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Abstract. In this paper, we prove some fixed point theorems for generalized (α-Ψ)-contractive mappings
in uniform spaces and apply them to study the existences-uniqueness problem for a class of nonlinear
integral equations with unbounded deviations. We also give some examples to show that our results are
effective.

1. Introduction

Fixed point theory plays a crucial role not only in the existence theory of differential equations, integral
equations, functional equations, partial differential equations, random differential equations and but also
in computer science and economics. In 2012, B. Samet, C. Vetro and P. Vetro [13] introduced the concepts of
α-ψ-contractive type mappings and establish fixed point theorems for such mappings in complete metric
spaces. Later, various results on α-ψ-contractive type mappings have been obtained (see [5], [8], [12], [14]).

The main purpose of our work is to present some results concerning the fixed point theorems for (α-
Ψ)-contractive type mappings in uniform spaces as natural extensions of fixed point theorems, which have
recently exposed by many authors in metric spaces.

2. Preliminaries

Let X be a uniform space. The uniform topology on X is generated by a family of uniform continuous
pseudometrics on X (see [10]). In this paper, by (X,P) we mean a Hausdorff uniform space whose uniformity
is generated by a saturated family of pseudometrics P = {di(x, y) : i ∈ I}, where I is an index set. Note that,
(X,P) is Hausdorff if and only if di(x, y) = 0 for all i ∈ I implies x = y.

Definition 2.1. ([2]) Let (X,P) be a Hausdorff uniform space.
1) The sequence {xn} ⊂ X is Cauchy if di(xn, xm)→ 0 as m,n→∞ for every i ∈ I.
2) X is said to be sequentially complete if every Cauchy sequence {xn} in X converges to x ∈ X.

2010 Mathematics Subject Classification. Primary 46J10; Secondary 46J15, 47H10
Keywords. Fixed fixed point, uniform spaces, (α-Ψ)-contractive mappings.
Received: 09 August 2014; Accepted: 20 April 2015.
Communicated by Dragan S. Djordjević
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Definition 2.2. ([2]) Let j : I→ I be an arbitrary mapping of the index I into itself. The iterations of j can be
defined inductively

j0(i) = i, jk(i) = j
(
jk−1(i)

)
, for every i ∈ I, k = 1, 2, . . .

Denote by Φ = {φi : i ∈ I} a family of functions (which we call Φ-contractive) satisfying the following
properties

i) φi : [0,+∞)→ [0,+∞) is monotone non-decreasing and continuous from the right;
ii) 0 < φi(t) < t for all t > 0 and φi(0) = 0.

In [2], Angelov introduced a Φ-contractive mapping

Definition 2.3. ([2]) A mapping T : X→ X is said to be Φ-contractive if

di(Tx,Ty) ≤ φi

(
d j(i)(x, y)

)
, (1)

for every i ∈ I and for every x, y ∈ X.

Theorem 2.4. ([2]) Let X be a uniform space, and a map T : X→ X. Suppose that
1) T is a Φ-contractive map on X;
2) For every i ∈ I and t > 0, lim

n→∞
φi

(
φ j(i)(. . . φ jn(i)(t) . . .)

)
= 0;

3) The mapping j : I → I is surjective and for some x0 ∈ X the sequence {xn} with xn = Txn−1,n = 1, 2, . . .
satisfies di(xm, xm+n) ≥ d j(i)(xm, xm+n) for all m,n ≥ 0.

Then T has at least one fixed point in X.

Definition 2.5. ([2]) A uniform space (X,P) is said to be j-bounded if for every i ∈ I and x, y ∈ X there exists
q = q(x, y, i) such that

d jn(i)(x, y) ≤ q(x, y, i) < ∞, for all n ∈N∗.

By using the notion of a j-bounded space, he proved that the fixed point in the above theorem is in fact
unique.

Theorem 2.6. ([2]) If we add to the conditions of Theorem 2.4 the assumption for j-boundedness of X, then the fixed
point of T is unique.

In 2012, B. Samet, C. Vetro and P. Vetro [13] considered α-ψ-contractive mappings, and proved the
following fixed point theorem withψ : [0,+∞)→ [0,+∞) is a non-decreasing function such that

∑+∞
n=1 ψ

n(t) <
+∞ for each t > 0, where ψn is the n-th iterate of ψ.

Definition 2.7. ([13]) Let (X, d) be complete metric space and T : X→ X be an given mapping. We say that
T is an α-ψ-contractive mapping if there exists function α : X × X→ [0; +∞) such that

α(x, y).d(Tx,Ty) ≤ ψ
(
d(x, y)

)
, for all x, y ∈ X.

Definition 2.8. ([13]) Let T : X → X. We say T is α-admissible if for all x, y ∈ X, α(x, y) ≥ 1 implies
α(Tx,Ty) ≥ 1.

Theorem 2.9. ([13]) Let (X, d) be complete metric space and T : X → X be an α-ψ-contractive mapping satisfying
the following conditions

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1;

(iii) T is continuous.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Remark 2.10. If (X, d) is a metric space, then the uniform topology generated by the metric d coincides with
the metric topology on X. Therefore, as a corollary of our results, we obtain the fixed point theorems in the
metric space.
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3. The Main Results

We begin this section at introducing the class of functions which plays a crucial role in the fixed
point theory. Sometimes, they are called to be control functions.

