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Abstract. Let G be a locally compact group and let Γ be a closed subgroup of G × G. In this paper, the
concept of commutativity with respect to a closed subgroup of a product group, which is a generalization of
multipliers under the usual sense, is introduced. As a consequence, we obtain characterization of operators
on L2(G) which commute with left translation when G is amenable.

1. Introduction

The subject of multipliers for Lp(G) has been considered, in various forms, by a great number of authors.
We may refer the reader e.g. to [7], [13] and [18]. It was shown by Wendel in [21] that T is a left multiplier
of L1(G) if and only if for some µ ∈M(G), T = λµ, here λµ is the operator of multiplication by µ on left. For
1 ≤ p < ∞, the bounded linear operators on Lp(G) which commute with left translations was studied by
Larsen [13].

For a locally compact group G, let Hom(Lp(G),Lp(G)) denote all bounded linear map T : Lp(G) → Lp(G)
commuting with the left translation operators Lx, and let Conv(Lp(G),Lp(G)) denote all bounded linear maps
T : Lp(G) → Lp(G) commuting with the left convolution operators λφ, φ ∈ L1(G), where λφ( f ) = φ ∗ f ,
f ∈ Lp(G). It is known that Conv(L∞(G),L∞(G)) ⊆ Hom(L∞(G),L∞(G)), [15]. We know that the bounded
linear operators on L∞(G) which commute with left convolution and left translations have been studied by
Larsen [13].

Let G be a locally compact group and let Γ be a closed subgroup of G × G. Let T : Lp(G) → Lp′ (G),
1 ≤ p, p′ < ∞, be a linear map. We say that T is Γ-invariant (respectively L1(Γ)-invariant) whenever
T(s ft) = sT( f )t (T(T(p)

Φ
f ) = T(p′)

Φ
T( f )) for all f ∈ Lp(G), (s, t) ∈ Γ and Φ ∈ L1(Γ), [16].

Our first purpose in this paper is to study the relationship between these linear maps. We study when
these concepts are equivalent. In the case Γ = G × {e}, we say that T commutes with the left translation,
following [13]. In the case Γ = {(x, x); x ∈ G}, we say that T commutes with conjugation. We want to shift
our attention away from the study of multipliers of group algebras and begin a discussion on linear maps
for group algebras which commute with translations and convolutions with respect to a closed subgroup
of a product group. We shall give some indication of the relationship between these linear maps. Our
second purpose in this paper is to characterize the amenability of a group with respect to the existence of
multipliers maps.
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2. Preliminaries and Notations

Throughout this paper, G denotes a locally compact group with a fixed left Haar measure. Let Cb(G)
denote the Banach algebra of bounded continuous complex-valued functions on G with the supremum
norm, and let C0(G) be the closed subspace of Cb(G) consisting of all functions in Cb(G) which are vanishing
at infinity. The Banach spaces Lp(G), 1 ≤ p ≤ ∞, are as defined in [12]. The convex subset of L1(G) consisting
of all probability measures on G will be denoted by P1(G). If f is a complex-valued function defined locally
almost everywhere on G, and s, t, x ∈ G then

s f (x) := f (s−1x), ft(x) := f (xt) and s ft(x) := f (s−1xt)

where they are defined.
Let G be a locally compact group, and let Γ be any closed subgroup of the product group G × G, with a

fixed Haar measure denoted by d(y, z) and modular function ∆Γ. We say that G is Γ-amenable if there exists
m ∈ L∞(G)∗ such that m ≥ 0, ‖m‖ = 1 and m(sht) = m(h) for each h ∈ L∞(G) and (s, t) ∈ Γ. Li and Pier, [16],
give a good account of the structure of Γ-amenability of a locally compact topological group G, see also [6].

Following Li and Pier, [16], we define

Sµh(x) =

∫
Γ

h(yxz−1)dµ(y, z)

where µ ∈ M(Γ) (M(Γ) is the Banach algebra of all bounded Borel measures on Γ) and h ∈ L∞(G). For
1 ≤ p < ∞, Lp(G) is a Banach left L1(Γ)-module with module multiplication defined by

T(p)
Φ

f (x) =

∫
Γ

f (y−1xz)Φ(y, z)∆(z)
1
p d(y, z)

where f ∈ Lp(G) and Φ ∈ L1(Γ). For f ∈ Lp(G) and Φ ∈ L1(Γ), we have ‖T(p)
Φ

f ‖p ≤ ‖ f ‖p‖Φ‖1 (see [16]).
We mainly follow [16] in our notation and refer to [19] for basic functional analysis and to [12] for basic

harmonic analysis results. The duality action between Banach spaces is denoted by 〈 , 〉, thus for h ∈ L∞(G)
and f ∈ L1(G), we have 〈h, f 〉 =

∫
f (x)h(x)dx.

3. Γ-invariant Operators

We know that an affine continuous mapping T from Lp(G) into Lq(G) commutes with left translation if
and only if T(φ ∗ f ) = φ ∗ T( f ) for each φ ∈ L1(G) and f ∈ Lp(G), [14]. Recently, convolution operators of
hypergroup algebras have been studied by Pavel in [18]. The following theorem shows that a bounded
linear operator T from Lp(G) to itself is Γ-invariant if and only if T is L1(Γ)-invariant.

