the cartesian product $K_p \times K_p$ of two complete graphs of the same cardinality $p \ge 2$ or *G* is isomorphic to the graph *J* of Figure 3. \Box

3. Open Problems and Further Research

We close with the following list of open problems that we have yet to settle.

Problem 3.1. Characterize further families of graphs G with $\gamma_2(G) = \gamma(G)$ (for instance outerplanar graphs, diamond-free graphs, etc.).

Problem 3.2. Find necessary and/or sufficient conditions for a graph having $\gamma_k(G) = \gamma(G) + k - 2$.

As mentioned in the introduction, we know that, when a graph *G* fulfills $\gamma_k(G) = \gamma(G) + k - 2$, then the maximum degree of the graph induced by a minimum *k*-dominating set it at most k - 2. This property was the key in characterizing the claw free graphs *G* with $\gamma_2(G) = \gamma(G)$, as every vertex outside a minimum 2-dominating set has to have exactly two neighbors in it. Similarly for larger *k*, one could analyze families of graphs with some forbidden structures. For instance, when k = 3 and *G* is $K_{1,4}$ -free and $K_{1,3} + e$ -free (i.e. a claw provided with an additional edge *e*), then every vertex outside any minimum 3-dominating set *D* has exactly three neighbors in *D*. Thus, we pose the following problem.

Problem 3.3. Characterize the $\{K_{1,4}, K_{1,3} + e\}$ -free graphs G with $\gamma_3(G) = \gamma(G) + 1$.

References

- L.W. Beineke, Derived graphs and digraphs, Beiträge zur Graphentheorie (Hrsg. H. Sachs, H. Voss, H. Walther), Teubner, Leipzig (1968) 17–23.
- [2] Y. Caro, On the k-domination and k-transveral numbers of graphs and hypergraphs, Ars Combin. 29 C (1990) 49–55.
- [3] Y. Caro, Y. Roditty, A note on the k-domination number of a graph, Internat. J. Math. Math. Sci. 13 (1990) 205–206.
- [4] Y. Caro, R. Yuster, Dominating a family of graphs with small connected subgraphs, Combin. Probab. Comput. 9 (2000) 309–313.
- [5] M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, k-domination and k-independence in graphs: a survey, Graphs Combin. 28 (1) (2012) 1–55.
- [6] E.J. Cockayne, B. Gamble, B. Shepherd, An upper bound for the *k*-domination number of a graph, J. Graph Theory 9 (1985) 533–534.
- [7] R. Faudree, E. Flandrin, Z. Ryjáček, Claw-free graph a survey, The Second Krakow Conference on Graph Theory (Zgorzelisko, 1994), Discrete Math. 164 (1–3) (1997) 87–147.
- [8] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combin. Theory Series B 39 (1985) 101–102.
- [9] O. Favaron, *k*-domination and *k*-independence in graphs, Ars Combin. 25 C (1988) 159–167.
- [10] O. Favaron, A. Hansberg, L. Volkmann, On *k*-domination and minimum degree in graphs, J. Graph Theory 57 (2008) 33–40.
- [11] J.F. Fink, M.S. Jacobson, *n*-Domination in graphs, Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985) 283–300.
- [12] J.F. Fink, M.S. Jacobson, On *n*-domination, *n*-dependence and forbidden subgraphs, Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985) 301–311.
- [13] A. Hansberg, On the k-domination number, the domination number and the cycle of length four, Util. Math. 98 (2015) 65–76.
- [14] A. Hansberg, L. Volkmann, On graphs with equal domination and 2-domination numbers, Discrete Math. 308 (11) (2008) 2277–2281.
- [15] A. Hansberg, L. Volkmann, Upper bounds on the k-domination number and the k-Roman domination number, Discrete Appl. Math. 157 (7) (2009) 1634–1639.
- [16] T.W. Haynes, S.T. Hedetniemi P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
- [17] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York (1998).
- [18] J. Krausz, Démonstration nouvelle d'une théorème de Whitney sur les réseaux (Hungarian), Mat. Fiz. Lapok 50 (1943) 75–85.