Let Ψ = {ψi : i ∈ I} be a family of functions with the properties

(i) ψi : [0,+∞)→ [0,+∞) is monotone non-decreasing and ψi(0) = 0;
(ii) for each i ∈ I, there exists ψi ∈ Ψ such that

sup
{
ψ jn(i)(t) : n = 0, 1, . . .

}
≤ ψi(t) and

+∞∑
n=1

ψ
n
i (t) < +∞ for all t > 0.

The following lemma may be not original.

Lemma 3.1. 1) If ψ : [0,+∞)→ [0,+∞) is a non-decreasing function then for every t > 0, lim
n→+∞

ψn(t) = 0 implies
ψ(t) < t.

2) For every i ∈ I, we have ψi ∈ Ψ is a right continuous function at 0.

Proof. 1) Suppose there exists t0 > 0 such that lim
n→∞

ψn(t0) = 0 andψ(t0) ≥ t0. Then, sinceψ is a non-decreasing
function, from ψ(t0) ≥ t0, we have

ψ2(t0) = ψ
(
ψ(t0)

)
≥ ψ(t0) ≥ t0.

It implies that ψn(t0) ≥ t0 for all n = 1, 2, . . . Hence lim
n→∞

ψn(t0) ≥ t0 > 0. This is a contraction.

2) Let ψi ∈ Ψ. Then there exists ψi ∈ Ψ such that ψi(t) ≤ ψi(t) and
∑+∞

n=1 ψ
n
i (t) < +∞ for all t > 0. This

follows that limn→∞ ψ
n
i (t) = 0 for all t > 0. Using 1) we have ψi(t) < t for all t > 0. Hence we obtain that

ψi(t) ≤ t for all t > 0. Letting t→ 0+ we obtain limt→0+ ψi(t) = 0. That is, ψi is right continuous at 0.

Let α = {αi : i ∈ I} be a family of functions with αi : X × X→ [0,+∞).

Definition 3.2. Let (X,P) be a uniform space with P =
{
di(x, y) : i ∈ I

}
and T : X → X be a given mapping.

We say T is an (α-Ψ)-contractive mapping if for every function αi ∈ α and ψi ∈ Ψ we have

αi(x, y).di(Tx,Ty) ≤ ψi

(
d j(i)(x, y)

)
, (2)

for all x, y ∈ X.

Definition 3.3. Let T : X → X. We say T is α-admissible if for all x, y ∈ X, and i ∈ I, αi(x, y) ≥ 1 implies
αi(Tx,Ty) ≥ 1.

Example 3.4. Let X = R∞ =
{
x = {xn} : xn ∈ R,n = 1, 2, . . .

}
and I be the index set. Define T : X → X and

αi = α : X × X→ [0,+∞), for every i ∈ I by

Tx =
{

3
√

x1,
3
√

x2, . . .
}
,

and

α(x, y) =

1 if xn ≥ yn for some n ∈N∗,
0 if xn < yn for all n ∈N∗.

Then α(x, y) ≥ 1 if and only if there exists n such that xn ≥ yn. This implies that 3
√

xn ≥ 3
√

yn for some n ∈N∗.
Thus α(Tx,Ty) ≥ 1, or T is α-admissible.
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Example 3.5. Let X = R∞ =
{
x = {xn} : xn ∈ R,n = 1, 2, . . .

}
, I = N∗. Define T : X → X and αi : X × X →

[0,+∞), i ∈ I by

Tx =
{
ex1 , ex2 , . . .

}
and

αi(x, y) =

i if xn ≥ yn for some n ∈N∗,
0 if xn < yn for all n ∈N∗.

Then αi(x, y) ≥ 1 if and only if there exists n such that xn ≥ yn. This implies that exn ≥ eyn for some n ∈ N∗.
Therefore αi(Tx,Ty) = i ≥ 1, or T is α-admissible.

Now, we give a new fixed point theorem in uniform spaces.

Theorem 3.6. Let X be a set and P =
{
dα(x, y) : α ∈ I

}
be a family of pseudometrics on X such that (X,P) is a

Hausdorff sequentially complete uniform space. Let T : X → X be an (α-Ψ)-contractive mapping satisfying the
following conditions

i) T is α-admissible;
ii) there exists x0 ∈ X such that for each i ∈ I we have αi(x0,Tx0) ≥ 1 and

d jn(i)(x0,Tx0) < q(i) < +∞ for all n ∈N∗;

iii) T is continuous.

Then, T has a fixed point, that is, there exists x ∈ X such that Tx = x.

Proof. Let x0 ∈ X such that the condition ii) is satisfied. Define the sequence {xn} in X by xn+1 = Txn, for all
n ∈N∗.

If xn = xn+1 for some n ∈N∗ then x = xn is a fixed point for T. Assume that xn , xn+1 for all n ∈N∗. Since
T is α-admissible, for each i ∈ I we have

αi(x0, x1) = αi(x0,Tx0) ≥ 1 =⇒ αi(Tx0,Tx1) = αi(x1, x2) ≥ 1.