Theorem 3.1. Let G be a locally compact group, let p ≥ 1 be a real number, and let T : Lp(G) → Lp(G) be a
continuous linear operator. Then the following properties are equivalent:

(i) T is Γ-invariant, i.e. T(s ft) = sT( f )t for every (s, t) ∈ Γ and f ∈ Lp(G);

(ii) T is L1(Γ)-invariant, i.e. T(T(p)
Φ

f ) = T(p)
Φ

T( f ) for every f ∈ Lp(G) and Φ ∈ L1(Γ).

Proof. (i) ⇒ (ii). Suppose T(s ft) = sT( f )t for every (s, t) ∈ Γ and f ∈ Lp(G). Let Φ ∈ L1(Γ). Write Φ =
Φ+

1 − Φ−1 + i(Φ+
2 − Φ−2 ), where Φ1, Φ2 are respectively the real and imaginary parts of Φ, and for i = 1, 2, Φ+

i

and Φ−i are respectively the positive and negative variations of Φi. It suffices to show that T(T(p)
Φ

f ) = T(p)
Φ

T( f )
for every f ∈ Lp(G) and Φ ∈ P1(Γ). Let ε > 0 and δ = ε

8(1+‖ f ‖p)(1+‖T‖) . By Theorem 19.18 in [12], there exists a

compact subset K in Γ such that
∫

Γ\K Φ(x, y)d(x, y) < δ. Using the continuity of the mappings (y, z) 7→ y fz∆(z)
1
p
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and (y, z) 7→ yT( f )z∆(z)
1
p from Γ to Lp(G), by Theorem 20.4 in [12], we can find an open, relatively compact

neighbourhood Uy × Vz of (y, z) ∈ Γ such that

‖y fz∆(z)
1
p − s ft∆(t)

1
p ‖p < δ, ‖yT( f )z∆(z)

1
p − sT( f )t∆(t)

1
p ‖p < δ

for every (s, t) ∈ Uy ×Vz. Let (y1, z1), ..., (yn, zn) in Γ be such that (y1, z1) = (e, e) and K ⊆
n⋃

i=2

Uyi ×Vzi . We put

E1 = Γ \ K and define inductively Ei = (Uyi × Vzi )
⋂

(Γ \
i−1⋃
j=1

E j) for i = 2, . . . ,n. So we have

‖y fz∆(z)
1
p − yi fzi∆(zi)

1
p ‖p < δ, ‖yT( f )z∆(z)

1
p − yi T( f )zi∆(zi)

1
p ‖p < δ

whenever (y, z) ∈ Ei for i = 2, ...,n. Write ci =
∫

Ei
Φ(y, z)d(y, z), where i = 1, ...,n. Since Γ =

n⋃
i=1

Ei is a finite

union of pairwise disjoint subsets of Γ, we have

1 =

∫
Γ

Φ(x, y)d(x, y) =

n∑
i=1

∫
Ei

Φ(x, y)d(x, y) =

n∑
i=1

ci.

Let q be the Holder conjugate of p. For every h ∈ Cc(G) (the space of complex valued continuous functions
on G with compact support), we have∣∣∣∣ ∫

G
h(x)

∫
E1

(
y fz(x)∆(z)

1
p − f (x)

)
Φ(y, z)d(y, z)dx

∣∣∣∣ ≤ 2‖h‖q‖ f ‖pδ ≤
ε

4‖T‖
‖h‖q

and also

ε
2‖T‖

‖h‖q ≥
ε

4‖T‖
‖h‖q +

n∑
i=2

∫
Ei

Φ(y, z)‖y fz∆(z)
1
p − yi fzi∆(zi)

1
p ‖p‖h‖qd(y, z)

≥

n∑
i=1

∫
Ei

Φ(y, z)
∫

G

∣∣∣∣y fz(x)∆(z)
1
p − yi fzi (x)∆(zi)

1
p

∣∣∣∣|h(x)|dxd(y, z)

≥

∣∣∣∣ ∫
G

h(x)
n∑

i=1

∫
Ei

(
y fz(x)∆(z)

1
p − yi fzi (x)∆(zi)

1
p
)
Φ(y, z)d(y, z)dx

∣∣∣∣
=

∣∣∣∣〈T(p)
Φ

f −
n∑

i=1

ci yi fzi∆(zi)
1
p , h〉

∣∣∣∣.
Since this holds for all h ∈ Cc(G), by Theorem 12.13 in [12], we conclude that∥∥∥∥T(p)

Φ
f −

n∑
i=1

ci yi fzi∆(zi)
1
p

∥∥∥∥
p
≤

ε
2‖T‖

.

It follows that
∥∥∥∥T(T(p)

Φ
f ) −

∑n
i=1 ci yi T( f )zi∆(zi)

1
p

∥∥∥∥
p
≤

ε
2 . Similarly, one can show that

∥∥∥∥T(p)
Φ

T( f ) −
n∑

i=1

ci yi T( f )zi∆(zi)
1
p

∥∥∥∥
p
≤
ε
2
.