By induction, we get

αi(xn, xn+1) ≥ 1 for all n ∈N∗, i ∈ I. (3)

Applying the inequality (2) with x = xn−1 and y = xn, and using (3), we obtain

di(xn, xn+1) = di(Txn−1,Txn) ≤ αi(xn−1, xn).di(Txn−1,Txn)

≤ ψi

(
d j(i)(xn−1, xn)

)
, for all n ∈N∗, i ∈ I.

(4)

For every i ∈ I there exists ψi ∈ Ψ such that ψi(t) ≤ ψi(t) and
∑+∞

n=1 ψ
n
i (t) < +∞ for all t > 0. Since ψi is

non-decreasing by (4) and induction, we have

di(xn, xn+1) ≤ ψi

(
ψ j(i)

(
. . . ψ jn−1(i)

(
d jn(i)(x0, x1)

)
. . .

))
≤ ψ

n
i

(
d jn(i)(x0, x1)

)
≤ ψ

n
i

(
q(i)

)
, for all n ∈N∗, i ∈ I.

Since
∑
∞

n=1 ψ
n
(xi) is convergent, for any ε > 0, there is n(ε) ∈ N∗ such that

∑
n≥n(ε) ψ

n
i

(
q(i)

)
< ε. Let m,n ∈ N

with m > n > n(ε), using the triangular inequality, we obtain

di(xn, xm) =

m−1∑
k=n

di(xk, xk+1) ≤
m−1∑
k=n

ψ
k
i

(
q(i)

)
≤

∑
n≥n(ε)

ψ
n
i

(
q(i)

)
< ε.

This shows that {xn} is a Cauchy sequence in X. Since X is sequentially complete, there exists x ∈ X such
that xn → x as n→ +∞. It follows from continuity of T that xn+1 = Txn → Tx as n→ +∞. By the uniqueness
of the limit, we get x = Tx, that is, x is a fixed point of T.
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In the next theorem, the continuity of T is omitted.

Theorem 3.7. Let X be a set and P =
{
dα(x, y) : α ∈ I

}
be a family of pseudometrics on X such that (X,P) is a

Hausdorff sequentially complete uniform space. Let T : X → X be an (α-Ψ)-contractive mapping satisfying the
following conditions

i) T is α-admissible;
ii) there exists x0 ∈ X such that for each i ∈ I we have

d jn(i)(x0,Tx0) < q(i) < +∞ for all n ∈N∗;

iii) if {xn} is a sequence in X such that αi(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→ +∞, then αi(xn, x) ≥ 1
for all n ∈N∗.

Then T, has a fixed point.

Proof. Following the proof of Theorem 3.6, we know that {xn} is a Cauchy sequence in the sequentially
complete uniform space X. Then there exists x ∈ X such that xn → x as n→ +∞. On the other hand, from
(3) and the hypothesis iii), we have

αi(xn, x) ≥ 1 (5)

for all n ∈N∗, and i ∈ I.
Now, using the triangular inequality, (2) and (5), we get

di(Tx, x) ≤ di(Tx,Txn) + di(Txn, x) = di(Tx,Txn) + di(xn+1, x)
≤ αi(xn, x).di(Tx,Txn) + di(xn+1, x)

≤ ψi

(
d j(i)(xn, x)

)
+ di(xn+1, x).

Letting n → +∞, since ψi is a right continuous function at t = 0, we obtain di(Tx, x) = 0 for all i ∈ I, that is
Tx = x.

The following examples illustrate for our theorems.

Example 3.8. Let X = R∞ =
{
x = {xn} : xn ∈ R,n = 1, 2, . . .

}
and the mapping Pn : X → R defined by

Pn(x) = Pn

(
{xn}

)
= xn for each n = 1, 2, . . . Let I = N∗ ×R+ be the index set and the family of pseudometrics

on X defined by

d(n,r)(x, y) = r
∣∣∣Pn(x) − Pn(y)

∣∣∣, for x, y ∈ X, and (n, r) ∈ I.

Then
{
d(n,r) : (n, r) ∈ I

}
generates the uniform structure on X. Let j : I→ I be defined j(n, r) =

(
n, 2r

(
1 −

1
2n

))
for every (n, r) ∈ I.

Consider the map T : X→ X defined by

Tx =


{
2x1 − 1, 2x2 − 1, . . .

}
if xn > 1 for all n ∈N∗{

1, 1 +
(
1 −

1
2

)
(1 − x2), 1 +

(
1 −

1
3

)
(1 − x3), . . .

}
if xn ≤ 1 for some n ∈N∗.

Firstly, we show that T is not a Φ-contractive map. In fact, with x = {2, 2, . . .}, y = {1, 1, . . .}we have

Tx =
{
3, 3, . . .

}
, Ty =

{
1, 1, . . .

}
.
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Hence

d(n,r)(Tx,Ty) = r
∣∣∣Pn(Tx) − Pn(Ty)

∣∣∣ = r
∣∣∣3 − 1

∣∣∣ = 2r. (6)

On the other hand

d j(n,r)(x, y) = d(
n,2r(1− 1

2n )
)(x, y) = 2r

(
1 −

1
2n

)∣∣∣Pn(x) − Pn(y)
∣∣∣

= 2r
(
1 −

1
2n

)∣∣∣2 − 1
∣∣∣ = 2r

(
1 −

1
2n

)
.