Therefore ‖T(T(p)
Φ

f )−T(p)
Φ

T( f )‖p ≤ ε.As ε > 0 is chosen arbitrary, we have T(T(p)
Φ

f ) = T(p)
Φ

T( f ). Thus (i) implies
(ii).
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(ii)⇒ (i). Let f ∈ Lp(G), (s, t) ∈ Γ and ε > 0 be given. There exists an neighbourhood U × V of (e, e) in Γ
such that

‖y(s ft)z∆(z)
1
p − s ft‖p <

ε
2‖T‖

, ‖y(sT( f )t)z∆(z)
1
p − sT( f )t‖p <

ε
2

whenever (y, z) ∈ U × V, see Theorem 20.4 in [12]. Choose Φ ∈ P1(Γ) with suppΦ ⊆ U × V. For every
h ∈ Cc(G), we have

ε
2‖T‖

‖h‖q ≥

∫
Γ

(
‖y(s ft)z∆(z)

1
p − s ft‖p‖h‖q

)
Φ(y, z)d(y, z)

≥

∫
G

∫
Γ

|h(x)|
∣∣∣∣s ft(y−1xz)∆(z)

1
p − s ft(x)

∣∣∣∣Φ(y, z)d(y, z)dx

≥

∣∣∣∣〈T(p)
Φ s ft − s ft, h〉

∣∣∣∣.
By Theorem 12.13 in [12],∥∥∥∥T(p)

Φ s ft − s ft
∥∥∥∥

p
≤

ε
2‖T‖

. (1)

Interchanging the roles of s ft and sT( f )t, we see at once that∥∥∥∥T(p)
Φ sT( f )t − sT( f )t

∥∥∥∥
p
≤
ε
2
. (2)

On the other hand, T(p)
Φ s ft = ∆(t−1)

1
p ∆Γ(s−1, t−1)T(p)

Φ(s−1 ,t−1)
f and also

T(p)
Φ sT( f )t = ∆(t−1)

1
p ∆Γ(s−1, t−1)T(p)

Φ(s−1 ,t−1)
T( f ).

Now (1) gives ∥∥∥∥∆(t−1)
1
p ∆Γ(s−1, t−1)T(p)

Φ(s−1 ,t−1)
T( f ) − T(s ft)

∥∥∥∥
p
≤
ε
2

and so

‖T(p)
Φ sT( f )t − T(s ft)‖p ≤

ε
2
. (3)

Hence using (2) and (3), we have ‖T(s ft)−sT( f )t‖p ≤ ε. As ε > 0 is chosen arbitrary, we have T(s ft) = sT( f )t.

In the Theorem 3.1, we discussed linear operators for the pair (Lp(G),Lp′ (G)) when p = p′. We cannot
verify if the claim in Theorem 3.1 remains true if T : Lp(G)→ Lp′ (G) for p , p′. For a compact abelian group,
the bounded linear maps from Lp(G) to Lp′ (G) which commutes with translations have been studied by
Larsen, see Theorem 5.2.4 in [13]. In the following proposition, we study the case that p is not necessarily
equal to p′ for unimodular groups.

Proposition 3.2. Let G be a unimodular locally compact group and 1 ≤ p, p′ < ∞. Suppose that T : Lp(G)→
Lp′ (G) is a continuous linear map. Then the following properties are equivalent:

(i) T is Γ-invariant;

(ii) T(T(p)
Φ

f ) = T(p′)
Φ

T( f ) for every f ∈ Lp(G) and Φ ∈ L1(Γ).

Proof. To prove this proposition, one may rewrite the proof of Theorem 3.1 where ∆ ≡ 1.
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Let G be a locally compact group and 1 ≤ p < ∞. The collection of all continuous linear maps T : Lp(G)→
Lp(G) which is Γ-invariant, will be denoted byMΓ(Lp(G)). If 1 < p < ∞ and 1

p + 1
q = 1, then T → T∗ is an

isometric algebra isomorphism ofMΓ(Lp(G)) ontoMΓ(Lq(G)). By Theorem 3.1, the correspondence between
T and T∗ defines an isometric algebra isomorphism from ML1(Γ)(Lp(G)) onto ML1(Γ)(Lq(G)) (ML1(Γ)(Lp(G))
where here denotes the space of continuous linear operator T : Lp(G)→ Lp(G) such that T(T(p)

Φ
f ) = T(p)

Φ
T( f )

for every f ∈ Lp(G) and Φ ∈ L1(Γ)). ClearlyML1(Γ)(Lp(G)) is a unital Banach subalgebra ofB(Lp(G)). It is also
the case thatML1(Γ)(Lp(G)) is complete in the strong operator topology.

Theorem 3.3. Let G be a locally compact group, and suppose T : L∞(G) → L∞(G) is a weak∗-weak∗

continuous linear operator. Then the following properties are equivalent:

(i) T is Γ-invariant, i.e. T(sht) = sT(h)t for every (s, t) ∈ Γ and h ∈ L∞(G);

(ii) T(SΦh) = SΦT(h) for every h ∈ L∞(G) and Φ ∈ L1(Γ).