(7)

From (6) and (7), we have d(n,r)(Tx,Ty) > d j(n,r)(x, y) ≥ φ(n,r)

(
d j(n,r)(x, y)

)
for all φ(n,r) ∈ Φ. Hence, T is not a

Φ-contractive map.

Now, let ψ(n,r)(t) =
2(n − 1)
2n − 1

t with t ≥ 0 and consider a family of functions α(n,r) = α : X × X → [0,+∞),
for every (n, r) ∈ I, which is given by

α(x, y) =

1 if xn, yn ≤ 1 for some n ∈N∗,
0 if otherwise.

Next we will check that for these functions all conditions of Theorem 3.6 are satisfied. Consider the
following two cases.

Case 1. If there exists n ∈N∗ such that xn, yn ≤ 1 then

α(x, y).d(n,r)(Tx,Ty) = d(n,r)(Tx,Ty) = r
∣∣∣∣Pn(Tx) − Pn(Ty)

∣∣∣∣
= r

∣∣∣∣(1 − 1
n

)
(1 − xn) −

(
1 −

1
n

)
(1 − yn)

∣∣∣∣ = r
(
1 −

1
n

)∣∣∣xn − yn

∣∣∣ (8)

and

ψ(n,r)

(
d j(n,r)(x, y)

)
= ψ(n,r)

(
r
(
1 −

1
2n

)∣∣∣Pn(x) − Pn(y)
∣∣∣)

=
2(n − 1)
2n − 1

r
(
1 −

1
2n

)∣∣∣xn − yn

∣∣∣ = r
n − 1

n

∣∣∣xn − yn

∣∣∣. (9)

By (8) and (9), we have α(x, y).d(n,r)(Tx,Ty) ≤ ψ(n,r)

(
d j(n,r)(x, y)

)
.

Case 2. If for every n ∈N∗, xn > 1 or yn > 1, then α(x, y) = 0. Hence, we obtain

α(x, y).d(n,r)(Tx,Ty) ≤ ψ(n,r)

(
d j(n,r)(x, y)

)
.

Moreover, it is easy to see that T is continuous and there exists x0 ∈ X such that α(x0,Tx0) ≥ 1. In fact, for
x0 = {1, 1, . . .}we have

α(x0,Tx0) = 1

and

d jk(n,r)(x0,Tx0) = 0 < +∞ for all k = 1, 2, . . .

Now, let x, y ∈ X such that α(x, y) ≥ 1 then there exists n ∈N∗ such that xn, yn ≤ 1. Then we have

Tx =
{
1, 1 +

(
1 −

1
2

)
(1 − x2), 1 +

(
1 −

1
3

)
(1 − x3), . . .

}
, Ty =

{
1, 1 +

(
1 −

1
2

)
(1 − y2), 1 +

(
1 −

1
3

)
(1 − y3), . . .

}
and α(Tx,Ty) = 1, that is, T is α-admissible.

Therefore, all the required hypotheses of Theorem 3.6 are satisfied, and so T has a fixed point. Here,{
1, 1, . . .

}
is a fixed points of T.
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Now, we give an example involving a map T that is not continuous.

Example 3.9. Let X = R∞ =
{
x = {xn} : xn ∈ R,n = 1, 2, . . .

}
and the mapping Pn : X → R define by

Pn(x) = Pn

(
{xn}

)
= xn, for every n = 1, 2, . . . Let I = N∗ be the index set and the family of pseudometrics on

X defined by dn(x, y) =
∣∣∣Pn(x) − Pn(y)

∣∣∣ for every x, y ∈ X. Then {dn : n ∈ I} generates the uniform structure
on X. Denote by j : I→ I a map defined by j(n) = n, for all n ∈ I.

Consider a mapping T : X→ X, which is defined by

Tx =


{
2x1 −

3
2
, 2x2 −

3
2
, . . .

}
if xn > 1 for all n ∈N∗,{x1

4
,

x2

4
, . . .

}
if xn ≤ 1 for some n ∈N∗.

Firstly, we show that T is not a Φ-contractive map. In fact, with x = {1, 1, . . .}, y = {2, 2, . . .}we have

Tx =
{1
4
,

1
4
, . . .

}
, Ty =

{5
2
,

5
2
, . . .

}
and

dn(Tx,Ty) =
∣∣∣∣14 − 5

2

∣∣∣∣ =
9
4
,

d j(n)(x, y) = dn(x, y) = |1 − 2| = 1.

It follows that

dn(Tx,Ty) > d j(n)(x, y) ≥ φn

(
d j(n)(x, y)

)
for all φn ∈ Φ.

Hence, T is not a Φ-contractive map.

Now for every n ∈ I we consider the function, which is given by ψn(t) =
1
2

t, for all t ≥ 0, put

Ψ = {ψn : n ∈ I} and consider a family of functions αn = α : X ×X→ [0,+∞), for every n ∈ I, which is given
by

α(x, y) =

1 if xn, yn ≤ 1 for all n ∈N∗

0 if otherwise.

Next we will check that for these functions all conditions of Theorem 3.7 are satisfied. Let x, y ∈ X, we
consider the following two cases.

Case 1. If for every n ∈N∗ we have xn, yn ≤ 1 then

α(x, y).dn(Tx,Ty) = dn(Tx,Ty) =
∣∣∣∣xn

4
−

yn

4

∣∣∣∣, (10)

and

ψn

(
d j(n)(x, y)

)
= ψn

(
dn(x, y)

)
=

dn(x, y)
2

=
|xn − yn|

2
. (11)

By (10) and (11), we have α(x, y).dn(Tx,Ty) ≤ ψn

(
d j(n)(x, y)

)
.

Case 2. If there is a n ∈N∗ such that xn > 1 or yn > 1 then α(x, y) = 0. This follows that

α(x, y).dn(Tx,Ty) ≤ ψn

(
d j(n)(x, y)

)
.

Moreover, there exists x0 ∈ X such that α(x0,Tx0) ≥ 1. In fact, for x0 = {1, 1, . . .}we have

α(x0,Tx0) = 1
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and

d jk(n,r)(x0,Tx0) =
3
4
< +∞ for all k = 1, 2, . . .

Now, let x, y ∈ X such that α(x, y) ≥ 1 then xn, yn ≤ 1 for all n ∈ N∗. It follows that Tx =
{x1

2
,

x2

2
, . . .

}
,

Ty =
{ y1

2
,

y2

2
, . . .

}
and α(Tx,Ty) = 1. Hence, T is α-admissible.

Finally, let
{
xk

}
be a sequence in X such that α

(
xk, xk+1

)
≥ 1 for all k ∈ N∗ and xk

→ x ∈ X as k → +∞.

Since α
(
xk, xk+1

)
≥ 1 for all k ∈N∗, by definition of α, for each k ∈N∗, xk

n, xk+1
n ≤ 1 for all n ∈N∗. Since xk

→ x
as k→ +∞we have xn ≤ 1 for all n ∈N∗. Hence α(xk, x) = 1 for all k ∈N∗.

Therefore, all the required hypotheses of Theorem 3.7 are satisfied, and so T has a fixed point. Here,{
0, 0, . . .

}
and

{3
2
,

3
2
, . . .

}
are two fixed points of T. However, it is easy to see that T is not continuous.

One can proved that the fixed point is in fact unique, provide that we have to add the properties for X
and the family of functions {αi : i ∈ I}.

Theorem 3.10. Suppose that the conditions of Theorem 3.6 are fulfilled. If X is j-bounded and for every x, y ∈ X,
there exists z ∈ X such that αi(x, z) ≥ 1 and αi(y, z) ≥ 1 for all i ∈ I, then T has a unique fixed point.

Proof. By Theorem 3.6, we conclude that the set of fixed points of T is nonempty. Assume that x and y are
two fixed points of T. Then there exists z ∈ X such that

αi(x, z) ≥ 1 and αi(y, z) ≥ 1 for all i ∈ I. (12)

Since T is α-admissible, from (12), we get

αi(x,Tnz) ≥ 1 and αi(y,Tnz) ≥ 1 for all n ∈N∗, i ∈ I. (13)

Using (13) and (2), we have

di(x,Tnz) = di

(
Tx,T(Tn−1z)

)
≤ αi(x,Tn−1z).di

(
Tx,T(Tn−1z)

)
≤ ψi

(
d j(i)(x,Tn−1z)

)
.

By the j-boundedness this implies that

di(x,Tnz) ≤ ψi

(
ψ j(i)

(
. . . ψ jn−1(i)

(
d jn(i)(x, z)

)
. . .

))
≤ ψ

n
i

(
d jn(i)(x, z)

)
≤ ψ

n
i

(
q(x, z, i)

)
.

Letting n→ +∞, we have ψ
n
i

(
q(x, z, i)

)
→ 0. Hence

Tnz→ x as n→ +∞. (14)

Similarly, we get

Tnz→ y as n→ +∞. (15)

By (14), (15) and the uniqueness of the limit, we get x = y. This finishes the proof.

Theorem 3.11. Suppose that the conditions of Theorem 3.7 are fulfilled. If X is j-bounded and for every x, y ∈ X,
there exists z ∈ X such that αi(x, z) ≥ 1 and αi(y, z) ≥ 1 for all i ∈ I, then F has a unique fixed point.
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Proof. Similar to the proof of Theorem 3.10.

Example 3.12. Let X = R∞ =
{
x = {xn} : xn ∈ R,n = 1, 2, . . .

}
and the mapping Pn : X → R defined by

Pn(x) = Pn

(
{xn}

)
= xn for each n = 1, 2, . . . Let I = N∗ ×R+ be the index set and the family of pseudometrics

on X defined by

d(n,r)(x, y) = r
∣∣∣Pn(x) − Pn(y)

∣∣∣, for x, y ∈ X, and (n, r) ∈ I.

Then
{
d(n,r) : (n, r) ∈ I

}
generates the uniform structure on X.