Proof. (i)⇒ (ii). Suppose T(sht) = sT(h)t for every (s, t) ∈ Γ and h ∈ L∞(G). Then for F ∈ L∞(G)∗, h ∈ L∞(G)
the pairing 〈T∗(F), h〉 = 〈F,T(h)〉 defines the adjoint of T as a linear operator T∗ from L∞(G)∗ to L∞(G)∗.
Moreover, suppose {hα} ⊆ L∞(G) converges in the weak∗ sense to h ∈ L∞(G), that is, limα〈hα, f 〉 = 〈h, f 〉 for
each f ∈ L1(G). Then T(hα)→ T(h) in the weak∗ topology. For f ∈ L1(G),

〈T∗( f ), hα〉 = 〈T(hα), f 〉 → 〈T(h), f 〉 = 〈T∗( f ), h〉.

This shows that T∗( f ) is weak∗ continuous. By Theorem 3.10 in [19], T∗( f ) ∈ L1(G). Since T is Γ-invariant,
we see for each f ∈ L1(G), h ∈ L∞(G) and each (s, t) ∈ Γ that

〈T∗(s ft), h〉 = 〈s ft,T(h)〉 =

∫
G

f (s−1xt)T(h)(x)dx = ∆(t−1)〈s−1 T(h)t−1 , f 〉

= ∆(t−1)〈T(s−1 ht−1 ), f 〉 = ∆(t−1)〈T∗( f ), s−1 ht−1〉 = 〈sT∗( f )t, h〉.

Hence T∗|L1(G) is Γ-invariant. Moreover T∗|L1(G) is continuous on L1(G). Indeed, let fn, f , f0 ∈ L1(G) be such
that limn ‖ fn − f ‖1 = 0 and limn ‖T∗( fn) − f0‖ = 0. Then for each h ∈ L∞(G) we have

|〈T∗( f ) − f0, h〉| ≤ |〈T∗( f ) − T∗( fn), h〉| + |〈T∗( fn) − f0, h〉|
≤ ‖ fn − f ‖1‖T(h)‖ + ‖T∗( fn) − f0‖‖h‖.

Consequently 〈T∗( f ) − f0, h〉 = 0 for each h ∈ L∞(G), and hence T∗( f ) = f0. Thus T∗ is a closed operator and
so, by the Closed Graph Theorem, it is continuous. It follows from the preceding result, Theorem 3.1, that
T∗(T(1)

Φ
f ) = T(1)

Φ
T∗( f ) for all Φ ∈ L1(Γ) and f ∈ L1(G). Now let h ∈ L∞(G), Φ ∈ L1(Γ) and f ∈ L1(G) be given.

Elementary calculations again reveal that

〈SΦT(h), f 〉 = 〈T(h),T(1)
Φ

f 〉 = 〈h,T∗(T(1)
Φ

f )〉 = 〈h,T(1)
Φ

T∗( f )〉
= 〈SΦh,T∗( f )〉 = 〈T(SΦh), f 〉.

We conclude that T(SΦh) = SΦT(h).
(ii)⇒ (i). Let U × V be a compact neighbourhood of (e, e) and fixed. Let (Uα × Vα) be a net of compact

neighbourhoods of (e, e) contained in U × V, ordered by set inclusion (Uα × Vα � Uβ × Vβ if and only if
Uβ × Vβ ⊆ Uα × Vα), with

⋂
Uα × Vα = {(e, e)}, which forms a directed set. Let {Φα} be a choice of measures

in P1(Γ) such that Φα(Γ \Uα × Vα) = 0 for all α.
Now assume h is in L∞(G) and (s, t) is in Γ. Let f ∈ L1(G) and ε > 0. There exists a neighbourhood

Uα0 ×Vα0 of (e, e) such that ‖y fz∆(z)− f ‖1 < εwhenever (y, z) ∈ Uα0 ×Vα0 , see Theorem 20.4 in [12]. For every
α ≥ α0, we have

|〈SΦα sht − sht, f 〉| ≤
∫

Γ

∫
G
|sht(x)||y fz(x)∆(z) − f (x)|Φα(y, z)dxd(y, z)

≤

∫
Γ

‖sht‖‖y fz∆(z) − f ‖1Φα(y, z)d(y, z) ≤ ε‖h‖.
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We conclude that SΦα sht converges to sht in the weak∗ topology. Similarly, one can show that S(s,t)ΦαT(h) →
sT(h)t in the weak∗ topology. By Proposition 2.2 in [16] and its proof, SΦα sht = S(s,t)Φαh for every α. Thus

〈sT(h)t, f 〉 = lim
α
〈S(s,t)ΦαT(h), f 〉 = lim

α
〈T(S(s,t)Φαh), f 〉

= lim
α
〈T(SΦα sht), f 〉 = 〈T(sht), f 〉

for every f ∈ L1(G). This proves that T is Γ-invariant.