Now for every (n, r) ∈ I we consider the function, which is given by ψ(n,r)(t) =
2(n − 1)
2n − 1

t, for all t ≥ 0, and

put Ψ = {ψ(n,r) : (n, r) ∈ I}. Denote by j : I → I a map defined by j(n, r) =
(
n, r

(
1 −

1
2n

))
, for all (n, r) ∈ I and

define a mapping T : X→ X, which is defined by

Tx =
{
2, 2 −

(
1 −

1
2

)
(2 − x2), 2 −

(
1 −

1
3

)
(2 − x3), . . .

}
for every x = {xn} ∈ X.

Now, we consider a family of functions α(n,r) = α : X × X → [0,+∞), for every (n, r) ∈ I, which is given
by

α(x, y) =

1 if xn ≤ 2 for all n ∈N∗ or yn ≤ 2 for all n ∈N∗

0 if otherwise.

We will check that for these functions all conditions of Theorem 3.10 are satisfied.
Firstly, for any x, y ∈ X we have

α(x, y).d(n,r)(Tx,Ty) ≤ d(n,r)(Tx,Ty) = r
∣∣∣∣Pn(Tx) − Pn(Ty)

∣∣∣∣
= r

∣∣∣∣(1 − 1
n

)
(2 − xn) −

(
1 −

1
n

)
(2 − yn)

∣∣∣∣ = r
(
1 −

1
n

)∣∣∣xn − yn

∣∣∣ (16)

and

ψ(n,r)

(
d j(n,r)(x, y)

)
= ψ(n,r)

(
r
(
1 −

1
2n

)∣∣∣Pn(x) − Pn(y)
∣∣∣)

=
2(n − 1)
2n − 1

r
(
1 −

1
2n

)∣∣∣xn − yn

∣∣∣ = r
n − 1

n

∣∣∣xn − yn

∣∣∣. (17)

By (16) and (17), we have α(x, y).dn(Tx,Ty) ≤ ψn

(
d j(n)(x, y)

)
. That is T is (α-Ψ)-contractive.

Moreover, for x0 = {2, 2, . . .}we have α(x0,Tx0) = 1 and d jk(n,r)(x0,Tx0) = 0 for all k = 1, 2, . . .
Now, let x, y ∈ X such that α(x, y) ≥ 1 then xn ≤ 2 for all n ∈N∗ or yn ≤ 2 for all n ∈N∗. Then we have

Tx =
{
2, 2 −

(
1 −

1
2

)
(2 − x2), 2 −

(
1 −

1
3

)
(2 − x3), . . .

}
, Ty =

{
2, 2 −

(
1 −

1
2

)
(2 − y2), 2 −

(
1 −

1
3

)
(2 − y3), . . .

}
and α(Tx,Ty) = 1, that is, T is α-admissible.

Now, we check that X is j-bounded. Indeed, for any x, y ∈ X we have

d jk(n,r)(x, y) = d(
n,r(1− 1

2n )k
)(x, y)

= r
(
1 −

1
2n

)k∣∣∣Pn(x) − Pn(y)
∣∣∣

≤ r
∣∣∣Pn(x) − Pn(y)

∣∣∣ = q
(
x, y, (n, r)

)
.

This proves that X is j-bounded.
Finally, it is easy to see that if x, y ∈ X then there exists z = {2, 2, . . .} ∈ X such that α(x, z) ≥ 1 and

α(y, z) ≥ 1. Thus T satisfies all conditions of Theorem 3.10. Hence, T has a unique fixed point, that is
x = {2, 2, . . .}.
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4. Applications to Nonlinear Integral Equations

In this section, we wish to investigate the existence of a unique solution to nonlinear integral equations,
as an application to the fixed point theorems proved in the previous section.

Let us consider the following integral equations

x(t) =

∫ ∆(t)

0
G(t, s) f

(
s, x(s)

)
ds, (18)

where the unknown functions x(t) takes the real values. The f : R+ × R → R and G : R+ × R+ → R+ are
continuous functions, and the deviation ∆ : R+ → R+ is a continuous function, in general case, unbounded.
Note that, since deviation ∆ : R+ → R+ is unbounded, we can not apply the known fixed point theorems
in metric space (see [13]) for the above integral equations.

We shall adopt the following assumptions:

Assumption 4.1. A) There exists a function u : R2
→ R such that for each compact subset K ⊂ R+, there

exist a positive number λ and ψK ∈ Ψ such that for all t ∈ R+, for all a, b ∈ R with u(a, b) ≥ 0, we have∣∣∣ f (t, a) − f (t, b)
∣∣∣ ≤ λψK

(
|a − b|

)
,

and

λ sup
t∈K

∫ ∆(t)

0
G(t, s)ds ≤ 1.

B) There exists x0 ∈ C(R+,R) such that for all t ∈ R+, we have

u
(
x0(t),

∫ ∆(t)

0
G(t, s) f

(
s, x0(s)

)
ds

)
≥ 0.

C) For all t ∈ R+, x, y ∈ C(R+,R),

u
(
x(t), y(t)

)
≥ 0 =⇒ u

( ∫ ∆(t)

0
G(t, s) f

(
s, x(s)

)
ds,

∫ ∆(t)

0
G(t, s) f

(
s, y(s)

)
ds

)
≥ 0.