In the following example, we define an operator T which satisfies the equivalent conditions given in
Theorem 3.3, but it is not continuous with respect to weak∗ topology.

Example 3.4. Consider G = Z, the additive group of the integers, and let

X = {h ∈ `∞(Z); lim
|n|→∞

h(n) ∈ R}.

Let Γ = Z × {0} and let T : X → X be given by T(h) = lim|n|→∞ h(n)1. Then mT(h)0 = T(mh0) for all m ∈ Z
and h ∈ X. An extension of the Hahn-Banach theorem assures the existence of a continuous linear mapping
on all of `∞(Z) to itself which is Γ-invariant and coincides with T on X. We again denote this extension
by T. Suppose that T is a weak∗-weak∗ continuous operator on `∞(Z). A similar argument to the The-
orem 3.3 can be used to show that T∗(`1(Z)) ⊆ `1(Z) and T∗ is Γ-invariant. So T∗ restricted to `1(Z) is a
multiplier from `1(Z) into `1(Z). Consequently, by Wendel’s theorem [21], there exists µ ∈ M(Z) such that
T∗( f ) = µ ∗ f for every f ∈ `1(Z). It is not hard to see that µ = 0, which is a contradiction. We conclude that
T : `∞(Z)→ `∞(Z) is Γ-invariant and cannot be weak∗-weak∗ continuous.

The following example shows that the hypothesis of weak∗-weak∗ continuity in Theorem 3.3 is essential.

Example 3.5. Let G be a nondiscrete, compact abelian group. By Proposition 22.3 in [17], there exists
m ∈ L∞(G)∗ such that 〈m, eht〉 = 〈m, h〉 for every element (e, t) of the closed subgroup Γ = {e} × G and
h ∈ L∞(G), and also 〈m,SΦ0 h0〉 , 〈m, h0〉 for some h0 ∈ L∞(G) but Φ0 ∈ P1(Γ). Define T : L∞(G) → L∞(G) by
T(h) = 〈m, h〉1. It is evident that this operator is Γ-invariant and SΦ0 T(h0) , T(SΦ0 h0).

Proposition 3.6. Let G be a unimodular locally compact group, and let p ≥ 1 be a real number. Suppose
that T : Lp(G)→ L∞(G) is a linear map. Then the following properties are equivalent:

(i) T is Γ-invariant;

(ii) T(T(p)
Φ

f ) = SΦ̃T( f ) for every f ∈ Lp(G) and Φ ∈ L1(Γ), where for Φ ∈ L1(Γ), Φ̃ is defined by Φ̃(y, z) =

Φ(y−1, z−1)∆Γ(y−1, z−1) (see [16]).

Proof. (i)⇒ (ii). Let T be a linear map from Lp(G) into L∞(G) which is Γ-invariant. Let T∗ : L∞(G)∗ → Lq(G)
denote the adjoint of T, where q is the Holder conjugate of p. Since T is Γ-invariant, it is easy to see that
T∗(s ft) = sT∗( f )t for every f ∈ L1(G) and (s, t) ∈ Γ. An application of the Closed Graph Theorem shows
that T∗|L1(G) is a continuous linear map. By Proposition 3.2, T∗(T(1)

Φ
f ) = T(q)

Φ
T∗( f ) whenever f ∈ L1(G) and

Φ ∈ L1(Γ). An argument similar to the proof of Theorem 3.3 shows that T(T(p)
Φ

f ) = SΦ̃T( f ) for every f ∈ Lp(G)
and Φ ∈ L1(Γ).

(ii) ⇒ (i). Let T(T(p)
Φ

f ) = SΦ̃T( f ) for every f ∈ Lp(G) and Φ ∈ L1(Γ). Then for each f ∈ L1(G), Φ ∈ L1(Γ)
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and 1 ∈ Cc(G), we have

〈T∗(T(1)
Φ

f ), 1〉 = 〈T(1)
Φ

f ,T(1)〉 =

∫
G

∫
Γ

f (y−1xz)φ(y, z)T(1)(x)d(y, z)dx

=

∫
G

∫
Γ

f (x)φ(y, z)T(1)(yxz−1)d(y, z)dx = 〈SΦT(1), f 〉

= 〈T(T(p)

Φ̃
1), f 〉 = 〈T(p)

Φ̃
1,T∗( f )〉

=

∫
G

∫
Γ

T∗( f )(x)1(y−1xz)Φ̃(y, z)d(y, z)dx

=

∫
G

∫
Γ

T∗( f )(yxz−1)Φ̃(y, z)1(x)d(y, z)dx

=

∫
G

∫
Γ

T∗( f )(y−1xz)Φ(y, z)1(x)d(y, z)dx

= 〈T(q)
Φ

T∗( f ), 1〉

Hence T∗(T(1)
Φ

f ) = T(q)
Φ

T∗( f ) for every f ∈ L1(G) and Φ ∈ L1(Γ). By Proposition 3.2, T∗|L1(G) is Γ-invariant.
Clearly T is Γ-invariant and this completes our proof.