D) If {xn} is a sequence in C(R+,R) such that xn → x ∈ C(R+,R) and u(xn, xn+1) ≥ 0 for all n ∈ N∗, then
u(xn, x) ≥ 0 for all n ∈N∗.

E) For each compact subset K ⊂ R+, there exists a compact set K ⊂ R+ such that for all n ∈N∗,

∆n(K) ⊂ K.

Remark 4.2. If the the deviation ∆(t) ≤ t for all t ≥ 0 then the condition E) is trivial.

Theorem 4.3. Suppose that Assumption 4.1 are fulfilled. Then equation (18) has at least one solution in C
(
R+,R

)
.

Proof. Let X = C(R+,R). For each a compact subset K ⊂ R+, we define

pK( f ) = sup
{
| f (t)| : t ∈ K

}
, for every f ∈ X.

It is known that the family of seminorms {pK} (where K runs over all compact subsets of R+) defines a
locally convex Hausdorff topology of the space X. Hence, X is a Hausdorff sequentially uniform space
whose uniformity is generated by the family of pseudometrics which are defined by

dK( f , 1) = pK( f − 1) = sup
{
| f (t) − 1(t)| : t ∈ K

}
for every f , 1 ∈ X.
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Denote by I the set of all compact subsets of R+. Let us define the map j : I → I as follows. Let K ⊂ R+

be an arbitrary compact set. Then the set j(K) is defined by j(K) :=
[
0,maxt∈K ∆(t)

]
. Since ∆(t) is continuous

the set j(K) is also compact. The map jn : I→ I is defined inductively, i.e. jn(K) = j
(
jn−1(K)

)
, for every K ∈ I

and n ∈N∗.
Define T : X→ X by

Tx(t) =

∫ ∆(t)

0
G(t, s) f

(
s, x(s)

)
ds,

for all t ∈ R+.
Now, we show that T satisfies all conditions of Theorem 3.7.
Firstly, we show that T is an (α-Ψ)-contractive mapping. Now, for every compact subset K of R+, we

define the function αK : X × X→ R by

αK(x, y) = α(x, y) =

1 if u
(
x(t), y(t)

)
≥ 0 for all t ∈ R+

0 if otherwise,

for all x, y ∈ X.
Then, for each compact subset K of R+, for x, y ∈ X, we consider the following two cases.
Case 1. If u

(
x(t), y(t)

)
≥ 0 for all t ∈ R+, then from A) we have

dK

(
Tx,Ty

)
= sup

t∈K

∣∣∣Tx(t) − Ty(t)
∣∣∣

= sup
t∈K

∣∣∣∣ ∫ ∆(t)

0
G(t, s) f

(
s, x(s)

)
ds −

∫ ∆(t)

0
G(t, s) f

(
s, y(s)

)
ds

∣∣∣∣
= sup

t∈K

∣∣∣∣ ∫ ∆(t)

0
G(t, s)

(
f
(
s, x(s)

)
− f

(
s, y(s)

))
ds

∣∣∣∣
≤ sup

t∈K

∫ ∆(t)

0
G(t, s)

∣∣∣∣ f (s, x(s)
)
− f

(
s, y(s)

)∣∣∣∣ds

≤ sup
t∈K

∫ ∆(t)

0
G(t, s)λψK

(∣∣∣x(s) − y(s)
∣∣∣)ds

= λ sup
t∈K

∫ ∆(t)

0
G(t, s)ψK

(∣∣∣x(s) − y(s)
∣∣∣)ds

≤ λ sup
t∈K

∫ ∆(t)

0
G(t, s)ds ψK

(
sup

s∈[0,maxt∈K ∆(t)]

∣∣∣x(s) − y(s)
∣∣∣)

≤ ψK

(
sup
s∈ j(K)

∣∣∣x(s) − y(s)
∣∣∣)

= ψK

(
d j(K)(x, y)

)
.

Then, for every compact subset K of R+, for x, y ∈ X such that u
(
x(t), y(t)

)
≥ 0 for all t ∈ R+, we have

dK

(
Tx,Ty

)
≤ ψK

(
d j(K)(x, y)

)
.

Thus, we have

αK(x, y).dK

(
Tx,Ty

)
= dK

(
Tx,Ty

)
≤ ψK

(
d j(K)(x, y)

)
.
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Case 2. Otherwise, it is obvious we have

αK(x, y).dK

(
Tx,Ty

)
= 0.dK

(
Tx,Ty

)
≤ ψK

(
d j(K)(x, y)

)
.

Hence, T is an (α-Ψ)-contractive mapping.
Next, from condition C), for all x, y ∈ X, we have

α(x, y) ≥ 1 =⇒ u
(
x(t), y(t)

)
≥ 0 =⇒ u

(
Tx(t),Ty(t)

)
≥ 0 =⇒ α(Tx,Ty) ≥ 1.

Then, T is α-admissible.
From B), there exists x0 ∈ X such that α(x0,Tx0) ≥ 1. Moreover, for each compact subset K ⊂ R+, by the

continuity of the deviation ∆ and assumption E), we have

d jn(K)(x0,Tx0) ≤ d[0,maxs∈K ∆(s)]

(
x0,Tx0

)
≤ q

(
K, x0

)
< +∞.

Hence, condition ii) in Theorem 3.7 is satisfied.
Finally, it follows from assumption D) that the condition iii) in Theorem 3.7 is satisfied. Thus, we can

conclude by Theorem 3.7 that T has a fixed point x. Hence T(x) = x and x is the solution of the equation
(18).

Corollary 4.4. Suppose that
1) f : R+ ×R→ R+ is continuous and non-decreasing according to the second variable.
2) For each compact subset K ⊂ R+ there exist the positive number λ and ψK ∈ Ψ such that for all t ∈ R+, for all

a, b ∈ R with a ≤ b, we have∣∣∣ f (t, a) − f (t, b)
∣∣∣ ≤ λψK

(
|a − b|

)
,

and

λ sup
t∈K

∫ ∆(t)

0
G(t, s)ds ≤ 1.

3) For each compact subset K ⊂ R+, there exists a compact set K ⊂ R such that for all n ∈N∗,

∆n(K) ⊂ K.

Then, the equation (18) has a unique solution in C
(
R+,R

)
.

Proof. Define the mapping u : R2
→ R by u(a, b) = b − a for all a, b ∈ R. Then, it follows from 1), 2) that the

conditions A), C) are satisfied. In addition, assumption B) is satisfied by choosing x0(t) = 0 for all t ∈ R+.
Now, suppose that {xn} is a sequence in X that converges to x ∈ X and u

(
xn, xn+1

)
≥ 0 for all n. Then for

every t ∈ R+, the sequence of real numbers {xn(t)} satisfies x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · , and converges to
x(t). Therefore, for every t ∈ R+, n ∈ N, xn(t) ≤ x(t). Hence u(xn, x) ≥ 0, for all n ∈ N. That is, condition D)
in Assumption 4.1 holds.

Applying Theorem 4.3 we can conclude that the equation (18) has at least a solution in C
(
R+,R

)
.

The uniqueness of the solution follows from Theorem 3.11. Indeed, using assumption 3), we have

d jn(K)(x, y) = sup
t∈ jn(K)

∣∣∣x(t) − y(t)
∣∣∣ ≤ sup

t∈[0,maxs∈K ∆(s)]

∣∣∣x(t) − y(t)
∣∣∣ = d[0,maxs∈K ∆(s)](x, y) < +∞

for all n ∈N. This implies that X is j-bounded.
Now, for every x, y ∈ C

(
R+,R

)
, the function z = max{x, y} is satisfies α

(
x(t), z(t)

)
≥ 1 and α

(
y(t), z(t)

)
≥ 1.

Therefore, by applying Theorem 3.11, we can conclude that T has a unique fixed point x with Tx = x and x
is the unique solution of the equation (18).
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The following example is an illustration for the Corollary 4.4.

Example 4.5. Consider nonlinear functional integral equation

x(t) =

∫ t

0
G(t, s) f

(
s, x(s)

)
ds, (19)

where G : R+ ×R+ → R+ is given by

G(t, s) =

 3
4 es−t if t ≥ s ≥ 0
3
4 et−s if s ≥ t ≥ 0,

and f : R+ ×R→ R+ is defined by

f (t, x) =

x +
√

1 + x2 if x < 0
2 + x −

√

1 + x2 if x ≥ 0,

for every t ∈ R+.
We will show that the equation (19) has a solution on C(R+,R) by applying Corollary 4.4. Indeed, from

definition of f , it is easy to see that f is continuous and non-decreasing according to the second variable,
i.e the condition 1) is satisfied .

Now, for each compact set K ⊂ R, let ψK(t) =
3
4

t with t ≥ 0. Set

1(x) =

x +
√

1 + x2 if x < 0
2 + x −

√

1 + x2 if x ≥ 0.

Since |1′(x)| ≤ 1 for all x ∈ R, applying Lagrange’s theorem, we have
∣∣∣1(a) − 1(b)

∣∣∣ =
∣∣∣1′(c)

∣∣∣.|a − b| ≤ |a − b|, for
some c ∈ R and for all a, b ∈ R with a ≤ b. Hence, for each compact subset K ⊂ R+, we have∣∣∣ f (t, a) − f (t, b)

∣∣∣ ≤ |a − b| =
4
3
.ψK

(
|a − b|

)
, (20)

for all t ∈ R+, for all a, b ∈ R with a ≤ b. Moreover, we have∫ t

0
G(t, s)ds =

∫ t

0

3
4

es−tds =
3
4

(
1 −

1
et

)
.

Hence

4
3

sup
t∈K

∫ t

0
G(t, s)ds ≤ 1. (21)

Since (20) and (21) we have condition 2) is satisfied.
Note that, since ∆(t) = t for all t ∈ R+, then for every compact set K ⊂ R+, there exists a compact set

K = K such that condition 3) hold.
Thus, all the conditions in Corollary 4.4 are satisfied, hence applying Corollary 4.4 we get that the

equation (19) has a unique solution.
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