It is a standard device to embed L∞(G) into B(L1(G),L∞(G)) by transformation T, so that T(h)( f ) = f ∗ h.
So T allows us to consider the strong operator topology on L∞(G) that we shall denote by τc. It is known
that the norm topology on L∞(G) is stronger than the τc-topology, see Proposition 4 in [3].

Proposition 3.7. Let G be a compact group, and let p ≥ 1 be a real number. Suppose that T : L∞(G)→ Lp(G)
is a τc-continuous linear map. Then the following properties are equivalent:

(i) T is Γ-invariant;

(ii) T(SΦ̃h) = T(p)
Φ

T(h) for every h ∈ L∞(G) and Φ ∈ L1(Γ).

Proof. (i) ⇒ (ii). Let q be the Holder conjugate of p. We first show that for each f ∈ Lq(G), T∗( f ) ∈ L1(G).
Indeed, if {hα} is a net in L∞(G) and hα → h in the τc-topology, then

〈T∗( f ), hα〉 = 〈 f ,T(hα)〉 → 〈 f ,T(h)〉 = 〈T∗( f ), h〉,

since T is τc-continuous. Since L1(G) is the dual of (L∞(G), τc) (see Corollary 2 in [3]), so T∗( f ) ∈ L1(G). Now,
suppose that T is Γ-invariant. It is easy to see that T∗ is continuous. Moreover, T∗(s ft) = sT∗( f )t for every
(s, t) ∈ Γ and f ∈ Lq(G), since as usual we have for each f ∈ Lq(G), (s, t) ∈ Γ and h ∈ L∞(G) that

〈T∗(s ft), h〉 = 〈s ft,T(h)〉 = 〈 f , s−1 T(h)t−1〉

= 〈 f ,T(s−1 ht−1 )〉 = 〈sT∗( f )t, h〉.

By Proposition 3.2, T∗(T(q)
Φ

f ) = T(1)
Φ

T∗( f ) for every f ∈ Lq(G) and Φ ∈ L1(Γ). It is not hard to see that
T(SΦ̃h) = T(p)

Φ
T(h) for every h ∈ L∞(G) and Φ ∈ L1(Γ).

(ii) ⇒ (i). Since T(SΦ̃h) = T(p)
Φ

T(h) for every h ∈ L∞(G) and Φ ∈ L1(Γ), we have T∗(T(q)
Φ

f ) = T(1)
Φ

T∗( f ) for
every f ∈ Lq(G) and Φ ∈ L1(Γ). By Proposition 3.2, T∗ is Γ-invariant and so T is Γ-invariant.
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4. Amenability and Translation Operators

For T ∈ MΓ(L∞(G)), we are able to speak of the translate sTt, which is that continuous linear operator
which associates the element sTt(h) = T(sht) ∈ L∞(G) to each h ∈ L∞(G). Recall that the weak operator topology
on B(L∞(G)) is the locally convex topology defined by the family of seminorms

℘ = {ph,ϕ; ph,ϕ(T) = |〈T(h), ϕ〉|, h ∈ L∞(G) and ϕ ∈ L1(G)}.

T is said to be weakly almost periodic if the set {sTt; (s, t) ∈ Γ} of translates of T is relatively compact with
respect to weak operator topology on the set B(L∞(G)) of bounded linear operators from L∞(G) to L∞(G),
[8].

Theorem 4.1. Let G be a locally compact group, and let Γ = G × {e}. Then the following properties are
equivalent:

(i) G is amenable;

(ii) There is a non-zero weakly almost periodic linear operator T inMΓ(L∞(G)).

Proof. (i)⇒ (ii). Amenability of G is equivalent to the Γ-amenability; hence, for an invariant mean m, the
mapping T : h 7→ 〈m, h〉1, is a rank one operator and hence weakly compact. The set {sT; s ∈ G} is just a
singleton {T} and so is compact in any topologies. Clearly T is invariant.

(ii)⇒ (i). Let T ∈ MΓ(L∞(G)) be a non-zero weakly almost periodic operator of L∞(G) to itself. It is known
that |T| ∈ MΓ(L∞(G)), [10]. For h ∈ L∞(G), the map T 7→ T(h) from MΓ(L∞(G)) into L∞(G) is continuous
when L∞(G) is equipped with the weak topology. Thus {T(sh); s ∈ G} is relatively weakly compact. Hence
{|T|(sh); s ∈ G} is relatively weakly compact, see Theorem 5.35 in [1]. Since this holds for all h ∈ L∞(G), we
conclude that |T| is a weakly almost periodic operator on L∞(G) (see Exercise VI 9.2 in [5]). Since T , 0,
|T| , 0. If h ≥ 0, then |T(h)| ≤ ‖h|||T|(1), and it follows that |T|(1) > 0. We conclude that, |T|

|T|(1) is a weakly
almost periodic operator on L∞(G). Without loss of generality we may assume that T is a positive operator
and T(1) = 1. Let WAP(L∞(G)) denote the space of weakly almost periodic functions on G i.e. the set of
all f ∈ L∞(G) such that {y f ; y ∈ G} is relatively compact in the weak topology of L∞(G). Recall that an
application of the Ryll-Nardzewski fixed point Theorem, see Theorem 6.20 in [2], shows that WAP(L∞(G))
has a unique invariant mean m. If f ∈ L∞(G), then {sT( f ); s ∈ G} = {T(s f ); s ∈ G} is relatively weakly compact.
Hence T( f ) ∈WAP(L∞(G)). It follows that m ◦ T is a invariant mean on L∞(G), and so G is Γ-amenable.

For a locally compact group G, L1(G)∗∗will always denote the second conjugate algebra of L1(G) equipped
with the first Arens multiplication. Let also L∞0 (G) be the subspace of L∞(G) consisting of all functions
f ∈ L∞(G) that vanish at infinity. It is known that L∞0 (G) is a closed ideal of L∞(G) invariant under
conjugation and translation, containing C0(G) as a closed subspace, see Proposition 2.7 in [15]. Furthermore
L∞0 (G)∗ is a closed subalgebra of L∞(G)∗ with respect to first Arens product, see Corollary 2.10 in [15].
Information about the first Arens product can be found in [4].

It is known that if G is a noncompact locally compact group, then L∞(G)∗ cannot have any non-zero
weakly compact left multipliers T with 〈T(n), 1〉 , 0, for some n ∈ L∞(G)∗, see Theorem 4.1 in [10]. On the
other hand G is amenable if and only if there is a non-zero weakly compact right multiplier on L∞(G)∗, see
Theorem 2.1 in [11].

Theorem 4.2. (i) A locally compact group G is compact if and only if there is a non-zero weakly compact
linear operator T from L∞0 (G) to itself such that T( f ∗ h) = f ∗ T(h) for every f ∈ L1(G) and h ∈ L∞0 (G).

(ii) A locally compact group G is amenable if and only if there is a non-zero weakly compact linear
operator T from L∞(G) to itself such that T( f ∗ h) = f ∗ T(h) for every f ∈ L1(G) and h ∈ L∞(G).

Proof. (i) If G is compact, Proposition 4.6 in [17] implies that existence of a mean m on L∞(G) = L∞0 (G) such
that 〈m, f ∗ h〉 = 〈m, h〉 for all h ∈ L∞(G) and f ∈ P1(G). Define T : L∞0 (G) → L∞0 (G) by T(h) = 〈m, h〉1. It is
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routine to verify that T is a weakly compact linear operator. Further T( f ∗ h) = f ∗ T(h) for all h ∈ L∞0 (G) and
f ∈ L1(G).

To prove the converse, let T be a non-zero weakly compact operator on L∞0 (G) which commutes with
left convolution operators. Let π : L∞(G)∗ → LUC(G)∗ be the canonical projection. Recall that LUC(G)∗ is a
Banach algebra by an Arens-type product and that L1(G) ⊆ LUC(G)∗. Information about the Arens product
and about LUC(G)∗ can be found in [15]. For every n ∈ L∞0 (G)∗ and 1 ∈ L∞0 (G), we denote by n1 the function in
L∞(G) defined by 〈n1, ϕ〉 = 〈n, ϕ̃∗1〉 for allϕ ∈ L1(G), where ϕ̃(x) = ϕ(x−1)∆(x−1) for all x ∈ G. The space L∞0 (G)
is left introverted in L∞(G); that is, for each n ∈ L∞0 (G)∗ and 1 ∈ L∞0 (G), n1 ∈ L∞0 (G). This lets us endow L∞0 (G)∗

with the first Arens product defined by 〈mn, 1〉 = 〈m,n1〉 for all m,n ∈ L∞0 (G)∗ and 1 ∈ L∞0 (G). Then L∞0 (G)∗

with this product is a Banach algebra. This Banach algebra was introduced and studied by Lau and Pym,
[15]. By Theorem 2.8 in [15], π(L∞0 (G)∗) = M(G). This shows that L1(G)L∞0 (G)∗ = L1(G)π(L∞0 (G)∗) ⊆ L1(G). We
show that for each f ∈ L1(G), T∗( f ) ∈ L1(G). Let {Fα} be a net in L∞0 (G)∗ and Fα → F in the weak∗ topology
of L∞0 (G)∗. If f ∈ L1(G), then f = f1 ∗ f2, for some f1 and f2 in L1(G), by Cohen’s factorization theorem. It is
known that 〈 f2, f̃1 ∗ h〉 = 〈 f2, h f1〉 for all h ∈ L∞(G), see [15]. Consequently if h ∈ L∞0 (G),

〈T∗( f )Fα, h〉 = 〈T∗( f ),Fαh〉 = 〈 f ,T(Fαh)〉 = 〈 f1 ∗ f2,T(Fαh)〉

= 〈 f2,T(Fαh) f1〉 = 〈 f2, f̃1 ∗ T(Fαh)〉 = 〈 f2,T( f̃1 ∗ Fαh)〉

= 〈 f2, f̃1 ∗ FαT(h)〉 = 〈 f2,FαT(h) f1〉 = 〈 f1 ∗ f2,FαT(h)〉
= 〈 f ,FαT(h)〉 = 〈Fα,T(h) f 〉 → 〈F,T(h) f 〉 = 〈T∗( f )F, h〉.

Hence T∗( f )Fα → T∗( f )F, showing that T∗( f ) is in the topological center of L∞0 (G)∗. By Theorem 2.11 in
[15], T∗( f ) ∈ L1(G). Clearly T∗|L1(G) is a left multiplier on L1(G). On the other hand, T is weakly compact. It
follows that T∗ : L∞0 (G)∗ → L∞0 (G)∗ is weakly compact, see Theorem 17.2 in [1]. So T∗ restricted to L1(G) is
weakly compact. Since for a noncompact group G, there are no weakly compact multiplier from L1(G) to
L1(G), we conclude that G is compact (see Theorem in [9] and Theorem 1 in [20]).

(ii) Since Conv(L∞(G),L∞(G)) ⊆ Hom(L∞(G),L∞(G)), by [15]. An argument similar to the one in the proof
of Theorem 4.1, shows that G is amenable if and only if there is a non-zero weakly compact linear operator
T from L∞(G) to itself such that T( f ∗ h) = f ∗ T(h) for every f ∈ L1(G) and h ∈ L∞(G).

Theorem 4.3. Let G be a locally compact group, and let Γ = G × {e}. Then the following properties are
equivalent:

(i) G is amenable;

(ii) There exist a continuous linear mapping P of B(L2(G)) ontoMΓ(L2(G)) such that the following hold:

(1) ‖P‖ = 1, P ≥ 0 and P(I) = I.

(2) P(LsTLs−1 ) = LsP(T)Ls−1 = P(T) for every T ∈ B(L2(G)) and s ∈ G, here Ls is the left translation operator
in B(L2(G)) defined by Ls(φ) = s−1φ.

Proof. (i) ⇒ (ii). Let G be amenable, or equivalently Γ-amenable (see [16]). By Theorem 4.19 in [17], there
exists a mean m on L∞(G) such that 〈m, sh〉 = 〈m, hs〉 = 〈m, h〉 for every h ∈ L∞(G) and s ∈ G. Now if
φ,ψ ∈ L2(G) and hT

φ,ψ : G → C is given by the formula hT
φ,ψ(x) = (Lx−1 TLxφ|ψ), then ‖hT

φ,ψ‖ ≤ ‖T‖‖φ‖2‖ψ‖2.
This shows that hT

φ,ψ ∈ L∞(G). Let φ ∈ L2(G). Obviously the linear map ψ 7→ 〈m, hT
φ,ψ〉 from L2(G) into C

is continuous. Thus by the Riesz Representation Theorem, there exists a unique P(T)φ ∈ L2(G) such that
(P(T)φ|ψ) = 〈m, hT

φ,ψ〉. For all φ,ψ ∈ L2(G), s ∈ G and every x ∈ G,

hT
Lsφ,Lsψ

(x) = (Lx−1 TLxLsφ|Lsψ) = (Ls−1 Lx−1 TLxLsφ|ψ)

= (L(xs)−1 TLxsφ|ψ) = hT
φ,ψ(xs).
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Thus 〈m, hT
Lsφ,Lsψ

〉 = 〈m, hT
φ,ψ〉, that is,

(Ls−1 P(T)Lsφ|ψ) = (P(T)Lsφ|Lsψ) = (P(T)φ|ψ).

Since this holds for all φ,ψ ∈ L2(G), we conclude that Ls−1 P(T)Ls = P(T), that is, P(T) ∈ MΓ(L2(G)). The
mapping T 7→ P(T) from B(L2(G)) onto MΓ(L2(G)) is clearly linear and ‖P‖ = 1. It is not hard to see
P(LsTLs−1 ) = LsP(T)Ls−1 = P(T) for every T ∈ B(L2(G)) and s ∈ G.

(ii) ⇒ (i). Let us assume that there exists a linear mapping P of B(L2(G)) onto MΓ(L2(G)) satisfying
the conditions of Theorem. For h ∈ L∞(G) define mh ∈ B(L2(G)) by mh(φ) = hφ. Consider a fixed positive
φ0 ∈ L2(G) with ‖φ0‖2 = 1. If h ∈ L∞(G), let 〈m, h〉 = (P(mh)φ0|φ0). Clearly m is a mean on L∞(G). For all
h ∈ L∞(G), s ∈ G, and φ ∈ L2(G), we have shφ = LsmhLs−1φ. It follows that msh = LsmhLs−1 . By assumption,
P(msh) = P(LsmhLs−1 ) = P(mh) and so 〈m, sh〉 = (P(msh)φ0|φ0) = (P(mh)φ0|φ0) = 〈m, h〉. Therefore m is a left
invariant mean on L∞(G), and so G is Γ-amenable.

Corollary 4.4. Let G be an amenable locally compact group, and let Γ = G×{e}. ThenMΓ(L2(G)) is invariantly
complemented inB(L2(G)), that is,MΓ(L2(G)) is the range of a continuous projection onB(L2(G)) commuting
with translations.

Proof. The statement follows from Theorem 4.3 and its proof.
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